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Preface To The Twenty-Third Edition
It gives a great pleasure in presenting the new multicolour edition

of this popular book to innumerable students and academic staff of the
Universities in India and abroad. The favourable and warm reception,
which the previous editions and reprints of this book have enjoyed all over
India and abroad, has been a matter of great satisfaction.

The present edition of this book is in S.I. Units. To make the book
really useful at all levels, a number of articles as well as solved and
unsolved examples have been added. The mistakes, which had crept in,
have been eliminated. Three new chapters of Thick Cylindrical and Spherical
Shells, Bending of Curved Bars and Mechanical Properties of Materials
have also been added.

Any errors, omissions and suggestions for the improvement of this
volume, will be thankfully acknowledged and incorporated in the next
edition.

E-mail :
khurmieducation@yahoo.com
Website :
www.khurmis.com
Address :
B-510, New Friends Colony,
New Delhi-110025
Mobile : 9810199785

R.S. KHURMI
N. KHURMI
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Preface To The First Edition
I take an opportunity to present Strength of Materials  to the students

of Degree and Diploma, in general, and A.M.I.E (I) Section ‘A’ in particular.
The object of this book is to present the subject matter in most concise,
compact, to the point and lucid manner.

While writing the book, I have always kept in view the examination
requirements of the students and various difficulties and troubles, which they
face, while studying the subject. I have also, constantly, kept in view the re-
quirements of those intelligent students, who are always keen to increase
their knowledge. All along the approach to the subject matter, every care has
been taken to deal with each and every topic as well as problem from the
fundamentals and in the simplest possible manner, within the mathematical
ability of an average student. The subject matter has been amply illustrated
by incorporating a good number of solved, unsolved and well graded ex-
amples of almost every variety. Most of these examples are taken from the
recent examination papers of Indian as well as foreign Universities and pro-
fessional examining bodies, to make the students, familiar with the types of
questions, usually set in their examinations. At the end of each topic, a few
exercises have been added, for the students to solve them independently.
Answer to these problems have been provided, but it is too much to hope that
these are entirely free from errors. At the end of each chapter, Highlights
have been added, which summarise the main topics discussed in the chapter
for quick revision before the examination. In short, it is earnestly hoped that
the book will earn the appreciation of the teachers and students alike.

Although every care has been taken to check mistakes and misprints,
yet it is difficult to claim perfection. Any errors, omissions and suggestions for
the improvement of this volume, brought to my notice, will be thankfully ac-
knowledged and incorporated in the next edition.

R.S. KHURMI
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1.1. Definition
In day-to-day work, an engineer comes

across certain materials, i.e., steel girders, angle
irons, circular bars, cement etc., which are used
in his projects. While selecting a suitable
material, for his project, an engineer is always
interested to know its strength. The strength of
a material may be defined as ability, to resist its
failure and behaviour, under the action of
external forces. It has been observed that, under
the action of these forces, the material is first
deformed and then its failure takes place. A
detailed study of forces and their effects,
alongwith some suitable protective measures for
the safe working conditions, is known as
Strength of Materials. As a matter of fact, such
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* It is known as General Conference of Weights and Measures (G.C.W.M.). It is an international organisation
of which most of the advanced and developing countries (including India) are members. This conference
has been ensured the task of prescribing definitions of various units of weights and measures, which are
the very basis of science and technology today.

† The other fundamental units are electric current, ampere (A), thermodynamic temperature, kelvin (K)
and luminous intensity, candela (cd). These three units will not be used in this book.

a knowledge is very essential, for an engineer, to enable him, in designing all types of structures and
machines.

1.2. Fundamental Units
The measurements of physical quantities is one of the most important operations in engineering.

Every quantity is measured in terms of some arbitrary, but internationally accepted units, called fundamental
units. All the physical quantities, met with in Strength of Materials, are expressed in terms of the following
three fundamental quantities :

1.  Length,      2.  Mass     and      3.  Time.

1.3. Derived Units
Sometimes, physical quantities are expressed in other units, which are derived from fundamental

units, known as derived units, e.g., units of area, velocity, acceleration, pressure, etc.

1.4. Systems of Units
Following are only four systems of units, which are commonly used and universally recognised.

 1.  C.G.S. units,           2.  F.P.S. units,           3.  M.K.S. units    and            4.  S.I. units.
In this book, we shall use only the S.I. system of units, as the future courses of studies are

conducted in this system of units only.

1.5. S.I. Units (International System of Units)
The eleventh General Conference* of Weights and Measures has recommended a unified and

systematically constituted system of fundamental and derived units for international use. This system
of units is now being used in many countries. In India, the Standards of Weights and Measures Act of
1956 (vide which we switched over to M.K.S. units) has been revised to recognise all the S.I. units in
industry and commerce.

In this system of units, the †fundamental units are metre (m), kilogram (kg) and second (s)
respectively. But there is a slight variation in their derived units. The following derived units will be
used in this book :

Density (or Mass density) kg/m3

Force (in Newtons) N (= kg.m/s2)
Pressure (in Pascals) Pa (= N/m2 = 10–6 N/mm2)
Stress (in Pascals) Pa (=N/m2 = 10–6 N/mm2)
Work done (in Joules) J (= N-m)
Power (in Watts) W (= J/s)

International metre, kilogram and second are discussed here.

1.6. Metre
The international metre may be defined as the shortest distance (at 0°C) between two parallel

lines engraved upon the polished surface of the Platinum-Iridium bar, kept at the International Bureau
of Weights and Measures at Sevres near Paris.
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1.7. Kilogram
The international kilogram may be defined as the mass of

the Platinum-Iridium cylinder, which is also kept at the
International Bureau of Weights and Measures at Sevres near
Paris.

1.8. Second
The fundamental unit of time for all the four systems is second, which is 1/(24 × 60 × 60) =

1/86 400th of the mean solar day. A solar day may be defined as the interval of time between the
instants at which the sun crosses the meridian on two consecutive days. This value varies throughout
the year. The average of all the solar days, of one year, is called the mean solar day.

1.9. Presentation of Units and Their Values
The frequent changes in the present day life are facilitated by an international body known as

International Standard Organisation (ISO). The main function of this body is to make recommendations
regarding international procedures. The implementation of ISO recommendations in a country is
assisted by an organisation appointed for the purpose. In India, Bureau of Indian Standard formerly
known as Indian Standards Institution (ISI) has been created for this purpose.

We have already discussed in the previous articles the units of length, mass and time. It is always
necessary to express all lengths in metres, all masses in kilograms and all times in seconds. According
to convenience, we also use larger multiples or smaller fractions of these units. As a typical example,
although metre is the unit of length, yet a smaller length equal to one-thousandth of a metre proves to
be more convenient unit especially in the dimensioning of drawings. Such convenient units are formed
by using a prefix in front of the basic units to indicate the multiplier. The full list of these prefixes is
given in Table 1.1

TABLE 1.1.

Factor by which the Standard form Prefix Abbreviation
unit is multiplied

1 000 000 000 000 1012 Tera T

1 000 000 000 109 giga G
1 000 000 106 mega M

1 000 103 kilo k

100 102 hecto* h

The standard platinum - kilogram is kept
at the International Bureau of Weights

and Measures at Serves in France.

A bar of platinum - iridium metre kept at a temperature of 0º C.
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* The prefixes are generally becoming obsolete probably due to possible confusion. Moreover, it is becoming
a conventional practice to use only those powers of ten which confirm to 103n where n is a positive or
negative whole number.

† In certain countries, comma is still used as the decimal marker.
††† In certain countries, space is used even in a four digit number.

†††† In some question papers, standard values are not used. The author has tried to avoid such questions in the
text of the book, in order to avoid possible confusion. But at certain places, such questions have been
included keeping in view the importance of question from the reader’s angle.

10 101 deca* da

0.1 10–1 deci* d
0.01 10–2 centi* c

0.001 10–3 milli m

0.000 001 10–6 micro μ
0.000 000 001 10–9 nano n

0.000 000 000 001 10–12 pico p

1.10. Rules for S.I. Units
The Eleventh General Conference of Weights and Measures recommended only the fundamental

and derived units of S.I. system. But it did not elaborate the rules for the usage of these units. Later
on, many scientists and engineers held a number of meetings for the style and usage of S.I. units.
Some of the decisions of these meetings are :

1. A dash is to be used to separate units, which are multiplied together. For example, a newton-
meter is written as N-m. It should not be confused with mN, which stands for millinewton.

2. For numbers having 5 or more digits, the digits should be placed in groups of three separated
by spaces (instead of ††commas) counting both to the left and right of the decimal point.

3. In a †††four digit number, the space is not required unless the four digit number is used in a
column of numbers with 5 or more digits.

At the time of revising this book, the author sought the advice of various international authorities
regarding the use of units and their values, keeping in view the global reputation of the author as well
as his books. It was then decided to ††††present the units and their values as per the recommendations
of ISO and ISI. It was decided to use :

4500 not 4 500 or 4,500

7 589 000 not 7589000 or 7,589,000
0.012 55 not 0.01255 or .012,55

30 × 106 not 3 × 107 or 3,00,00,000

The above mentioned figures are meant for numerical values only. Now we shall discuss about
the units. We know that the fundamental units in S.I. system for length, mass and time are metre,
kilogram and second respectively. While expressing these quantities, we find it time-consuming to
write these units such as metres, kilograms and seconds, in full, every time we use them. As a result of
this, we find it quite convenient to use the following standard abbreviations, which are internationally
recognised. We shall use :

m for metre or metres

km for kilometre or kilometres

kg for kilogram or kilograms
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t for tonne or tonnes
s for second or seconds

min for minute or minutes

N for newton or newtons
N-m for newton × metres (i.e., work done)

kN-m for kilonewton × metres

rad for radian or radians
rev for revolution or revolutions

1.11. Useful Data
The following data summarises the previous memory and formulae, the knowledge of which is

very essential at this stage.

1.12. Algebra

1. a0 = 1 ; x0 = 1

(i.e., Anything raised to the power zero is one.)

2. xm × xn = xm + n

(i.e., If the bases are same, in multiplication, the powers are added.)

3.
m

n

x
x  = xm – n

(i.e., If the bases are same, in division, the powers are subtracted.)

4. If ax2 + bx + c = 0

then x = 
2 4

2
b b ac

a
− ± −

where a is the coefficient of x2,

b is the coefficient of x and c is the constant term.

1.13. Trigonometry
In a right-angled triangle ABC as shown in Fig. 1.1.

1. sinb
c

= θ

2. cosc
a

= θ

3.
sin

tan
cos

b
a

θ= = θ
θ

4.
1 cosec

sin
c
b

= = θ
θ

5.
1 sec

cos
c
a

= = θ
θ

6.
cos 1 = cot
sin tan

a
b

θ= = θ
θ θ

Fig. 1.1

�
90º

B
a

bc

C

A
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7. The following table shows the values of trigonometrical functions for some typical angles:

angle 0° 30° 45° 60° 90°

sin 0
1
2

1
2

3
2

1

cos 1
3

2

1
2

1
2

0

tan 0
1
3 1 3 ∞

or in other words, for sin write.

0° 30° 45° 60° 90°

0
2

1
2

2
2

3
2

4
2

0
1
2

1
2

3
2

1

for cos write the values in reverse order; for tan divide the value of sin by cos for the respective
angle.

8. In the first quadrant (i.e., 0° to 90°) all the trigonometrical ratios are positive.

9. In the second quadrant (i.e., 90° to 180°) only sin θ and cosec θ are positive.
10. In the third quadrant (i.e., 180° to 270°) only tan θ and cot θ are positive.

11. In the fourth quadrant (i.e., 270° to 360°) only cos θ and sec θ are positive.

12. In any triangle ABC,

sin
a

A = sin sin
b c

B C
=

where a, b and c are the lengths of the three sides of a triangle. A, B and C are opposite angles
of the sides a, b and c respectively.

13. sin (A + B) =sin A cos B + cos A sin B.

14. sin (A – B) =sin A cos B – cos A sin B.

15. cos (A + B) = cos A cos B – sin A sin B.

16. cos (A – B) = cos A cos B + sin A sin B.

17. tan (A + B) = 
tan tan

1 tan . tan
A B

A B
+

−

18. tan (A – B) = 
tan tan

1 tan . tan
A B

A B
−

+
19. sin 2A = 2 sin A cos A.

20. sin2 θ + cos2 θ = 1.

21. 1 + tan2 θ = sec2 θ.

22. 1 + cot2 θ = cosec2 θ.

23. sin2 
1 cos 2

2
A

A
−=

24. cos2 
1 cos 2

2
A

A
−=
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25. 2 cos A sin B = sin (A + B) – sin (A – B).
26. Rules for the change of trigonometrical ratios:

sin (– θ) = – sin θ
cos (– θ) = cos θ
tan (– θ) = – tan θ
cot (– θ) = – cot θ
sec (– θ) = sec θ
cosec (– θ) = – cosec θ

sin (90° – θ) = cos θ
cos (90° – θ) = sin θ
tan (90° – θ) = cot θ
cot (90° – θ) = tan θ
sec (90° – θ) = cosec θ
cosec (90° – θ) = sec θ

sin (90° + θ) = cos θ
cos (90° + θ) = – sin θ
tan (90° + θ) = – cot θ
cot (90° + θ) = – tan θ
sec (90° + θ) = – cosec θ
cosec (90° + θ) = sec θ

sin (180° – θ) = sin θ
cos (180° – θ) = – cos θ
tan (180° – θ) = – tan θ
cot (180° – θ) = – cot θ
sec (180° – θ) = – sec θ
cosec (180° – θ) = cosec θ

sin (180° + θ) = – sin θ
cos (180° + θ) = – cos θ
tan (180° + θ) = tan θ
cot (180° + θ) = cot θ
sec (180° + θ) = – sec θ
cosec (180° + θ) = – cosec θ

Following are the rules to remember the above 30 formulae :

Rule 1.  Trigonometrical ratio changes only when the angle is (90° – θ) or (90° + θ). In all other cases,
trigonometrical ratio remains the same. Following is the law of change:

sin changes into cos and cos changes into sin,
tan changes into cot and cot changes into tan,
sec changes into cosec and cosec changes into sec.

Rule 2.  Consider the angle θ to be a small angle and write the proper sign as per formulae 8 to 11 above.

(A)

(B)

(C)

(D)

(E)
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1.14. Differential Calculus

1.
d
dx  is the sign of differentiation.

2.
d
dx  (x)n = nxn–1 ;      d

dx
 (x)8 = 8x7,      d

dx
 (x) = 1

(i.e., to differentiate any power of x, write the power before x and subtract one from the
power).

3. d
dx

 (C) = 0 ;      d
dx

 (7) = 0

(i.e., differential coefficient of a constant is zero).

4. d
dx

 (u. v) = . .dv duu v
dx dx

+

. ., Differential
coefficient of
product of any
twofunctions

i e⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

(Ist function×Differential
coefficient of second function)
+(2nd function×Differential
coefficient of first function)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5. ( ) 2

. .du dvv u
d u dx dx
dx v v

−
=

. .,Differential
coefficient of two
functions when one
isdivided by theother

i e⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

(Denominator × Differential
coefficient of numerator)
– (Numerator × Differential
coefficient of denominator

Square of denominator

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

6. Differential coefficient of trigonometrical functions
d
dx  (sin x) = cos x ;            d

dx
 (cos x) = – sin x

d
dx

 (tan x) = sec2 x ;           
d
dx  (cot x) = – cosec2 x

d
dx  (sec x) = sec x . tan x ; 

d
dx

 (cosec x) = – cosec x . cot x

Note. The differential coefficient, whose trigonometrical function begins with co, is negative.

7. If the differential coefficient of a function is zero, the function is either maximum or minimum.
Conversely, if the maximum or minimum value of a function is required, then differentiate the function
and equate it to zero.

1.15. Integral Calculus

1. dx∫  is the sign of integration.

2.
1 7

6;
1 7

n
n x xx dx x dx

n

+
= =

+∫ ∫
(i.e., to integrate any power of x, add one to the power and divide by the new power).

3. 7 7 ;dx x C dx Cx= =∫ ∫
(i.e., to integrate any constant, multiply the constant by x).
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4.
1( )

( )
( 1)

n
n ax b

ax b dx
n a

+++ =
+ ×∫

(i.e., to integrate any bracket with power, add one to the power and divide by the new power
and also divide by the coefficient of x within the bracket).

1.16. Scalar Quantities
The scalar quantities (or sometimes known as scalars) are those quantities which have magnitude

only such as length, mass, time, distance, volume, density, temperature, speed etc.

1.17. Vector Quantities
The vector quantities (or sometimes known as vectors) are those quantities which have both

magnitude and direction such as force, displacement, velocity, acceleration, momentum etc. Following
are the important features of vector quantities :

1. Representation of a vector.  A vector is
represented by a directed line as shown in Fig. 1.2.
It may be noted that the length OA represents the

magnitude of the vector . The direction of the

vector is  is from O (i.e., starting point) to A
(i.e., end point). It is also known as vector P.

2. Unit vector.  A vector, whose magnitude is unity, is known as unit vector.
3. Equal vectors.  The vectors, which are parallel to each other and have same direction (i.e.,

same sense) and equal magnitude are known as equal vectors.

4. Like vectors.  The vectors, whch are parallel to each other and have same sense but unequal
magnitude, are known as like vectors.

5. Addition of vectors.  Consider two vectors PQ and RS, which are required to be added as
shown in Fig. 1.3 (a).

Take a point A, and draw
line AB parallel and equal in
magnitude to the vector PQ to
some convenient scale. Through B,
draw BC parallel and equal to
vector RS to the same scale. Join
AC which will give the required
sum of vectors PQ and RS as shown
in Fig. 1.3 (b).

This method of adding the
two vectors is called the Triangle
Law of Addition of Vectors.
Similarly, if more than two vectors
are to be added, the same may be
done first by adding the two
vectors, and then by adding the
third vector to the resultant of the
first two and so on. This method of
adding more than two vectors is
called Polygon Law of Addition of Vectors.

Fig. 1.2. Vector 

O

P

A

The velocity of this cyclist is an example of a vector quantity.
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Fig. 1.3

6. Subtraction of vectors.  Consider two vectors PQ and RS whose difference is required to be
found out as shown in Fig. 1.4 (a).

Fig. 1.4

Take a point A, and draw line AB parallel and equal in magnitude to the vector PQ to
some convenient scale. Through B, draw BC parallel and equal to the vector RS, but in opposite
direction, to that of the vector RS to the same scale. Join AC, which will give the required
difference of the vectors PQ and RS as shown in Fig. 1.4 (b).

1.18. Force
It is an important factor in the field of Engineering-science, which may be defined as an agent

which produces or tends to produce, destroys or tends to destroy motion.

1.19. Resultant Force
If a number of forces P, Q, R......... etc., are acting simultaneously on a particle, then a single

force, which will produce the same effect as that of all the given forces, is known as a resultant force.
The forces P, Q, R.... etc., are called component forces. The resultant force of the component forces
or the point through which it acts may be found out either mathematically or graphically.

1.20. Composition of Forces
It means the process of finding out the resultant force of the given component forces. A resultant

force may be found out analytically, graphically or by the following laws :

1.21. Parallelogram Law of Forces
It states, “If two forces acting simultaneously on a particle be represented, in magnitude and direction,

by the two adjacent sides of a parallelogram, their resultant may be represented, in magnitude and direction,
by the diagonal of the parallelogram passing through the point of their intersection.”
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1.22. Triangle Law of Forces
It states, “If two forces acting simultaneously on a particle be represented in magnitude and

direction, by the two sides of a triangle taken in order, their resultant may be represented, in magnitude
and direction, by the third side of the triangle taken in opposite order.”

1.23. Polygon Law of Forces
It states, “If a number of forces acting simultaneously on a particle be represented in magnitude

and direction by the sides of a polygon taken in order, their resultant may be represented, in magnitude
and direction, by the closing side of the polygon taken in opposite order.”

1.24. Moment of a Force
It is the turning effect, produced by the force, on a body on which it acts. It is mathematically

equal to the product of the force and the perpendicular distance between the line of action of the force
and the point about which the moment is required.



Propped
Cantilevers and

Beams

     Contents
1. Introduction.
2. Reaction of a Prop.
3. Propped Cantilever with a

Uniformly Distributed Load.
4. Cantilever Propped at an Interme-

diate Point.
5. Simply Supported Beam with a

Uniformly Distributed Load and
Propped at the Centre.

6. Sinking of the Prop.

23.1. Introduction
We have already discussed in chapters 19 and

20 that whenever a cantilever or a beam is loaded,
it gets deflected. As a matter of fact, the amount
by which a cantilever or a beam may deflect, is so
small that it is hardly detected by the residents.
But sometimes, due to inaccurate design or bad
workmanship, the deflection of the free end of a
cantilever (or centre of the beam) is so much that
the residents are always afraid of its falling down
and it effects their health. In order to set right the
deflected cantilever or a beam or more precisely
to avoid the deflection to some extent, it is propped
up (i.e., supported by some vertical pole at the
original level before deflection) at some suitable
point. Such an arrangement of providing a sup-

23C h a p t e r
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* Very often the students commit the mistake of finding out the prop reactions by equating the clockwise
moments (due to load on cantilever) to the anticlockwise moment (due to the prop reaction) about the
fixed end; as they would do in the case of a simply supported beam. This practice does not hold good in
this case, as the net moment at the fixed end is not zero. There exists a fixing moment, which can not be
determined unless the prop reaction is known.

port is known as propping and the cantilever or beam is known as propped cantilever or propped
beam.

23.2. Reaction* of a Prop

Fig. 23.1
Consider a cantilever beam AB fixed at A and propped at B as shown in Fig. 23.1 (a). Let the

cantilever be subjected to some loading (say uniformly distributed load) as shown in the figure.
It has been experimentally found that this prop will be subjected to some reaction. This reaction

can be obtained as discussed below:
1. Imagine the prop to be removed and calculate the deflection of the free end B as shown in Fig.

23.1 (b).
2. Now imagine a prop to be introduced at B, which will exert an upward force P equal to the

reaction of the prop. It will cause an upward deflection of B due to the prop reaction as shown
in Fig. 23.1 (c).

3. Now by equating the downward deflection due to the load and the upward deflection due to the
prop reaction, the reaction of the prop may be found out.

23.3. Propped Cantilever with a Uniformly Distributed Load
Consider a cantilever AB fixed at  and propped at B and carrying a uniformly distributed load

over its entire span as shown in Fig. 23.2 (a).
Let l = Span of the cantilever AB,

w = Uniformly distributed load per unit length over the entire span and
P = Reaction at the prop.

We know that the downward deflection of B due to uniformly distributed load (neglecting prop
reaction),

yB =   
4

8
wl
EI

...(i)
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Fig. 23.2
and the upward deflection of the cantilever due to the force P (neglecting uniformly distributed load),

yB =
3

3
Pl
EI

...(ii)

Since both the deflections are equal, therefore, equating equations (i) and (ii),
3

3
Pl
EI

=
4

8
wl
EI

 P =
3 3
8 8
wl W ...(where W = wl = total load)

Now we shall analyse the propped cantilever for shear force, bending moment, slope and deflec-
tion at important sections of the cantilever.
(i) Shear force diagram

We know that the shear force at B,

FB = 3
8
wl ... (Minus sign due to right upwards)

and FA = 5
8
wl ... (Plus sign due to left upwards)
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Let M be the point at a distance x from B, where shear force changes sign,

 x
l x =

3
5           or          5x  =  3l – 3x

or x =
3
8
l

Thus the shear force is zero at a distance 
3
8
l

 from B. The shear force diagram is shown in Fig. 23.2(b).

(ii) Bending moment diagram
We know that the bending moment at the propped end B,

MB = 0

and MA =
2 23 ·

8 2 8
wl wl wll    ...(iii)

We also know that the bending moment will be maximum at M, where shear force changes sign.

 MM =
2 23 3 3 9

8 8 2 8 128
wl l w l wl       

   
...(iv)

and bending moment at any section X, at a distance x from the propped end B,

MM =
23 ·

8 2
wl wxx 

Now in order to find out the point of contraflexure, let us equate this bending moment to zero.
Therefore

23
8 2
wl wxx  = 0          or          x  =  3

4
l

The bending moment diagram is shown in Fig. 23.2(c).
(iii) Slope at the propped end

We know that the bending moment at any section X at a distance x from B,

MM =
23

8 2
wl wxx 


2

2
d yEI
dx

=
23

8 2
wlx wx

Integrating the above equation,

dyEI
dx =

2 3

1
3

16 6
wlx wx C 

where C1 is the constant of integration. We know that when x = l, then dy
dx

 = 0. Therefore substituting

these values in the above equation,

0 =
2 3

1
3 ·

16 6
wl l wl C 

or C1 =
3

48
wl


dyEI
dx =

2 3 33
16 6 48
wlx wx wl  ...(v)
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This is the required equation for slope at any section of the cantilever. Now for the slope at B,
substituting x = 0 in the above equation,

EI · iB =
3

48
wl

 iB =
3

48
wl

EI


=
3

48
wl

EI  radians ...(vi)

(iv) Deflection at the centre of the beam
Integrating the equation (vi) once again,

EI · y =
3 4 3

2
3

48 24 48
wlx wx wl x C  

=
3 4 3

216 24 48
wlx wx wl x C  

where C2 is the constant of integration. We know that when x = l then y = 0. Therefore substituting the
values in the above equation, we get C2 = 0. Therefore

EI · y =
3 4 3

16 24 48
wlx wx wl x  ...(vii)

This is the required equation, for deflection at any section of the cantilever. Now for the deflec-
tion at the centre of the cantilever, substituting x = l/2,

EI · yC =
3 4 3 4

16 2 24 2 48 2 192
wl l w l wl l wl             

     

 yC =
4

192
wl

EI


=
4

192
wl

EI ...(viii)

(v) Maximum deflection of the beam
We know that the maximum deflection takes place at a point, where slope is zero. Therefore,

equating the equation (v) to zero,
2 3 33

16 6 48
wlx wx wl  = 0

 9lx2 – 8x3 – l3 = 0
Solving this equation by trial and error, we get x = 0.422l.

 EI · ymax =
3

3 4(0.422 ) (0.442 ) (0.422 )
16 24 48
wl W wll l l 

= – 0.005 415wl4

or ymax =
40.005 415wl

EI


... (Minus sign means the tangent at B
makes an angle with AB in the

negative or anti-clockwise direction)

... (Minus sign means that the
deflection is downwards)

... (Minus sign means that the
deflection is downwards)
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=
40.005 415wl

EI ...(ix)

(vi) Elastic curve
It may be noted that the *elastic curve between A and C will be convex upwards (due to negative

bending moment) and between C and B it will be convex downwards (due to positive bending mo-
ment). The elastic curve at C will be straight line (due to zero bending moment).

Now draw the elastic curve of the cantilever as shown in Fig. 23.2(d).
EXAMPLE 23.1. A beam AB of span 3 m is fixed at A and propped at B. Find the reaction at

the prop, when it is loaded with a uniformly distributed load of 20 kN/m over its entire span.
SOLUTION. Given: Span = (l ) = 3 m and uniformly distributed load (w) = 20 kN/m
We know that prop reaction,

P = 3 20 33
8 8
wl    = 22.5 kN       Ans.

EXAMPLE 23.2.  A propped cantilever beam 3 m long has 100 mm wide and 150 mm deep cross-
section. If the allowable bending stress and the deflection at the centre is 45 MPa and 2.5mm respec-
tively, determine the safe uniformly distributed load the cantilever can carry. Take E = 120 GPa.

SOLUTION. Given: Length (l ) = 3 m = 3  103 mm ;  Width (b) = 100 mm ;  Depth (d) = 150 mm;
Allowable bending stress (b (max) ) = 45 MPa = 45 N/mm2 ;  Deflection at the centre (yC) = 2.5 mm
and modulus of elasticity (E) = 120 GPa = 120  103 N/mm2.

Let w = Uniformly distributed load over the cantilever.
Now we shall solve the value of w from bending stress and deflection one by one.
We know that moment of inertia of the beam section,

I =
33

6 4100 (150) 28.125 10 mm
12 12
bd   

 Section modulus of the beam section,

Z =
6

3 328.125 10 375 10 mm
/ 2 150 / 2
I

b
  

We also know that maximum bending moment on a propped cantilever,

M =
3 22

6(3 10 ) 1.125 10
8 8

wwl w   

 Maximum bending stress (b max),

45 =
6

3
1.125 10 3

375 10
wM w

Z
 


or w = 45
3  = 15 N/mm = 15 kN ...(i)

We also know that deflection at the centre of the propped cantilever (yC),

2.5 =
3 44

3 6
(3 10 )

192 192 (120 10 ) (28.125 10 )
 

   
wwl

EI

* It is the curved shape of the centre line of the propped cantilever, into which the cantilever will bend due
to its elasticity.
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=
12

12
81 10 0.125
648 10

w w 


 w = 2.5
0.125  = 20 N/mm = 20 kN/m ...(ii)

Thus the safe load over the propped cantilever is the minimum of the values obtained from
equations (i) and (ii), i.e., 15 kN/m.        Ans.

EXAMPLE 23.3. A beam AB 2 m long and carrying a uniformly distributed load of 15 kN/m
is resting over a similar beam CD 1 m long as shown in Fig. 23.3.

Fig. 23.3
Find the reaction at C.
SOLUTION. Given: Length of cantilever AB (lAB) = 2 m ;  Uniformly distributed load on AB (w) =

15 kN/m and length of cantilever CD (lCD) = 1 m.
Let RC = Reaction at C.
A little consideration will show that the deflection of B (of beam AB) will be the resultant of (a)

downward due to load on AB and (b) upward due to reaction at B. But the deflection of C (of beam
CD) will be downward due to reaction at C.

We know that downward deflection of the cantilever beam AB at B due to the load of 15 kN/m
(neglecting the reaction at B),

y =
44 15 (2) 30

8 8
wl
EI EI EI

 

and upward deflection of the cantilever AB at B due to the reaction at C (neglecting the load on the
beam AB),

=
3 3· (2) 8

3 3 3
C C CR l R R
EI EI EI


 

 Net downward deflection of the cantilever AB at B,

yB =
830
3

CR
EI EI

 ...(i)

We also know that the downward deflection of the beam CD at C due to the reaction RC

=
3 3· (1)

3 3 3
C C CR l R R
EI EI EI


  ...(ii)

Since both the deflections of B and C are equal, therefore equating (i) and (ii),
830
3

CR
EI EI

 = 3
CR

EI       or      30  =  3 RC

 RC = 10 kN       Ans.
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EXAMPLE 23.4.  A cantilever ABC is fixed at A and propped at C is loaded as shown in
Fig. 23.4.
Find the reaction at C.

Fig. 23.4

SOLUTION. Given: Span (l ) = 6 m ;  Uniformly distributed load (w) = 10 kN/m and length of the
loaded portion (l1) = 4 m.

Let P = Reaction at the end C.
First of all, let us find out the deflection of cantilever at C due to load on AB (neglecting the prop

reaction),
We know that deflection at C due to load on AB,

yC =
4 3 4 3
1 1

1
10 (4) 10 (4)( ) (6 4)

8 6 8 6
wl wl

l l
EI EI EI EI

     

=
320 640 1600

3 3EI EI EI
  ...(i)

Now let us find out the deflection of the cantilever at C due to the reaction on the prop (neglect-
ing the load on AB),

We know that deflection due to reaction at the prop,

yC =
33 (6) 72

3 3
PWl P

EI EI EI
  ...(ii)

Since both the deflections are equal, therefore equating (i) and (ii),

1600
3EI

= 72P
EI

        or        1600  =  216 P

 P = 1600/216 = 7.41 kN        Ans.

EXERCISE 23.1
1. A horizontal cantilever of length l supports a uniformly distributed load of w per unit length. If

the cantilever is propped at a distance of l/4 from the free end, find the reaction of the prop.


Ans. 

19
32




wl

2. A cantilever ABC of uniform section is fixed at A and propped at B. A point load W is applied
at the free end C. Find the ratio of AB to BC, so that the reaction at B is 1.5 W. [Ans. 3 : 1]

3. The free end of a cantilever of length l rests on the middle of a simply supported beam of the
same span, and having the same section. Determine the reaction of the cantilever at its free end,
if it is carrying a uniformly distributed load of w per unit length.

[Hint: Net deflection of free end of the cantilever. 
Ans. 

6
17




wl
l
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=
2 3

8 3
wl Pl
EI EI



and deflection of the centre of the beam

=
3

48
Pl

EI ...(i)

Eqauting equations (i) and (ii),
2 3

8 3
wl Pl
EI EI

 =
3

48
Pl

EI         or        P  =  
6
17

w
l ...(ii)

4. A propped cantilever of span l propped at the free end, is subjected to a load W at mid of the
span. Find the prop reaction.


Ans. 

5
16




W

23.4. Cantilever Propped at an Intermediate Point
Sometimes, a cantilever is subjected to a point load or uniformly distributed load and is propped

at an intermediate point. In such a case, the reaction of the prop is found out first by calculating the
deflection of the cantilever at the point of prop and then following the usual procedure, as already
discussed.

EXAMPLE 23.5. A cantilever of span l carries a point load W at the free end as shown in Fig.
23.5. It is propped at a distance l/4 from the free end.

Find the prop reaction.
SOLUTION. Given: Span = l; Point load = W and distance between the free end and the prop (x)=l/

4 = 0.25l.
Let P = Prop reaction.

Fig. 23.5
First of all, let us find out the deflection of the cantilever at B due to the load W at C (neglecting

the prop),
We know that deflection at B due to load

yB =
2 32 3 3 3(0.25 ) (0.25 )

2 6 3 2 6 3
Wl l W lWl x Wx Wl Wl

EI EI EI
    

=
327

128
Wl
EI



=
327

128
Wl
EI ... (i)

Now, let us find out the deflection of the cantilever at B due to the prop reaction P.

...(Minus sign means that the
     deflection is downwards)



Chapter 23 : Propped Cantilevers and Beams  557
We know that deflection of the cantilever at B due to prop reaction P,

yB =

3

3 3
1

3
4 9

3 3 64

lPPl Pl
EI EI EI

  
   ...(ii)

Since both the deflections are equal, therefore equating (i) and (ii),

                               
3 327 9

128 64
Wl Pl

EI EI         or       
27 64 3
128 9 2

 


W WP  Ans.

EXAMPLE 23.6. A rigid beam ABC is pinned to a wall to O and is supported by two springs
at A and B as shown in Fig. 23.6.

Fig. 23.6
It carries a load W at C at a distance c from the pinned end. The deformations under the unit

load of the springs are 1 and 2 respectively. Show that the slope of the beam,

 = 1 2
2 2

2 1

·
( )

CW
a b a

 
   

SOLUTION. Given: Deformation of the spring A under the unit load = 1 and deformation of the
spring B under the unit load = 2.

Let F1 = Force in spring A, and
F2 = Force in spring B.

 Deformation of spring A due to force F1,
D1 = F1 · 1

or F1 = 1

1


 ...(i)

Similarly, F2 = 2

2




...(ii)

We know that the rigid beam ABC is hinged at O. Therefore equating the anticlockwise moments
and the clockwise moments about O,

W · c = F1 (a + b) + F2 · a  =  1 2

1 2
( )a b a 
 

 
...(iii)
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Now from the geometry of the rigid beam, we find that

1

2




= a b
a


 1 = 2( )a b
a

 

Substituting is value of 1 in equation (iii),

W · c =
2

2 2

1 2

( )a b a
a

   
 

=
2 22

2 1
2 2

1 2 1 2

( )( ) b aa b a
a a

                     

or 2 = 1 2
2 2

2 1

·
( )

W c a
a b a

  
   

...(iv)

 Slope of the beam  = 2
a


 = 1 2
2 2

2 1

W · c
(a + b) + a

 
 

       Ans.

EXAMPLE 23.7. Figure 23.7 shows two cantilevers, the end of one being vertically above
the other, and is connected to it by a spring AB.

Fig. 23.7
Initially, the system is unstrained. A weight W placed at A causes a vertical deflection at A of

1 and a vertical deflection at B of 2. When the spring is removed, the weight W at A causes a
deflection at A of 3. Find the extension in the spring, when it is replaced and the weight W is
transferred to B.

SOLUTION. Given: Weight at A = W ;  Deflection of A (with spring) = 1 ;  Deflection of B (with
spring) = 2 and deflection of A without spring = 3.

Let l1 = Length of cantilever AC,
l2 = Length of cantilever BD,
P = Force in the spring when the load is at A,
T = Force in the spring when the load is at B,
4 = Deflection of A with load at B, and
5 = Deflection of B with load at B.

We know that when the cantilever AC is loaded with W at A, the deflection of A,

1 =
3
1( )

3
W P l

EI


...(i)
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Similarly, 2 =
3
2

3
Pl
EI ...(ii)

or
3
2

3
l
EI = 2

P


...(iii)

Now compression of the spring AB
= 1 – 2

and stiffness of the spring,

s =
1 2

Force
Compression

P
   ...(iv)

We also know that when the spring is removed and the cantilever AC is loaded with W at A, then
deflection of A,

3 =
3
1

3
Wl

EI ...(v)

or
3
1

3
l
EI = 3

W


...(vi)

Dividing equation (i) by (ii),

1

2


 = 1W P P

W W
  

 P
W = 3 11

3 3
1

  
 
  ... (vii)

or P = 3 1

3

( )W   


Substituting this value of P in equation (iv),

 =

3 1

3 3 1

1 2 3 1 2

( )
( )

( ) ( )

W
W

  
   


       ... (viii)

We know that when the cantilever BD is loaded with W at B, the deflection of B,

5 =
3
2 2( ) ( )

3
W T l W T

EI P
  

 ...(ix)

...
3
2 2Substituting from equation ( )

3
l iii
EI P

 
 

  

= 2 3

3 1

( )
( )

W T
W
   
  

...[Substituting the value of P from equation (vii)]

Similarly, 4 =
3

31 ··
3

TT l
EI W


 ...(x)

...
3

31Substituting from equation ( )
3
l

iv
EI W
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When the cantilever is loaded with W at B, the stiffness of the spring,

s =
5 4

Force
Extention

T
  

5 – 4 = 3 1 2

3 1

( )
( )

TT
s W

    


  
...(xi)

... (Substituting value of s from equation (viii)
We also know that extension of the spring,

5 – 4 = 2 3 3

3 1

( ) ·
( )

W T T
W W
    


  

... [From equation (ix) and (x)]

= 3 2

3 1

( )
( )

W T T
W
       

...(xii)

Equating both the values of (5 – 4),

3 1 2

3 1

( )
( )

T
W
    

  
= 3 2

3 1

( )W T
T

W
   

    

1 2

3 1

( )
( )

T   
   = 2 3 1

3 1

( ) ( )
( )

W T T     
  

or T · 1 – T · 2 = W · 3 – T · 2 – T · 3 + T 1
 T · 3 = W · 2

or T = 2

3

·W 


Substituting this value of T in equation (xi),

5 – 4 =

2
1 2

3

3 1

· ( )

( )

W

W

    


    = 2 1 2

3 1

( )
( )

   
         Ans.

EXAMPLE 23.8. A horizontal cantilever beam of length l and of uniform cross-section car-
ries a uniformly distributed load of w per unit length for the full span. The cantilever is supported
by a rigid prop at a distance kl from the fixed end, the level of the beam at the prop being the same
as that of the fixed end as shown in Fig. 23.8.

Fig. 23.8
Evaluate k in terms of l for the condition, that the bending moment at the prop is equal to the

bending moment at the fixed end. Also determine the reaction at the prop and draw the shear
force and bending moment diagrams.
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SOLUTION. Given: Span = l ;  Load on the beam = w per unit length and distance of prop from the

fixed end = kl.
Let P = Prop reaction.
From the geometry of the cantilever, we find that the bending moment at the prop

=
2 2(1 )

2
w k l

and bending moment at the fixed end A

= P · kl – 
2

2
wl

Since both the bending moments are equal (as given), therefore equating the same,
2

·
2

wlP kl  =
2 2(1 )

2
w k l

 P · k =
2 2)(1 (1 2 )

2 2 2 2
kwl wl k kwl wl    

= 2(1 1 2 ) (2 )
2 2

wl wlkk k k    

or P = (2 )
2

wl k ...(i)

First of all, let us find out the deflection of the cantilever at B due to load, but neglecting the prop.
We know that the bending moment at any section X, at a distance x from the fixed end,

MX =
2( )

2
w l x


2

2
d yEI
dx

=
2

2 2( ) ( 2 )
2 2

w l x w l x lx    

Integrating the above equation,

dyEI
dx =

3 2
2

1
2

2 3 2
w x lxl x C
 

    
 

=
3

2 2
12 3

w xl x lx C
 

    
 

where C1 is the constant of integration. We know that when x = 0, then dy
dx  = 0. Substituting these

values of x and dy
dx

 in the above equation, we get C1 = 0.

 · dyEI
dx

=
3

2 2

2 3
w xl x lx
 

   
 

Integrating the above equation once again,

EI · y =
2 2 4 3

22 2 12 3
l xw x lx C

 
     

 
where C2 is the constant of integration. We know that when x = 0, then y = 0. Substituting these values
of x and y in the above equation, we get C2 = 0.
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 EI · y =
2 2 4 3

2 2 12 3
l xw x lx 

    
 

Now for deflection at B, substituting x = kl in the above equation,

EI · yB =
2 2 2 4 4 3 3· ·

2 2 12 3
l k l k l l k lw  

    
 

=
4 2

2(6 4 )
24

wl k k k  

or yB =
4 2

2( 4 6)
24

wl k k k
EI

  

 (Minus sign means that the deflection is downwards)

=
4 2

2( 4 6)
24

wl k k k
EI

  ...(ii)

Similarly, upward deflection of the cantilever due to the prop reaction,

yB =
3 3 3( )

3 3
P kl Pk l

EI EI


Substituting the value of P from equation (i),

yB =
3 3

(2 )
2 3

k lwl k
EI

 

=
4 3(2 )

6
wl k k

EI
 ...(iii)

Since the level of the beam, at the prop, is the same as that of the fixed end, therefore the net
deflection at B is zero. Now equating (ii) and (iii),

4 2
2( 4 6)

24
wl k k k

EI
  =

4 3(2 )
6

wl k k
EI


 k2 – 4k + 6 = 4k (2 – k) = 8k – 4k2

or 5k2 – 12k + 6 = 0
Solving the above equation as a quadratic equation for k,

k =
12 144 4 5 6 12 24

2 5 10
    

  = 0.71        Ans.

Reaction at the prop
Substituting the value of k in equation (i), we get the reaction at the prop,

P = (2 ) (2 0.71)
2 2

wl wlk    = 0.645 wl        Ans.

Shear force and bending moment diagrams
From the geometry of the cantilever, we find that the shear force at C,

FC = 0
FB = + 0.29 wl – 0.645 wl = – 0.355 wl
FA = – 0.355 wl + 0.71 wl = + 0.355 wl
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Now draw the shear force diagram as shown in Fig. 23.9 (b). From the geometry of the shear

force diagram, we find that the shear force changes sign at M i.e., at the middle of AB i.e., at a distance
of 0.355 l from A.

Fig. 23.9
From the geometry of the cantilever, we also find that the bending moment at C,

MC = 0

MB =
2

2(0.29 ) 0.042
2

w l wl  

MA =
2

0.642 0.71
2

wl wl l  

= – 0.042 wl2

MM =
2(0.645 ) 0.645 0.355

2
w l wl l  

= + 0.021 wl2

Now draw the bending moment diagram as shown in Fig. 23.9 (C).

23.5. Simply Supported Beam with a Uniformly Distributed Load and
Propped at the Centre

Consider a simply supported beam AB propped at its centre C and carrying a uniformly distrib-
uted load over its entire span as shown in Fig. 23.10 (a).

Let l = Span of the beam AB,
w = Uniformly distributed load per unit length over the entire span, and
P = Reaction at the prop.
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We know that the downward deflection of C due to uniformly distributed load (neglecting the
prop reaction),

yC =
45

384
wl

EI
...(i)

Fig. 23.10
and the upward deflection of the beam at C due to the prop reaction P (neglecting uniformly distrib-
uted load),

yC =
3

48
Pl

EI
...(ii)

Since both the deflections are equal, therefore equating equations (i) and (ii),
3

48
Pl

EI =
45

384
wl

EI

or P = 5 5
8 8
wl W ...(where W = wl)

 Reaction of A, RA = RB = 
1 5 3
2 8 16

wl wlwl   
 

=
3
16
W

...(where W = wl)

Now let us analyse the propped beam for shear force, bending moment, slope and deflection at
important sections of the beam.
(i) Shear force diagram

We know that the shear force at A,

FA = 3
16
wl  ...(Plus sign due to left upwards)
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FC = 3 5 5
16 2 8 16
wl wl wl wl  

FB =
5 3
16 2 16
wl wl wl  

Let F be the point, where the shear force changes sign in CB at the distance x from B. Therefore



2

x
l x

=
3
5

or x =
3
16

l
...(iii)

Thus, the shear force is zero at a distance of 3
16

l  from B. Similarly, the shear force, is zero at a

distace of 3
16

l  from A. The shear force diagram is shown in Fig. 23.10(b).

(ii) Bending moment diagram
We know that the bending moment at A,

MA = 0

MC =
3 1 1 1
16 2 2 4
wl w   

=
2

32
wl ...(Max. negative bending moment)

We also know that the bending moment will be maximum at F and E, where shear force changes
sign.

 MF = ME  =  
3 3 3 3
16 16 16 32
wl l l lw   

=
29

512
wl

 ...(Max. positive bending moment)

Now, in order to find out the point of contraflexure, let us equate the bending moment at a
distance x from A, to zero.

23 ·
16 2
wl wxx  = 0

or x = 3
8
l

The bending moment diagram is shown in Fig. 23.10 (b).
(iii) Slope at the ends

We know that the bending moment at any section X, at a distance x from B,

MX =
23

16 2
wlx wx


2

2
d yEI
dx

=
23

16 2
wlx wx

Integrating the above equation,

dyEI
dx =

2 3

1
3

32 6
wlx wx C 
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where C1 is the constant of integration. We know that when  x = 
2
l , then dy

dx
 = 0. Substituting these

values in the above equation,

0 =
3 3

1
3
32 2 6 2
wl l w l C       

   

or C1 =
3

384
wl

dyEI
dx =

2 3 33
32 6 384
wlx wx wl  ...(iv)

Now for the slope at B, substituting x = 0 in the above equation,

EI · iB =
3

384
wl

 iB =
3

384
wl

EI


=
3

384
wl

EI  radians ...(v)

By symmetry, iA =
3

384
wl

EI  radians

(iv) Deflection of the beam
Integeating the equation (iv) once again,

EI · y =
3 4 3

2
3

96 24 384
wlx wx wl x C  

where C2 is the constant of integration. We know that when x = 0, then y = 0. Therefore substituting
these values in the above equations, we get C2 = 0.

 EI · y =
3 4 33

96 24 384
wlx wx wl x  ...(vi)

This is the required equation for deflection at any section of the beam.
(v) Maximum deflection

We know that the maximum deflection takes place at a point, where slope is zero. Therefore
equating the equation (iv) to zero,

2 3 33
32 6 384
wlx wx wl  = 0

 64x4 – 36x2 + l3 = 0
Solving the equation by trial and error, we get x = 0.27 l

 EI · ymax =
3

3 43 (0.27 ) (0.27 ) (0.27 )
96 24 384
wl w wll l l 

= – 0.000 306 2 wl4

ymax =
40.00 306 2 wl

EI


=
40.00 306 2 wl

EI

...(Minus sign means that the tangent
     at B makes an angle with AB in the
      negative or anticlockwise direction)

...(Minus sign means that the
      deflection is downwards)
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EXAMPLE 23.9. A uniform girder of length 8 m is subjected to a total load of 20 kN, uni-
formly distributed over the entire length. The girder is freely supported at the ends. Calculate the
deflection and bending moment at the mid-span.

If a prop is introduced at the centre of the beam, so as to nullify the deflection already worked
out, what would be the net bending moment at mid-point?

SOLUTION. Given: Length (l) = 8 m and total uniformly distributed load (W) = 20 kN.
Deflection at the mid-span of the beam without prop

Let EI = Stiffness of the beam.
We know that the uniformly distributed load,

w = 20
8

W
l
  = 2.5 kN/m

 Deflection at mid-span without prop,

yC =
44 5 2.5 (8)5

384 384
wl

EI EI
   

400
3


EI         Ans.

Bending moment at the mid-span of the beam without prop
We know that bending moment at the mid-span of the beam without prop,

M1 =
22 2.5 (8)

8 8
wl  = 20 kN-m        Ans.

Bending moment at the mid-span of the beam with prop
We also know that bending moment at the mid-span of the beam with prop,

M2 =
22 2.5 (8)

32 32
wl  = 5 kN-m        Ans.

23.6. Sinking of the Prop
In the previous articles, we have assumed that the prop in a cantilever or beam behaves like a

rigid one i.e., it does not yield down due to the load acting on the beam. But sometimes, the prop sinks
down, due to its elastic property and the reaction. A sinking prop is called an elastic prop or yielding
prop.

Let  = Distance through which the prop has sunk down, due to load.
y1 = Downward deflection of the beam, at the point of prop and
y2 = Upward deflection of the beam, due to the prop reaction,

A little consideration will show that if the prop would not have sunk down, then
y1 = y2

But due to sinking of the prop,
y1 = y2 + 

Now the prop reaction may be found out as usual.
EXAMPLE 23.10. A cantilever of length l is subjected to a point load W at its free end. The

cantilever is also propped with an elastic prop at its free end. The prop sinks down in proportion
to the load applied on it. Determine the value of proportionality k for sinking, when the reaction
on the prop is half of the load W.

SOLUTION. Given: Span = l; Load at the free end = W ;  Prop reaction (P) = 
2
w  and constant of

proportionality of sinking to the load = k.
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From the given data, we find that sinking of the prop,

 =
·
2

k W

We know that the downward deflection of the cantilever due to load W at its free end (neglecting
prop reaction),

y1 =
3

3
Wl

EI ...(i)

and upward deflection of the cantilever due to prop reaction (neglecting load),

y2 =

3
3 3

2
3 3 6

W lPl Wl
EI EI EI


  ...(ii)

 Sinking of the prop,
 = y1 – y2

 ·
2

k W =
3 3 3

3 6 6
Wl Wl Wl

EI EI EI
 

or k =
3

3
l
EI         Ans.

EXAMPLE 23.11. A simply supported beam of span l carries a uniformly distributed load of
w per unit length. The beam was propped at the middle of the span. Find the amount, by which
the prop should yield, in order to make all the three reactions equal.

SOLUTION. Given: Span = l; Uniformly distributed load = w per unit length and each reaction

(P) = 3
wl

.

We know that the downward deflection of the beam, due to uniformly distributed load (neglect-
ing prop reaction),

y1 =
45

384
wl

EI ...(i)

and upward deflection due to the prop reaction (neglecting load),

y2 =
3

3 43
48 48 144


 

wl lPl wl
EI EI EI

...(ii)

 Yield of the prop,

 = y1 – y2 = 
4 45

384 144
wl wl

EI EI
  = 

47
1152

wl
EI         Ans.

EXERCISE 23.2
1. A cantilever  AB, 9 m long is fixed at A and propped at C at a distance 1 m from B. The cantilever

carries a load, which varies gradually from zero at the free end to 6 kN/m at the fixed end.
Calculate the prop reaction. [Ans. 3.11 kN]

2. A simply supported beam of length l is carrying a uniformly distributed load of w per unit length
over its entire span. What upward load should be applied at the centre of the beam in order to
neutralise the deflection?

5
8

 
  

wlAns.
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3. A cantilever of length l is propped at its free end. The cantilever carries a uniformly distributed

load of w per unit length over entire span. If the prop sinks by , find the prop reaction.
4

3
3

8
  

      

EI wl
EIl

4. A uniform beam of cross-section 200 mm wide and 300 mm deep is simply supported on a span
of 8 m and carries a load of 5 kN/m. If the centre of the beam is propped at the level of the
supports, find the prop reaction.
If the prop sinks down by 20 mm, find the new prop reaction. Take E as 120 GPa.

[Ans. 25 kN ;  16.9 kN]

QUESTIONS
1. What do you understand by the term “prop”? Discuss its importance.
2. Describe the procedure for finding out the prop reaction of a cantilever.
3. Derive an equation for the prop reaction in (a) a cantilever carrying a u.d.l. over the entire span

and propped at the free end and (b) a simply supported beam carrying a u.d.l. over the entire
span and propped at the mid-span.

4. From first principles, derive a relation for the maximum deflection of a cantilever carrying a
uniformly distributed load and propped at the free end.

5. Define ‘sinking of a prop’. How does it differ from a rigid prop?
6. Explain the procedure for finding out the reaction on an elastic prop.

OBJECTIVE TYPE QUESTIONS
1. A cantilever of span l is fixed at A and propped at the other end B. If it is carrying a uniformly

distributed load of w per unit length, then the prop reaction will be

(a)
3
8
wl

(b)
5

8
wl

(c)
3
16
wl

(d)
5
16
wl

2. The deflection at the centre of a propped cantilever of span l carrying a uniformly distributed
load w per unit length is

(a)
4

48
wl

EI (b)
4

96
wl

EI (c)
4

128
wl

EI (d)
4

192
wl

EI
3. The maximum deflection of a propped cantilever of span l subjected to a uniformly distributed

load of w per unit length will occur at a distance of
(a) 0.25 l from the propped end (b) 0.33 l from the propped end
(c) 0.422 l from the propped end (d) 0.615 l from the propped end.

4. A simply supported beam of span l is carrying a uniformly distributed load of w per unit length.
If the beam is propped at its mid-point, then the prop reaction is equal to

(a)
3
8
wl

(b)
5
8
wl

(c)
23

8
wl (d)

25
8
wl

ANSWERS
1. (a) 2. (d) 3. (c) 4. (b)

Ans.
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4. Strain.
5. Types of Stresses.

6. Tensile Stress.
7. Compressive Stress.

8. Elastic Limit.

9. Hooke’s Law.
10. Modulus of Elasticity (or Young’s Modulus).

11. Deformation of a Body Due to Force Acting
on it.

12. Deformation of a Body Due to Self Weight.

13. Principle of Superposition. 2.1. Introduction
In our daily life, we see that whenever a load

is attached to a thin hanging wire, it elongates
and the load moves downwards (sometimes
through a negligible distance). The amount, by
which the wire elongates, depends upon the
amount of load and the nature as well as cross-
sectional area of the wire material. It has been
experimentally found that the cohesive force,
between molecules of the hanging wire, offers
resistance against the deformation, and the force
of resistance increases with the deformation. It
has also been observed that the process of
deformation stops when the force of resistance is
equal to the external force (i.e., the load attached).
Sometimes, the force of resistance, offered by

2C h a p t e r
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the molecules, is less than the external force. In such a case, the deformation continues until failure
takes place.

In the succeeding pages, we shall discuss the effects produced by the application of loads, on the
materials. Before entering into the details of the effects, following few terms should be clearly understood
at this stage.

2.2. Elasticity
We have already discussed in the last article that whenever a force acts on a body, it undergoes

some deformation and the molecules offer some resistance to the deformation. It will be interesting to
know that when the external force is removed, the force of resistance also vanishes ; and the body
springs back to its original position. But it is only possible, if the deformation, caused by the external
force, is within a certain limit. Such a limit is called elastic limit. The property of certain materials of
returning back to their original position, after removing the external force, is known as elasticity. A
body is said to be perfectly elastic, if it returns back completely to its original shape and size, after the
removal of external forces. If the body does not return back completely to its original shape and size,
after the removal of the external force, it is said to be partially elastic.

It has been observed that if the force, acting on a body, causes its deformation beyond the elastic
limit, the body loses, to some extent, its property of elasticity. If the external force, after causing
deformation beyond the elastic limit, is completely removed, the body will not return back to its original
shape and size. There will be some residual deformation to the body, which will remain permanently.

2.3. Stress
Every material is elastic in nature. That is why, whenever some external system of forces acts on

a body, it undergoes some deformation. As the body undergoes deformation, its molecules set up
some resistance to deformation. This resistance per unit area to deformation, is known as stress.
Mathematically stress may be defined as the force per unit area i.e., stress.

σ =
P
A

where P = Load or force acting on the body, and

A = Cross-sectional area of the body.

In S.I. system, the unit of stress is pascal (Pa) which is equal to 1 N/m2. In actual practice, we use
bigger units of stress i.e., megapascal (MPa) and gigapascal (GPa), which is equal to N/mm2 or kN/
mm2 respectively.

2.4. Strain
As already mentioned, whenever a single force (or a system of forces) acts on a body, it undergoes

some deformation. This deformation per unit length is known as strain. Mathematically strain may be
defined as the deformation per unit length. i.e., strain

ε =
l

l
δ

or δl = ε.l

where δl = Change of length of the body, and

l = Original length of the body.

2.5. Types of Stresses
Though there are many types of stresses, yet the following two types of stresses are important

from the subject point of view :

1.  Tensile stress.     2.  Compressive stress.
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2.6. Tensile Stress
When a section is subjected to two equal and opposite pulls and the body tends to increase its

length, as shown in Fig. 2.1, the stress induced is called tensile stress. The corresponding strain is
called tensile strain. As a result of the tensile stress, the *cross-sectional area of the body gets
reduced.

Fig. 2.1.  Tensile stress Fig. 2.2.  Compressive stress

2.7. Compressive Stress
When a section is subjected to two equal and opposite pushes and the body tends to shorten its

length, as shown in Fig. 2.2, the stress induced is called compressive stress. The corresponding strain
is called compressive strain. As a result of the compressive stress, the cross-sectional area of the body
gets increased.

2.8. Elastic Limit
We have already discussed that whenever some external system of forces acts on a body, it

undergoes some deformation. If the external forces, causing deformation, are removed the body
springs back to its original position. It has been found that for a given section there is a limiting
value of force up to and within which, the deformation entirely disappears on the removal of force.
The value of intensity of stress (or simply stress) corresponding to this limiting force is called
elastic limit of the material.

Beyond the elastic limit, the material gets into plastic stage and in this stage the deformation
does not entirely disappear, on the removal of the force. But as a result of this, there is a residual
deformation even after the removal of the force.

2.9. Hooke’s Law**
It states, “When a material is loaded, within its elastic limit, the stress is proportional to the

strain.” Mathematically,

Stress
Strain = E = Constant

It may be noted that Hooke’s Law equally holds good for tension as well as compression.

* Since the volume of the body remains constant, therefore an increase in the length will automatically
reduce the cross-sectional area of the body. Similarly a decrease in the length will automatically increase
the cross-sectional area of the body.
As a matter of fact, there is a relationship between the increase (or decrease) in length of the body and
decrease (or increase) in the cross-sectional area of the body. This relation will be discussed in
Art. 6.6.

** Named after Robert Hooke, who first established it by experiments in 1678. While making tensile
tests on a metallic bar, he took enough precautions, to ensure that the force is applied axially and the
bending of the bar is prevented. He assumed that during tension, all the longitudinal fibres of the bar
have the same elongation. All the cross-sections of the bar, which were originally plane, remain so
even after extension.
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2.10. Modulus of Elasticity or Young’s Modulus (E)
We have already discussed that whenever a material is
loaded, within its elastic limit, the stress is proportional to
strain. Mathematically stress,

σ ∝ ε
= E × ε

or E =
σ
ε

σ = Stress,
ε = Strain, and
E = A constant of proportionality

known as modulus of elasticity or
Young’s modulus. Numerically, it
is that value of tensile stress, which
when applied to a uniform bar will
increase its length to double the
original length if the material of the
bar could remain perfectly elastic
throughout such an excessive
strain.

TABLE 2.1.
The value of E (i.e., modulus of elasticity) of materials, in everyday use, are given

below :
S. No. Material Modulus of elasticity (E)

in GPa i.e. GN/m2 or kN/mm2

1. Steel 200 to 220

2. Wrought iron 190 to 200

3. Cast iron 100 to 160

4. Copper 90 to 110

5. Brass 80 to 90

6. Aluminium 60 to 80

7. Timber 10

2.11. Deformation of a Body Due to Force Acting on it
Consider a body subjected to a tensile stress.
Let P = Load or force acting on the body,

l = Length of the body,

A = Cross-sectional area of the body,
σ = Stress induced in the body,

E = Modulus of elasticity for the material of the body,

ε = Strain, and
δ l = Deformation of the body.

Young’s Modulus Appratus



16 � Strength of Materials

We know that the stress

σ =
P
A

Strain, ε = 
P

E AE
σ =

and deformation, δ l = ε.l = 
. l Pl

E AE
σ = ... ⎛ ⎞σ =⎜ ⎟⎝ ⎠

p
A

ä

Notes: 1. The above formula holds good for compressive stress also.
2. For most of the structural materials, the modulus of elasticity for compression is the same as that for

tension.
3. Sometimes in calculations, the tensile stress and tensile strain are taken as positive, whereas com-

pressive stress and compressive strain as negative.

EXAMPLE 2.1.  A steel rod 1 m long and 20 mm × 20 mm in cross-section is subjected to a
tensile force of 40 kN. Determine the elongation of the rod, if modulus of elasticity for the rod
material is 200 GPa.

SOLUTION.  Given :  Length (l ) = 1 m = 1 × 103 mm ;  Cross-sectional area (A) = 20 × 20 =
400 mm2 ;  Tensile force (P) = 40 kN = 40 × 103 N and modulus of elasticity (E) = 200 GPa = 200 ×
103 N/mm2.

We know that elongation of the road,

δl =
3 3

3

. (40 10 ) (1 10 )
. 400 (20 10 )

P l
A E

× × ×=
× ×

 = 0.5 mm        Ans.

EXAMPLE 2.2. A hollow cylinder 2 m long has an outside diameter of 50 mm and inside
diameter of 30 mm. If the cylinder is carrying a load of 25 kN, find the stress in the cylinder. Also
find the deformation of the cylinder, if the value of modulus of elasticity for the cylinder material
is 100 GPa.

SOLUTION.  Given :  Length (l ) = 2 m = 2 × 103 mm ;  Outside diameter (D) = 50 mm ;  Inside
diameter (d) = 30 mm ;  Load (P) = 25 kN = 25 × 103 N and modulus of elasticity (E) = 100 GPa = 100
× 103 N/mm2.

Stress in the cylinder
We know that cross-sectional area of the hollow cylinder.

A =
2 2 2 2 2( ) [(50) (30) ] 1257 mm

4 4
D dπ π× − = × − =

and stress in the cylinder,

σ =
3

225 10
19.9 N/mm

1257
P
A

×= =  = 19.9 MPa        Ans.

Deformation of the cylinder
We also know that deformation of the cylinder,

δl =
3 3

3

. (25 10 ) (2 10 )
. 1257 (100 10 )

P l
A E

× × ×=
× ×

 = 0.4 mm        Ans.

EXAMPLE 2.3. A load of 5 kN is to be raised with the help of a steel wire. Find the minimum
diameter of the steel wire, if the stress is not to exceed 100 MPa.

SOLUTION.  Given : Load (P) = 5 kN = 5 × 103 N and stress (σ) = 100 MPa = 100 N/mm2

Let d = Diameter of the wire in mm.
We know that stress in the steel wire (σ),

100 =
3 3

22

5 10 6.366 10

( )
4

P
A dd

× ×= =π ×
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∴ d 2 =
36.366 10

100
×

 = 63.66     or     d = 7.98 say 8 mm        Ans.

EXAMPLE 2.4. In an experiment, a steel specimen of 13 mm diameter was found to elongate
0.2 mm in a 200 mm gauge length when it was subjected to a tensile force of 26.8 kN. If the
specimen was tested within the elastic range, what is the value of Young’s modulus for the steel
specimen ?

SOLUTION.  Given :  Diameter (d ) = 13 mm ;  Elongation (δl) = 0.2 mm ;  Length (l) = 200 mm and
Force (P) = 26.8 kN.

Let E = Value of Young’s modulus for the steel specimen.
We know that cross-sectional area of the specimen.

A = 2 2( ) (13)
4 4

dπ π× = ×  = 132.73 mm2

and elongation of the specimen (δl )

0.2 =
. 26.8 20 40.38
. 132.73

P l
A E E E

×= =

∴ E =
240.38 201.9 kN/mm

0.2
=  = 201.9 GPa        Ans.

EXAMPLE 2.5.     A hollow steel tube 3.5 m long has external diameter of 120 mm. In order to
determine the internal diameter, the tube was subjected to a tensile load of 400
kN and extension was measured to be 2 mm. If the modulus of elasticity for the
tube material is 200 GPa, determine the internal diameter of the tube.

SOLUTION. Given : Length (l) = 3.5 m = 3.5 × 103 mm ;  External diameter
(D) = 120 mm ;  Load (P) = 400 kN = 400 × 103 N; Extension (δl) = 2 mm and
modulus of elasticity E = 200 GPa = 200 × 103 N/mm2.

Let d = Internal diameter of the tube in mm.

We know that area of the tube,

A =
4
π

 [(120)2 – d2] = 0.7854 [(120)2 – d2]

and extension of the tube (δl ),

2 =
3 3

3 2 3 2

. (400 10 ) (3.5 10 ) 8913
. 0.7854 [(120) (200 10 ) 14400

P l
A E d d

× × ×= =
− × −

∴ 28800 – 2d2 = 8913          or          2d2 = 28800 – 8913 = 19887

or d 2 =
19887

2
 = 9943.5         or          d = 99.71 mm        Ans.

EXAMPLE 2.6. Two wires, one of steel and the other of copper, are of the same length and
are subjected to the same tension. If the diameter of the copper wire is 2 mm, find the diameter of
the steel wire, if they are elongated by the same amount. Take E for steel as 200 GPa and that for
copper as 100 GPa.

SOLUTION.  Given: Diameter of copper wire (dC) = 2 mm ;  Modulus of elasticity for steel (ES) = 200
GPa = 200 × 103 N/mm2 and modulus of elasticity for Copper (EC) = 100 GPa = 100 × 103 N/mm2.

Let dS = Diameter of the steel wire,

l = Lengths of both the wires and
P = Tension applied on both the wires.

Fig. 2.3
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We know that area of the copper wire,

AC =
2( )

4 4Cdπ π× =  × (2)2 = 3.142 mm2

and area of steel wire, AS =
4
π

 × (dS)
2 = 0.7854 dS

2 mm2

We also know that increase in the length of the copper wire

δlC = 3 33 .142 (100 10 ) 314.2 10
= =

× × ×C C

P l P l P l
A E ...(i)

and increase in the length of the steel wire,

δlS = 2 3 3 20.7854 (200 10 ) 157.1 10
= =

× × × ×S S S S

P l P l P l
A E d d

...(ii)

Since both the wires are elongated by the same amount, therefore equating equations (i) and (ii).

3314.2 10×
Pl

= 3 2157.1 10× × S

P l

d
          or          

2 314.2 2
157.1Sd = =

∴ dS = 2  = 1.41 mm        Ans.

2.12. Deformation of a Body Due to Self Weight
Consider a bar AB hanging freely under its own weight as shown in Fig. 2.4.
Let l = Length of the bar.

A = Cross-sectional area of the bar.

E = Young’s modulus for the bar material,
and w = Specific weight of the bar material.

Now consider a small section dx of the bar at a distance x from B. We
know that weight of the bar for a length of x,

P = wAx
∴ Elongation of the small section of the bar, due to weight of the bar for

a small section of length x,

=
( ) . .= =P l w Ax dx wx dx

A E A E E

Total elongation of the bar may be found out by integrating the above equation between zero
and l. Therefore total elongation,

δl =
0

.
l

wx dx
E∫

=
0

.
l

w x dx
E ∫

=
2

0
2

l
w x
E
⎡ ⎤
⎢ ⎥
⎣ ⎦

or δl =
2

2 2
W lwl

E AE
= ...(ä W = wAl = Total weight)

NOTE.  From the above result, we find that the deformation of the bar, due its own weight, is equal to half of the
deformation, if the same body is subjected to a direct load equal to the weight of the body.

Fig. 2.4
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EXAMPLE 2.7. A copper alloy wire of 1.5 mm diameter and 30 m long is hanging freely
from a tower. What will be its elongation due to self weight? Take specific weight of the copper
and its modulus of elasticity as 89.2 kN/m3 and 90 GPa respectively.

SOLUTION.  Given: Diameter (d) = 1.5 mm ;  Length (l) = 30 m = 30 × 103 mm ;  Specific weight
(w) = 89.2 kN/m3 = 89.2 × 10–9 kN/mm3 = 89.2 × 10–6 N/mm3 and modulus of elasticity (E) = 90 GPa
= 90 × 103 N/mm2.

We know that elongation of the wire due to self weight,

δl =

2 6 3

3

(89.2 10 ) (30 10 )
2 2 (90 10 )

−× × ×=
× ×

wl
E  = 0.45 mm        Ans.

EXAMPLE 2.8. An alloy wire of 2 mm2 cross-sectional area and 12 N weight hangs freely
under its own weight. Find the maximum length of the wire, if its extension is not to exceed 0.6
mm. Take E for the wire material as 150 GPa.

SOLUTION.  Given: Cross-sectional area (A) = 2 mm2; Weight (W) = 12 N ;  Extension (δl) = 0.6
mm and modulus of elasticity (E) = 150 GPa = 150 × 103 N/mm2.

Let l = Maximum length of the wire,

We know that extension of the wire under its own weight,

0.6 = 3

12
2 2 2 (150 10 )

W l l
AE

×=
× × ×

 = 0.02 × 10–3 l

l = 3
0.6 30000 mm

0.02 10− =
×

 = 30 m        Ans.

EXAMPLE 2.9. A steel wire ABC 16 m long having cross-sectional area of 4 mm2 weighs 20
N as shown in Fig. 2.5. If the modulus of elasticity for the wire material is 200
GPa, find the deflections at C and B.

SOLUTION.  Given: Length (l) = 16 m = 16 × 103 mm ;  Cross-sectional area (A)
= 4 mm2 ;  Weight of the wire ABC (W) = 20 N and modulus of elasticity (E) = 200
GPa = 200 × 103 N/mm2.

Deflection at C

We know that deflection of wire at C due to self weight of the wire AC,

dlC =
3

3

20 (16 10 )
2 2 4 (200 10 )

W l
AE

× ×=
× × ×

 = 0.2 mm  Ans.

Deflection at B

We know that the deflection at B consists of deflection of wire AB due to self weight plus deflection
due to weight of the wire BC. We also know that deflection of the wire at B due to self weight of wire AB

δl1 =
3

3

( / 2) ( / 2) 10 (8 10 )
2 2 4 (200 10 )

W l
AE
× × ×=

× × ×
 = 0.05 mm ...(i)

Fig. 2.5
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and deflection of the wire at B due to weight of the wire BC.

δl2 =
3

3

( / 2) ( / 2) 10 (8 10 )

4 (200 10 )

W l
AE

× × ×=
× ×

 = 0.1 mm ...(ii)

∴ Total deflection of the wire at B.

δlB = δl1 + δl2 = 0.05 + 0.1 = 0.15 mm        Ans.

EXERCISE 2.1

1. A steel bar 2 m long and 150 mm2 in cross-section is subjected to an axial pull of 15 kN. Find
the elongation of the bar. Take E = 200 GPa. [Ans. 1.0 mm]

2. A straight bar of 500 mm length has its cross-sectional area of 500 mm2. Find the magnitude of
the compressive load under which it will decrease its length by 0.2 mm. Take E for the bar
material as 200 GPa. [Ans. 40 kN]

3. An alloy bar 1 m long and 200 mm2 in cross-section is subjected to a compressive force of 20
kN. If the modulus of elasticity for the alloy is 100 GPa, find the decrease in length of the bar.

[Ans. 1 mm]
4. A hollow cylinder 4 m long has outside and inside diameters of 75 mm and 60 mm respectively.

Find the stress and deformation of the cylinder, when it is carrying an axial tensile load of 50
kN. Take E = 100 GPa. [Ans. 31.4 MPa; 1.26 mm]

5. A hollow cast iron column has internal diameter of 200 mm. What should be the external diam-
eter of the column, so that it can carry a load of 1.6 MN without the stress exceeding 90 MPa.

[Ans. 250 mm]

6. A brass rod 1.5 m long and 20 mm diameter was found to deform 1.9 mm under a tensile load of
40 kN. Calculate the modulus of elasticity of the rod. [Ans. 100.5 GPa]

7.  A steel wire of 80 m length and 1 mm2 cross-sectional area is freely hanging from a tower. What
will be its elongation due to its self weight? Take specific weight of the steel as 78.6 kN/m3 and
modulus of elasticity as 200 GPa. [Ans. 1.3 mm]

8. A steel wire of 1 mm diameter is freely hanging under its own weight. If the extension of the
wire should not exceed 2.5 mm, what should be its maximum length? Take E for the wire
material as 200 GPa and its specific weight as 78.5 kN/m3. [Ans. 112.87 mm]

2.13. Principle of Superposition
Sometimes, a body is subjected to a number of forces acting on its outer edges as well as at some

other sections, along the length of the body. In such a case, the forces are split up and their effects are
considered on individual sections. The resulting deformation, of the body, is equal to the algebraic
sum of the deformations of the individual sections. Such a principle, of finding out the resultant
deformation, is called the principle of superposition.

The relation for the resulting deformation may be modified as:

δl =
1P l

A E A E
=  (P1 l1 + P2 l2 + P3 l3 + ...)

where P1 = Force acting on section 1,

l1 = Length of section 1,

P2, l2 = Corresponding values of section 2, and so on.
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EXAMPLE 2.10. A steel bar of cross-sectional area 200 mm2 is loaded as shown in Fig. 2.6.
Find the change in length of the bar. Take E as 200 GPa.

Fig. 2.6

Find the change in length of the bar. Take E as 200 GPa.

SOLUTION.  Given: Cross-sectional area (A) = 200 mm2 and modulus of elasticity (E) = 200 GPa
= 200 × 103 N/mm2.

For the sake of simplification, the force of 50 kN acting at A may be split up into two forces of 20
kN and 30 kN respectively.

Now it will be seen that part AB of the bar is subjected to a tension of 20 kN and AC is subjected
to a tension of 30 kN as shown in *Fig. 2.7.

Fig. 2.7

We know that change in length of the bar.

δl =
1

AE
 (P1 l1 + P2 l2)

=
3 3

3
1 [(20 10 ) (300)] [(30 10 ) (800)]

200 200 10
⎡ ⎤× × + × ×
⎣ ⎦× ×

mm

= 0.75 mm        Ans.

EXAMPLE 2.11.  A brass bar, having cross-sectional area of 500 mm2 is subjected to axial
forces as shown in Fig. 2.8.

Fig. 2.8

Find the total elongation of the bar. Take E = 80 GPa.

SOLUTION.  Given: Cross-sectional area (A) = 500 mm2 and modulus of elasticity (E) = 80 GPa =
80 kN/mm2.

For the sake of simplification, the force of 100 kN acting at A may be split up into two forces of
80 kN and 20 kN respectively. Similarly, the force of 50 kN acting at C may also be split up into two
forces of 20 kN and 30 kN respectively.

Now it will be seen that the part AB of the bar is subjected to a tensile force of 80 kN, part AC is
subjected to a tensile force of 20 kN and the part CD is subjected to a compression force of 30 kN as
shown in Fig. 2.9.

* Such a figure is called a free body diagram.
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Fig. 2.9

We know that elongation of the bar,

δ l = 1 1 2 2 3 3
1 P l P l P l

A E
+ +⎡ ⎤⎣ ⎦

= [ ]1 (80 500) (20 1500) (30 1200 mm
500 80

× + × − ×
×

...(Taking plus sign for tension and minus for compression)
= 0.85 mm        Ans.

EXAMPLE 2.12.  A steel rod ABCD 4.5 m long and 25 mm in diameter is subjected to the forces
as shown in Fig. 2.10. If the value of Young’s modulus for the steel is 200 GPa, determine its
deformation.

Fig. 2.10

SOLUTION.  Given: Diameter (D) = 25 mm and Young’s modulus (E) = 200 GPa = 200 kN/mm2.

We know that cross-sectional area of the steel rod.

A =
2 2 2( ) (25) 491 mm

4 4
Dπ π= × =

For the sake of simplification, the force of 60 kN acting at A may be split up into two forces of 50
kN and 10 kN respectively. Similarly the force of 20 kN acting at C may also be split up into two
forces of 10 kN and 10 kN respectively.

Fig. 2.11
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Now it will be seen that the bar AD is subjected a tensile force of 50 kN, part AC is subjected to
a tensile force of 10 kN and the part BC is subjected to a tensile force of 10 kN as shown in Fig. 2.11

We know that deformation of the bar,

δl =
1

A E
 [P1 l1 + P2 l2 + P3 l3]

=
3 3 31 [50 (4.5 10 )] [10 (3 10 )] [10 (1 10 ) mm

491 200
⎡ ⎤× × + × × + × ×
⎣ ⎦×

=
31 (265 10 )

491 200
× ×

×  = 2.70 mm        Ans.

EXERCISE 2.2

1. A steel bar ABC of 400 mm length and 20 mm diameter is subjected to a point loads as shown
in Fig. 2.12.

Fig. 2.12

Determine the total change in length of the bar. Take E = 200 GPa. [Ans. 0.32 mm]

2. A copper rod ABCD of 800 mm2 cross-sectional area and 7.5 m long is subjected to forces as
shown in Fig. 2.13.

Fig. 2.13

Find the total elongation of the bar. Take E for the bar material as 100 GPa. [Ans. 4.6 mm]

3. A steel bar of 600 mm2 cross-sectional area is carrying loads as shown in Fig. 2.14.

Fig. 2.14

Determine the elongation of the bar. Take E for the steel as 200 GPa. [Ans. 1.4 mm]

QUESTIONS

1. Define stress, strain and elasticity. Derive a relation between stress and strain of an elastic body.
2. State clearly the Hooke’s law.

3. Derive from fundamental, the relation for the deformation of a body, when it is subjected to: (a)
a tensile force and (b) its own weight.

4. What is principle of the superposition? Explain its uses.
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MULTIPLE CHOICE QUESTIONS

1. If a force acts on a body, it sets up some resistance to the deformation. This resistance is known
as

(a) stress (b) strain

(c) elasticity (d) modulus of elasticity
2. The term deformation per unit length is applied for

(a) stress (b) strain

(c) modulus of elasticity (d) none of these
3. The term ‘Young’s modulus’ is used

(a) only for young persons (b) only for old persons

(c) young and old person (d) none of these
4. Modulus of elasticity is the ratio of

(a) stress to strain (b) stress to original length

(c) deformation to original length (d) all of these

ANSWERS

1. (a) 2. (b) 3. (d) 4. (a)
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5. Stresses in the Bars of Uniformly
Tapering Circular Sections.

6. Stresses in the Bars of Uniformly
Tapering Rectangular Sections.

7. Stresses in the Bars of Composite
Sections.

3.1. Introduction
In the last chapter, we have discussed the

procedure of obtaining stresses and strains in the
bars of uniform cross-sectional area. But
sometimes we come across bars of varying
sections in which we are required to find out the
stresses and strains. The procedure for finding
out the stresses and strains in same sections is
slightly different.

3.2. Types of Bars of Varying
Sections

Though there are many types of bars of
varying sections, in the field of strength of
materials yet the following are important from
the subject point of view :

3C h a p t e r



26 � Strength of Materials

1. Bars of different sections
2. Bars of uniformly tapering sections

3. Bars of composite sections.

Now we shall study the procedure for the stresses and strains in the above mentioned bars in the
following pages.

3.3. Stresses in the Bars of Different Sections
Sometimes a bar is made up of different lengths having different cross-sectional areas as shown

in Fig. 3.1.

Fig. 3.1.  Bars of different sections

In such cases, the stresses, strains and hence changes in lengths for each section is worked out
separately as usual. The total changes in length is equal to the sum of the changes of all the individual
lengths. It may be noted that each section is subjected to the same external axial pull or push.

Let P = Force acting on the body,
E = Modulus of elasticity for the body,
l1 = Length of section 1,

A1 = Cross-sectional area of section 1,
l2, A2 = Corresponding values for section 2 and so on.

We know that the change in length of section 1.

δl1 = 1

1

Pl
A E Similarly δl2 = 2

2

Pl
A E

      and so on

∴ Total deformation of the bar,

δl = δl1 + δl2 + δl3 + ..........

= 31 2

1 2 3

PlPl Pl
A E A E A E

+ + + ..........

= 31 2

1 2 3

..........
ll lP

E A A A
⎛ ⎞

+ + +⎜ ⎟
⎝ ⎠

NOTE. Sometimes, the modulus of elasticity is different for different sections. In such cases, the total deformation,

δl = 31 2

1 1 2 2 3 3
..........

⎛ ⎞
+ + +⎜ ⎟⎝ ⎠

ll l
P

A E A E A E

EXAMPLE 3.1. An automobile component shown in Fig. 3.2 is subjected to a tensile load of
160 kN.

Fig. 3.2

Determine the total elongation of the component, if its modules of elasticity is 200 GPa.
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SOLUTION.  Given :  Tensile load (P) = 160 kN = 160 × 103 N ;  Length of section 1 (l1) = 90 mm;
Length of section 2 (l2) = 120 mm ;  Area of section 1 (A1) = 50 mm2 ;  Area of section 2 (A2) = 100
mm2 and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

We know that total elongation of the component,

δl = ( )3
1 2

3
1 2

160 10 90 120 mm
50 100200 10

l lP
E A A

×⎛ ⎞+ = +⎜ ⎟ ×⎝ ⎠

= 0.8 × 1.8 + 1.2 = 2.4 mm        Ans.

EXAMPLE 3.2. A member formed by connecting a steel bar to an aluminium bar is shown in
Fig. 3.3.

Fig. 3.3

Assuming that the bars are prevented from buckling sidewise, calculate the magnitude of force
P, that will cause the total length of the member to decrease by 0.25 mm. The values of elastic
modulus for steel and aluminium are 210 GPa and 70 GPa respectively.

SOLUTION.  Given :  Decrease in length (δl) = 0.25 mm ;  Modulus of elasticity for steel (ES) = 210
GPa = 210 × 103 N/mm2 ;  Modulus of elasticity for aluminium (EA) = 70 GPa = 70 × 103 N/mm2 ;
Area of steel section (AS) = 50 × 50 = 2 500 mm2 ;  Area of aluminium section (AA) = 100 × 100 =
10000 mm2 ;  Length of steel section (lS) = 300 mm and length of aluminium section (lA) = 380 mm.

Let P = Magnitude of the force in kN.
We know that decrease in the length of the member (δl),

0.25 = S A

S S A A

l l
P

A E A E
⎛ ⎞+⎜ ⎟
⎝ ⎠

= 3 3
300 380

2500 (210 10 ) 10000 (70 10 )
P
⎛ ⎞

+⎜ ⎟
× × × ×⎝ ⎠

= 6

780

700 10

P

×

∴ P =
60.25 (700 10 )

780
× ×

 = 224.4 × 103 N = 224.4 kN        Ans.

EXAMPLE 3.3. A 6 m long hollow bar of circular section has 140 mm diameter for a length
of 4 m, while it has 120 mm diameter for a length of 2 m. The bore diameter is 80 mm throughout
as shown in Fig. 3.4.

Fig. 3.4

Find the elongation of the bar, when it is subjected to an axial tensile force of 300 kN. Take
modulus of elasticity for the bar material as 200 GPa.
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SOLUTION.  Given :  Total length (L) = 6 m = 6 × 103 mm ;  Diameter of section 1 (D1)= 140 mm;
Length of section 1 (l1) = 4 m = 4 × 103 mm ; Diameter of section 2 (D2) = 120 mm ;  Length of section
2 (l2) = 2 m = 2 × 103 mm ;  Inner diameter (d1) = d2 = 80 mm ;  Axial tensile force (P) = 300 kN = 300
× 10  N and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

We know that area of portion AB,

A1 =
4
π

 × [D1
2 – d1

2] = 
4
π

×  [(140)2 – (80)2] = 3300 π mm2

and area of portion BC.

A2 =
4
π

 × [D2
2 – d2

2] = 
4
π

× [(120)2 – (80)2] = 2000 π mm2

∴ Elongation of the bar,

δl =
3 3 3

1 2
3

1 2

300 10 4 10 2 10
mm

3300 2000200 10

l lP
E A A

⎡ ⎤× × ×⎡ ⎤+ = × +⎢ ⎥⎢ ⎥ π π×⎣ ⎦ ⎣ ⎦

=1.5 × (0.385 + 0.318) = 1.054 mm        Ans.

EXAMPLE 3.4. A compound bar ABC 1.5 m long is made up of two parts of aluminium and
steel and that cross-sectional area of aluminium bar is twice that of the steel bar. The rod is
subjected to an axial tensile load of 200 kN. If the elongations of aluminium and steel parts are
equal, find the lengths of the two parts of the compound bar. Take E for steel as 200 GPa and E
for aluminium as one-third of E for steel.

SOLUTION.  Given:  Total length (L) = 1.5 m = 1.5 × 103 mm ;
Cross-sectional area of aluminium bar (AA) = 2 AS ;  Axial tensile load
(P) = 200 kN = 200 × 103 N ; Modulus of elasticity of steel (ES) = 200
GPa = 200 × 103 N/mm2 and modulus of elasticity of aluminium (EA) =

3200 10
3 3
SE ×=  N/mm2.

Let, lA = Length of the aluminium part,

and lS = Length of the steel part.
We know that elongation of the aluminium part AB,

δlA = 
3

3

. (200 10 )

. 200 10
2

3

A A

A A
S

P l l
A E

A

× ×=
⎛ ⎞×× ⎜ ⎟
⎝ ⎠

=
1.5 A

S

l
A ...(i)

and elongation of the steel part BC,

δlS =
3

3

. (200 10 )

. (200 10 )
S S S

S S SS

P l l l
A E AA

× ×= =
× ×

...(ii)

Since elongations of aluminium and steel parts are equal, therefore equating equations (i) and (ii),

1.5 A

S

l
A

= S

S

l
A

          or          lS = 1.5 lA

We also know that total length of the bar ABC (L)

1.5 × 103 = lA + lS = lA + 1.5 lA = 2.5 lA

Fig. 3.5
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∴ lA =
31.5 10

2.5
×

 = 600 mm        Ans.

and lS = (1.5 × 103) – 600 = 900 mm        Ans.

EXAMPLE 3.5. An alloy circular bar ABCD 3 m long is subjected to a tensile force of 50 kN
as shown in Fig. 3.6.

Fig. 3.6

If the stress in the middle portion BC is not to exceed 150 MPa, then what should be its
diameter? Also find the length of the middle portion, if the total extension of the bar should not
exceed by 3 mm. Take E as 100 GPa.

SOLUTION.  Total length of circular bar (L) = 3m = 3 × 103 mm = 3000 mm ;  Tensile force (P) =
50 kN = 50 × 103 N ;  Maximum stress of portion BC (σBC) = 150 MPa = 150 N/mm2 ;  Total
extension (δl) = 3 mm and modulus of elasticity (E) = 100 GPa = 100 × 103 N/mm2.

Diameter of the middle portion BC
Let d = Diameter of the middle portion in mm.

We know that stress in the middle portion BC (σBC),

150 =
3 3

22

50 10 63.66 10

( )
4

P
A dd

× ×= =π ×

∴ d2 =
363.66 10

150
×

 = 424.4        or        d = 20.6 mm        Ans.

length of the middle portion BC

Let lBC = Length of the middle portion in mm.
We know that area of the end portions AB and CD,

A1 = 2(40)
4
π ×  = 1257 mm2

and area of the middle portion BC,

A2 =
4
π

 × (d)2 = 
4
π

 × (20.6)2 = 333.3 mm2

We also know that total extension of bar (δl),

3 =
3

1 2
3

1 2

50 10 3000
1257 333.3100 10

l l lP l
E A A

× −⎡ ⎤ ⎡ ⎤+ = × +⎢ ⎥ ⎢ ⎥× ⎣ ⎦⎣ ⎦

= 0.5 [2.387 – 0.0008 l + 0.003 l] = 0.5 [2.387 + 0.0022 l]

= 1.194 + 0.0011 l

∴ l =
3 1.194
0.0011
−

 = 1.64 × 103 mm = 1.64 m        Ans.

NOTE. We have taken total length of the circular bar as (3000 – l) mm.
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EXAMPLE 3.6. A steel bar 2 m long and 40 mm in diameter is subjected to an axial pull of 80
kN. Find the length of the 20 mm diameter bore, which should be centrally carried out, so that the
total elongation should increase by 20% under the same pull. Take E for the bar material as
200 GPa.

SOLUTION.  Given :  Length of steel bar (l) = 2 m = 2 × 103 mm = 2000 mm ;  Diameter of steel
bar (D) = 40 mm ;  Axial pull (P) = 80 kN = 80 × 103 N ;  Diameter of bore (d) = 20 mm and modulus
of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Fig. 3.7

Let x = Length of the bore in mm.

First of all, consider the solid bar before the bore as shown in Fig. 3.7 (a). We know that cross-
sectional area of the bar,

A1 =
4
π

 × (D)2 = 
4
π

 × (40)2 = 400 π mm2

and elongation of the bar,

δl =
3 3

3

(80 10 ) (2 10 )

400 (200 10 )
Pl
AE

× × ×=
π × ×

 = 0.64 mm

Now consider the bar after the bore. Since the elongation of the bar after bore is increased by
20%, therefore total elongation of the bar after bore,

= 0.64 + (0.2 × 0.64) = 0.768 mm

We also know that cross-sectional area of the bored part

A2 =
4
π

 [D2 – d2] = 
4
π

 [(40)2 – (20)2] = 300 π mm2

and total elongation of the bar after bore,

0.768 =
3

1 2
3

1 2

80 10 2000
400 300200 10

× −⎡ ⎤ ⎡ ⎤+ = +⎢ ⎥ ⎢ ⎥π π× ⎣ ⎦⎣ ⎦

l l xP x
E A A

=
4 3(2000 )

0.4
1200

+ −⎡ ⎤
⎢ ⎥π⎣ ⎦

x x

or
0.768 1200

0.4
× π

= 4x + 6 000 – 3x          or          7 240 = x + 6 000

∴ x = 7 240 – 6 000 = 1240 mm = 1.24 m        Ans.
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EXAMPLE 3.7. A steel bar ABCD 4 m long is subjected to forces as shown in Fig. 3.8.

Fig. 3.8

Find the elongation of the bar. Take E for the steel as 200 GPa.

SOLUTION.  Given :  Total length of steel bar (L) = 4 m = 4 × 103 mm ;  Length of first part (l1) =

1 m = 1 × 103 mm ;  Diameter of first part (d1) = 15 mm ;  Length of second part (l2) = 2 m = 2 × 103

mm ;  Diameter of second part (d2) = 20 mm ; Length of third part (l3) = 1 m = 1 × 103 mm ;  Diameter

of third part (d3) = 15 mm and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

We know that area of the first and third parts of the bar,

A1 = A3 = 
4
π

 × (d1)
2 = 

4
π

 × (15)2 = 177 mm2

and area of the middle part of the bar

A2 =
4
π

 × (d2)
2 = 

4
π

 × (20)2 = 314 mm2

For the sake of simplification, the force of 25 kN acting at D may be split up into two forces of 15
kN and 10 kN respectively. Similarly the force of 20 kN acting at A may also be split up into two
forces of 15 kN and 5 kN respectively.

Now it will be seen that the bar ABCD is subjected to a tensile force of 15 kN, part BC is
subjected to a compressive force of 5 kN and the part CD is subjected to a tensile force of 10 kN as
shown in Fig. 3.9.

We know that elongation of the bar ABCD due to a tensile force of 15 kN,

δl1 = 31 2

1 2 3

ll lP
E A A A

⎡ ⎤+ +⎢ ⎥
⎣ ⎦

Fig. 3.9
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=
3 3 3 3

3

15 10 1 10 2 10 1 10
177 314 177200 10

⎡ ⎤× × × ×+ +⎢ ⎥× ⎣ ⎦
 mm = 1.32 mm

Similarly elongation of the bar AB due to a compression force of 5 kN,

δl2 =
3 3

1 1
3

2

(5 10 ) (1 10 )

177 (200 10 )

P l
A E

× × ×=
× ×

 = 0.14 mm

and elongation of the bar CD due to a tensile force of 10 kN,

δl3 =
3 3

3 3
3

3

(10 10 ) (1 10 )

177 (200 10 )

P l
A E

× × ×=
× ×

 = 0.3 mm

∴ Total elongation of the bar ABCD,

δl = δl1 + δl2 + δl3 = 1.43 + 0.14 + 0.28 = 1.85 mm        Ans.

EXAMPLE 3.8. A circular steel rod ABCD of different cross-sections is loaded as shown in
Fig. 3.10.

Find the maximum stress induced in the rod and its deformation. Take E = 200 GPa.

SOLUTION.  Given :  Length of first part AB (l1) = 1 m =
1 × 103 mm ; Diameter of first part AB (D1) = 70 mm ; Length of
second part BC (l2) = 2 m = 2 × 103 mm ;  Diameter of second part
BC (D2) = 50 mm ; Length of third part CD (l3) = 1 m = 1 × 103 mm ;
Diameter of third part CD (D3) = 50 mm and internal diameter of
hole (d3) = 30 mm.

Maximum stress induced in the rod
We know that area of the first part (AB) of the rod,

A1 =
4
π

 (D1)
2 = 

4
π

 (70)2 mm2

= 3848.5 mm2

Similarly area of the second part (BC) of the rod,

A2 =
4
π

(D2)
2 =

4
π

(50)2=1963.5 mm2

and area of the third part CD of the rod,

A3 =
4
π

 [D3)
2 – d3

2]

= 
4
π

 [(50)2 – (30)2] = 1256.6 mm2

For the sake of simplification, the force of 100 kN acting at B-B may be split up into two forces
of 75 kN and 25 kN. Similarly the force of 50 kN acting at C-C may be split up into two forces of 25
kN and 25 kN respectively as shown in Fig. 3.11. (b).

Now it will be seen that the bar AB is subjected to a tensile load of 75 kN, part BC is subjected to
a compressive load of 25 kN and the part CD is subjected to a tensile load of 25 kN as shown in Fig.
3.11 (b). We know that tensile stress in part 1,

σ1 =
3

1

75 10
3848.5

ABP
A

×=  = 19.49 N/mm2 = 19.49 MPa

Similarly, σ2 =
3

2

25 10
1963.5

BCP
A

×=  = 12.73 N/mm2 = 12.73 MPa

Fig. 3.10
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and σ3 =
3

3

25 10
1256.6

CDP
A

×=  = 19.89 N/mm2 = 19.89 MPa

From the above three values of the stresses, we find that maximum stress induced in the rod is in
CD and is equal to 19.89 MPa.        Ans.

Fig. 3.11

Deformation of the rod
We also know that elongation of the part AB, due to tensile load of 75 kN,

δl1 =
3 3

1 1
3

1

(75 10 ) (1 10 )

3848.5 (200 10 )

P l
A E

× × ×=
× ×

 = 0.097 mm

Similarly shortening of the part BC due to compressive load of 25 kN.

δl2 =
3 3

2 2
3

2

(25 10 ) (2 10 )

1963.5 (200 10 )

P l
A E

× × ×=
× ×

 = 0.127 mm

and elongation of the part CD due to tensile load of 25 kN.

δl3 =
3 3

3 3
3

3

(25 10 ) (1 10 )

1256.6 (200 10 )

P l
A E

× × ×=
× ×

 = 0.099 mm

∴ Deformation of the rod,

δl = δl1 – δl2 + δl3 = 0.097 – 0.127 + 0.099 = 0.069 mm        Ans.
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EXERCISE 3.1

1. A steel bar shown in Fig. 3.12 is subjected to a tensile force of 120 kN.

Fig. 3.12

Calculate elongation of the bar. Take E as 200 GPa. [Ans. 1.25 mm]

2. A copper bar shown in Fig. 3.13 is subjected to a tensile load of 30 kN.

Fig. 3.13

Determine elongation of the bar, if E = 100 GPa. [Ans. 0.33 mm]

3. A copper bar is 900 mm long and circular in section. It consists of 200 mm long bar of 40 mm
diameter, 500 mm long bar of 15 mm diameter and 200 mm long bar of 30 mm diameter. If the
bar is subjected to a tensile load of 60 kN, find the total extension of the bar. Take E for the bar
material as 100 GPa. [Ans. 1.963 mm]

4. A stepped bar ABCD consists of three parts AB, BC and CD such that AB is 300 mm long
and 20 mm diameter, BC is 400 mm long and 30 mm diameter and CD is 200 mm long and
40 mm diameter. It was observed that the stepped bar undergoes a deformation of 0.42 mm,
when it was subjected to a compressive load P. Find the value of P, if E = 200 GPa.

[Ans. 50 kN]
5. A member ABCD is subjected to point load as shown in Fig. 3.14.

Fig. 3.14

Determine the total change in length of the member. Take E = 200 GPa.
[Ans. 0.096 mm (decrease)]

6. A steel bar ABCD is subjected to point loads of P1, P2, P3 and P4 as shown in Fig. 3.15.

Fig. 3.15
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Determine the magnitude of the force P3 necessary for the equilibrium, if P1 = 120 kN, P2 = 220
and P4 = 160 kN. Also determine the net change in the length of the steel bar. Take E = 200 GPa.

[Ans. 260 kN ; 0.55 mm]
[Hint. AB will be subjected to 120 kN (tension). BC will be subjected to 100 kN (compression)
and CD will be subjected to 160 kN (tension).

3.4. Stresses in the Bars of Uniformly Tapering Sections
In the last article, we have discussed the stresses in the bars of different sections or stepped

sections. But now we shall discuss the stresses in the bars of uniformly tapering sections. Following
two types of uniformly tapering sections are important from the subject point of view :

1. Bars of uniformly tapering circular sections.
2. Bars of uniformly tapering rectangular sections.

Now we shall discuss the stresses in the bars of both the above mentioned types of uniformly
tapering sections.

3.5. Stresses in the Bars of Uniformly Tapering Circular Sections

Fig 3.16

Consider a circular bar AB of uniformly tapering circular section as shown in Fig. 3.16.

Let P = Pull on the bar.
l = Length of the bar,

d1 = Diameter of the bigger end of the bar, and

d2 = Diameter of the smaller end of the bar.
Now consider a small element of length dx of the bar, at a distance x from the bigger end as

shown in Fig. 3.16. We know that diameter of the bar at a distance x, from the left end A,

dx = d1 – (d1 – d2) 
x
l  = d1 – k x, ...( where  k = 1 2d d

l
−

)

and cross-sectional area of the bar at this section,

AX =
4
π

 (d1 – kx)2

∴ Stress, σX = 22
11

4
( )( )

4

P P
d kxd kx

=π π −−

and strain, εX =
2

1
2

1

4
( )Stress 4

( )

P
d kx P

E E d kx E

π −= =
π −
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∴ Elongation of the elementary length

= εX .dx = 2
1

4 .

( )

P dx

d kx Eπ −

Total extension of the bar may be found out by integrating the above equation between the limit
0 and l. Therefore total elongation,

δ l = 20 1

4 .

( )

l P dx

d kx Eπ −∫

= 20 1

4
( )

lP dx
E d kxπ −∫

=
1

1

0

( )4
1

−⎡ ⎤−
⎢ ⎥π − × −⎣ ⎦

l
d kxP

E k

=
1 0

4 1
l

P
E k d kx

⎡ ⎤
⎢ ⎥π −⎣ ⎦

=
1 1

4 1 1P
E k d kl d

⎡ ⎤−⎢ ⎥π −⎣ ⎦

Substituting the value of 1 2d d
k

l
−=  in the above equation,

δ l =
1 2 1 2 1

1

4 1 1
( ) ( )

P
d d d d l dE d

l l

⎡ ⎤
⎢ ⎥−⎢ ⎥− −π −⎢ ⎥
⎣ ⎦

=
1 2 2 1

4 1 1
( )

Pl
E d d d d

⎡ ⎤−⎢ ⎥π − ⎣ ⎦
= 1 2

1 2 2 1

4
( )

d dPl
E d d d d

−⎡ ⎤
⎢ ⎥π − ⎣ ⎦

                                     
2 1

4Pll
Ed d

δ =
π

Cor.  If the bar had been of uniform diameter d throughout, then

δ l = 2 2

4

4

Pl Pl Pl
AEE d d E

= =ππ ×
...(Same as in Art. 2.12)

EXAMPLE 3.9.  A circular alloy bar 2 m long uniformly tapers from 30 mm diameter to 20
mm diameter. Calculate the elongation of the rod under an axial force of 50 kN. Take E for the
alloy as 140 GPa.

SOLUTION.  Given :  Length of bar (l) = 2 m = 2 × 103 mm ; Diameter of section 1 (d1) = 30 mm;
Diameter of section 2 (d2) = 20 mm ;  Axial force (P) = 50 kN = 50 × 103 N and modulus of elasticity
(E) = 140 GPa = 140 × 103 N/mm2.

We know that elongation of the rod,

δl =
3 3

3
1 2

4 4 (50 10 ) (2 10 )

(140 10 ) 30 20

Pl
E d d

× × × ×=
π π × × × ×  = 1.52 mm        Ans.
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EXAMPLE 3.10. If the tension test bar is found to taper from (D + a) diameter to (D – a)
diameter, prove that the error involved in using the mean diameter to calculate Young’s modulus

is 
2

10 a
D

⎛ ⎞
⎜ ⎟
⎝ ⎠

per cent.

SOLUTION.  Given : Larger diameter (d1) = (D + a) and smaller diameter (d2) = (D – a).

Let P = Pull on the bar,
l = Length of the bar,

E1 = Young’s modulus by the tapering formula,

E2 = Young’s modulus by the mean diameter formula and
δ l = Extension of the bar.

First of all, let us find out the values of Young’s modulus for the test bar by the tapering formula and
then by the mean diameter formula. We know that extension of the bar by uniformly varying formula.

δl = 2 2
1 1 2 1 1

4 4 4
( ) ( ) ( )

Pl Pl Pl
E d d E D a D a E D a

= =
π π + − π −

or E1 = 2 2

4

( ) .

Pl

D a lπ − δ
...(i)

and extension of the bar by mean diameter (D) formula,

δl = 222 22

4

( )
4

= =π π×

Pl P l Pl
AE D ED E

or E2 = 2

4

.

Pl

D lπ δ
...(ii)

∴ Percentage error involved (in using the mean diameter to calculate the Young’s modulus)

=
2 2 2

1 2

1
2 2

4 4

( ) .
100 100

4

( )

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟π − δ π δ⎝ ⎠ ⎝ ⎠−⎛ ⎞ × = ×⎜ ⎟⎝ ⎠

π − δ

Pl Pl

D a l D lE E
PlE

D a l

=

2 2 2

2 2 2 2 2 2

2 2 2 2

( )1 1
( ) ( ) ( )

100 100
1 1

( ) ( )

D D a

D a D D a D

D a D a

− −−
− −× = ×

− −

=
22

2

10
100

aa
DD

⎛ ⎞× = ⎜ ⎟
⎝ ⎠

        Ans.

EXAMPLE 3.11. Two circular bars A and B of the same material are subjected to the same
pull (P) and are deformed by the same amount. What is the ratio of their length, if one of them has
a constant diameter of 60 mm and the other uniformly tapers from 80 mm from one end to 40 mm at
the other ?

SOLUTION.  Given :  Modulus of elasticity of bar A (EA) = EB (because both the bars are of the
same material) ; Pull on bar A (PA) = PB = P ;  Deformation in bar A (δlA) = δlB ;  Diameter of bar A
(dA) = 60 mm ;  Diameter of bar B at section 1 (dB1) = 80 mm and diameter of bar B at section
2 (dB2) = 40 mm.

Let lA = Length of the bar A and
lB = Length of the bar B.
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First of all, consider the bar A, which has a constant diameter. We know that its deformation.

δlA = 22

4 4
3600(60)( )

4

= = =π ππ ×× ×
A A A A A

A A

P l P l P l Pl
A E EEd E

...(i)

Now consider the bar B, which uniformly tapers from one end to the other. We know that its
deformation.

δlB =
1 2

4 4 4
. 80 40 3200

= =
π π × × π

B B B B

B B B

P l Pl Pl
E d d E E

...(ii)

Since δlA is equal to δlB, therefore equating (i) and (ii), we get

4
3600

APl
Eπ

=
4

3200
BPl

Eπ           or          
3600 3200

A Bl l=

A

B

l
l

=
3600 9
3200 8

=           or          lA : lB = 9 : 8        Ans.

EXAMPLE 3.12.  A round tapered alloy bar 4 m long is subjected to load as shown in
Fig. 3.17.

Fig. 3.17

Find the change in the length of the bar. Take E for the bar material as 120 GPa.

SOLUTION.  Given :  Length (L) = 4 m = 4 × 103 mm ;  Force (P1) = 50 kN = 50 × 103 N ;  Force
(P2) = 70 kN = 70 × 103 N and modulus of elasticity (E) = 120 GPa = 120 × 103 N/mm2.

From the geometry of the figure, we find that diameter of the bar at B.

dB = 20 + (40 – 20) × 
1
4

 = 25 mm

Similarly, diameter of the bar at C.

dC = 25 + (40 – 20) × 
2
4

 = 35 mm

For the sake of simplification, the forces of 50 kN acting at B may be split up into two forces of
30 kN and 20 kN respectively. Similarly the force of 70 kN acting at C may also be split up into two
forces of 20 kN and 50 kN respectively.

Now it will be seen that bar AB subjected to a compressive load of 30 kN and part BC is subjected
to a tensile load of 20 kN and part CD is subjected to a compressive load of 50 kN as shown in Fig.
3.18.

We know that shortening of the bar AB due to a compressive force of 30 kN.

δl1 =
3 3

2

4 4 (30 10 ) (1 10 )
. (120 10 ) 20 25

A AB

A B

P l
E d d

× × × × ×=
π π × × × ×  = 0.64 mm
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Fig. 3.18

Similarly elongation of the bar BC due to a tensile load of 20 kN

δl2 =
3 3

3

4 4 (20 10 ) (2 10 )
. (120 10 ) 25 35

B BC

B C

P l
E d d

× × × × ×=
π π × × × ×  = 0.48 mm

and shortening of the bar CD due to a compressive load of 50 kN

δl3 =
3 3

3

4 4 (50 10 ) (1 10 )
. (120 10 ) 35 40

C CD

C D

P l
E d d

× × × × ×=
π π × × ×  = 0.38 mm

∴ Change in length
δ l = δl1 – δl2 + δl3  = 0.64 – 0.48 + 0.38 = 0.54 mm (decrease)        Ans.

3.6.  Stresses in the Bars of Uniformly Tapering Rectangular Sections
Sometimes, the uniformly tapering section varies from square section at one end to another

square section at the other. Or it may also vary from rectangular section at one end to another rectangular
section at the other. In such cases, the stresses should be found out from the fundamentals.

EXAMPLE 3.13.   An alloy bar of 1 m length has square section throughout, which tapers from
one end of 10 mm × 10 mm to the other end of 20 mm × 20 mm. Find the change in its length due
to an axial tensile load of 30 kN. Take E for the alloy as 120 GPa.

SOLUTION.  Given :  Length of bar (l) = 1 m = 1 × 103 mm ;  Section at A = 10 mm × 10 mm ;
Section at B = 20 mm × 20 mm ;  Tensile load (P) = 30 kN = 30 × 103 N and modulus of elastictiy (E)
= 120 GPa = 120 × 103 N/mm2.

Fig. 3.19

Now consider a small length dx of the bar at a distance x from A as shown in Fig. 3.19. From the
geometry of the figure, we find that side of the square at X.
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= 10 + (20 – 10) × 31 10
x

×  = 10 + 0.01 x    mm

∴ Cross-sectional area of the bar at this section.

AX = (10 + 0.01 x)2 mm2

and stress, σX =
3

2

30 10

(10 0.01 )X

P
A x

×=
+

∴ Strain, εX = 
σX

E
=

3

2

3 2

30 10

(10 0.01 ) 0.25
120 10 (10 0.01 )

x

x

×
+ =

× +
and increase in the length of the small element.

= εX . dx = 2

0.25

(10 0.01 )

dx

x+
Now total elongation of the bar may be found out by integrating the above equation between 0

and 1000.

δ l =
1000

20

0.25

(10 0.01 )

dx

x+∫

= 0.25 
1000

2

0
(10 0.01 )x dx+∫

=
1000

1

0

10.25 (10 0.01 )
0.01

x −⎡ ⎤− +
⎢ ⎥⎣ ⎦

= – 25 [(20)–1 – (10)–1] = – 25 
1 1
20 10

⎡ ⎤−
⎢ ⎥⎣ ⎦

 = 1.25 mm        Ans.

EXAMPLE 3.14.  A steel plate of 20 mm thickness tapers uniformly from 100 mm to 50 mm in a
length of 400 mm. What is the elongation of the plate, if an axial force of 80 kN acts on it ? Take
E = 200 GPa.

SOLUTION.  Given :  Plate thickness = 20 mm ;  Width at A = 100 mm ;  Width at B = 50 mm ;  Length
(l) = 400 mm ;  Axial force (P) = 80 kN = 80 × 103 N and modulus of elasticity (E) = 200 GPa =
200 × 103 N/mm2.

Now consider a small element of length dx, of the bar, at a distance x from A as shown in Fig.
3.20. From the geometry of the figure, we find that the width of the plate at a distance x from A.

= 100 – (100 – 50) × 400
x

 = 100 – 0.125 x  mm

∴ Cross-sectional area of the plate at this section.

AX = 20 × (100 – 0.125 x)

and stress, σX =
3 380 10 4 10

20 (100 0.125 ) 100 0.125X

P
A x x

× ×= =
× − −

Fig. 3.20
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∴ Strain, εX =

3

3

4 10
100 0.125 1

50 (100 0.125 )200 10
X x

E x

×
σ −= =

−×
and increase in the length of the small element

= εX . dx = 
50(100 0.125 )

dx
x−

Now total elongation of the plate may be found out by integrating the above equation between 0
and 400.

∴ δl =
400

0 50(100 0.125 )
dx

x−∫

=
400

0

1
50 (100 0.125 )

dx
x−∫

= [ ]400

0
1 log (100 0.125 )

50( 0.125) e x−
−

= [ ]1 log (50 log 100)
6.25 e e− −

= 0.16 [loge 100 – loge 50] ...(Taking minus sign outside)

= 0.16 × loge ( )100
50

 = 0.16 × loge 2 = 0.16 × 2.3 log 2

...(ä loge = 2.3 log10)
= 0.16 × 2.3 × 0.3010 = 0.11 mm        Ans.

EXERCISE 3.2

1. A circular bar 2.5 m long tapers uniformly from 25 mm diameter to 12 mm diameter. Determine
extension of the rod under a pull of 30 kN. Take E for bar as 200 GPa. [Ans. 1.6 mm]

2. A copper rod, circular in cross-section, uniformly tapers from 40 mm to 20 mm in a length of
11 m. Find the magnitude of force, which will deform it by 0.8 mm. Take E = 100 GPa.

[Ans. 0.9139  kN]

3. A circular steel bar 3 m long uniformly tapers from 50 mm diameter from one end to 25 mm at
the other. Find the magnitude of force, which will deform it by 0.8 mm. [Ans. 52.4 kN]

4.  A rectangular bar 2 m long and 12.5 mm thick uniformly tapers from 100 mm at one end to 20
mm at the other. If the bar is subjected to a tensile force of 25 kN, find its deformation. Take E
as 200 GPa. [Ans. 0.4 mm]

5. A steel bar of 100 mm length tapers from 12 mm × 10 mm from one end to 30 mm × 20 mm at
the other. If the stress in the bar is not to exceed 100 MPa, find the magnitude of the axial force
(P). Also find the change in its length. Take E as 200 GPa. [Ans. 12 kN; 0.2 mm]

3.7. Stresses in the Bars of Composite Structures
A bar made up of two or more different materials, joined together is called a composite bar. The

bars are joined in such a manner, that the system extends or contracts as one unit, equally, when
subjected to tension or compression. Following two points should always be kept in view, while
solving example on composite bars :
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1. Extension or contraction of the bar is equal. Therefore strain (i.e., deformation per unit length)
is also equal.

2. The total external load, on the bar, is equal to the sum of the loads
carried by the different materials.

Consider a composite bar made up of two different materials as shown in
Fig. 3.21.

Let P = Total load on the bar,
l = Length of the bar 1

l2 = Length of the bar 2
A1 = Area of bar 1,
E1 = Modulus of elasticity of bar 1.
P1 = Load shared by bar 1, and

A2, E2, P2 = Corresponding values for bar 2,
We know that total load on the bar,

P = P1 + P2 ...(i)

∴ Stress in bar 1, σ1 = 1

1

P
A

and strain in bar 1, ε1 = 1 1

1 1 1

P
E A E
σ =

∴ Elongation, δl1 = ε1.l1 = 1 1

1

l
E

σ = 1 1

1 1

P l
A E

...(ii)

Similarly, elongation of bar 2,

                          δl2 = 2 2.lε  = 2 2

1

l
E

σ
= 2 2

2 2

P l
A E ...(iii)

Since both the elongations are equal, therefore equating (ii) and (iii), we get  δl1=  δl2

1

1 1

P l
A E

= 2

2 2

P l
A E

          or          1 2

1 1 2 2

P P
A E A E

= ...(iv)

or P2 = P1 × 2 2

1 1

A E
A E

But P = P1 + P2 = P1 + P1 × 2 2

1 1

A E
A E

= P1 
2 2 1 1 2 2

1
1 1 1 1

1
A E A E A E

P
A E A E

+⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

or P1 = P × 1 1

1 1 2 2

A E
A E A E+ ...(v)

Similarly, P2 = P × 2 2

1 1 2 2

A E
A E A E+ ...(vi)

From these equations we can find out the loads shared by the different materials. We have also
seen in equation (iv) that

1

1 1

Pl
A E

= 2

2 2

Pl
A E

Fig. 3.21
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or 1

1E
σ

= 2

2E
σ

... ( )StressP
A

= σ =∵

∴ σ1 = 1
2

2

E
E

× σ ...(vii)

Similarly, σ2 = 2
1

1

E
E

× σ ...(viii)

From the above equations, we can find out the stresses in the different materials. We also know
that the total load,

P = P1 + P2 = σ1 A1 + σ2 A2

From the above equation, we can also find out the stress in the different materials.
NOTES: 1. For the sake of simplicity, we have considered the composite bar made up of two different materials

only. But this principle may be extended for a bar made up of more than two different materials also.
2. If the lengths of the two bars are different, then elongations should be separately calculated and

equated.
3. The ratio E1/E2 is known as modulas ratio of the two materials and is denoted by the letter m.

EXAMPLE 3.15.  A reinforced concrete circular section of 50,000 mm2 cross-sectional area
carries 6 reinforcing bars whose total area is 500 mm2. Find the safe load, the column can carry,
if the concrete is not to be stressed more than 3.5 MPa. Take modular ratio for steel and concrete
as 18.

SOLUTION.  Given :  Area of column = 50,000 mm2 ;  No. of reinforcing bars
= 6 ;  Total area of steel bars (AS) = 500 mm2 ;  Max stress in concrete (σC)

= 3.5 MPa = 3.5 N/mm2 and modular ratio S

C

E
E

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 18.

We know that area of concrete,

AC = 50,000 – 500 = 49,500 mm2

and stress in steel,

σS = S

C

E
E  × σC = 18 × 3.5 = 63 N/mm2

∴ Safe load, the column can carry,
P = (σS . AS) + (σC . AC) = (63 × 500) + (3.5 × 49,500) N

= 204 750 N = 204.75 kN        Ans.

EXAMPLE 3.16.   A reinforced concrete column 500 mm × 500 mm in section is reinforced
with 4 steel bars of 25 mm diameter, one in each corner. The column is carrying a load of
1000 kN. Find the stresses in the concrete and steel bars. Take E for steel = 210 GPa and E for
concrete = 14 GPa.

SOLUTION.  Given :  Area of column = 500 × 500 = 2,50,000 mm2;  No. of steel bars (n) = 4 ;
Diameter of steel bars (d) = 25 mm ;  Load on column (P) = 1,000 kN = 1,000 × 103 N ;  Modulus of
elasticity of steel (ES) = 210 GPa and modulus of elasticity of concrete (EC) = 14 GPa.

Let σS = Stress in steel, and

σC = Stress in concrete.
We know that area of steel bars,

AS = 4 × 
4
π  × (d)2 mm2 ...(i)

Fig. 3.22
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= 4 × 
4
π  × (25)2 = 1963 mm2

∴ Area of concrete, AC = 250, 000 – 1963 mm2

= 248 037 mm2

We also know that stress in steel,

σS =
210
14

S
C

C

E
E

× σ =  × σC = 15 σC

...(ii)
and total load (P), 1,000 × 103 = (σS . AS) + (σC . AC)

= (15 σC × 1963) + (σC × 248 037) = 277 482 σC

σC =
31,000 10

277 482
×

 = 3.6 N/mm2 = 3.6 MPa        Ans.

and σS = 15 σC = 15 × 3.6 = 54 MPa        Ans.

EXAMPLE 3.17.  A reinforced concrete circular column of 400 mm diameter has 4 steel bars
of 20 mm diameter embeded in it. Find the maximum load which the column can carry, if the
stresses in steel and concrete are not to exceed 120 MPa and 5 MPa respectively. Take modulus
of elasticity of steel as 18 times that of concrete.

SOLUTION.  Given :  Diameter of column (D) = 400 mm ;  No. of reinforcing
bars = 4 ;  Diameter of bars (d) = 20 mm ;  Maximum stress in steel(σS(max))
= 120 MPa = 120 N/mm2 ;  Maximum stress in concrete (σC(max)) = 5 MPa
= 5 N/mm2 and modulus of elasticity of steel (ES) = 18 EC.

We know that total area of the circular column.

= 2( )
4 4

Dπ π× =  × (400)2 = 125 660 mm2

and area of reinforcement (i.e., steel),

AS = 4 × 
4
π  × (d)2 = 4 × 

4
π

 × (20)2 mm2

= 1257 mm2

∴ Area of concrete,

AC = 125 660 – 1257 = 124 403 mm2

First of all let us find out the maximum stresses developed in the steel and concrete. We know
that if the stress in steel is 120 N/mm2, then stress in the concrete.

σC =
1

18
C

S
S

E
E

× σ =  × 120 = 6.67 N/mm2 ...(i)

It is more than the stress in the concrete (i.e., 5 N/mm2). Thus these stresses are not accepted.
Now if the stress in concrete is 5 N/mm2, then stress in steel,

σS = S

C

E
E

 × σC = 18 × 5 = 90 N/mm2 ...(ii)

It is less than the stress is steel (i.e., 120 N/mm2). It is thus obvious that stresses in concrete and
steel will be taken as 5 N/mm2 and 90 N/mm2 respectively. Therefore maximum load, which the
column can carry.

P = (σC . AC) + (σS . AS) = (5 × 124 403) + (90 × 1257) N

= 735 150 N = 735.15 kN        Ans.

Fig. 3.23

Fig. 3.24
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EXAMPLE 3.18.  A load of 270 kN is carried by a short concrete column 250 mm × 250 mm in
size. The column is reinforced with 8 bars of 16 mm diameter. Find the stresses in concrete and
steel, if the modulus of elasticity for the steel is 18 times that of concrete.

If the stress in concrete is not to exceed 5 MPa, find the area of steel required, so that the
column may carry a load of 500 kN.

SOLUTION.  Given :  Load on column (P1) = 270 kN = 270 × 103 N ;
Area of column = 250 × 250 = 62 500 mm2, No. of reinforcing bars = 8 ;
Diameter of reinforcing bars (d) = 16 mm ;  Modular ratio (ES / EC) = 18 ;
Maximum stress in concrete (σC) = 5 MPa and load that column may carry
(P2) = 500 kN = 500 × 103 N.

Stresses in concrete and steel when the column carries a load of 270 kN
Let σC = Stress in concrete, and

σS = Stress in steel.

We know that area of reinforcement (i.e., steel)

AS = 8 × 
4
π

 × (d)2 = 8 × 
4
π

 × (16)2

= 1608 mm2

∴ Area of concrete AC = 62 500 – 1608 = 60 892 mm2

We also know that stress in steel,

σS = S

C

E
E

 × σC = 18 σC ... 18S

C

E
E

⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

and total load (P1),

270 × 103 = (σS . AS) + (σC . AC)

= (18 σC × 1608) + (σC × 60 892) = 89 836 σC

∴ σC =
3270 10

89 836
×

 = 3.0 N/mm2 = 3.0 MPa        Ans.

and σS = 18 × 3.0 = 54.0 MPa        Ans.
Area of steel required, so that the column may carry a load of 500 kN

Let AS1 = Area of steel required, if the stress in concrete (σC) is not to
exceed 5 MPa (i.e., 5 N/mm2)

∴ Area of concrete,
AC1 = 62 500 – AS1

and total load (P2)

500 × 103 = (σS . AS1) + (σC . AC1)

= [(18 × σC) × AS1] + [σC × (62 500 – AS1)]

= [18 × 5 × AS1] + [5 × (62 500 – AS1)]

= 90 AS1 + (312.5 × 103) – 5 AS1

= (312.5 × 103) + 85 AS1

∴ 85 AS1 = (500 × 103) – (312.5 × 103) = 187.5 × 103

or AS1 =
3187.5 10

85
×

 = 2 206 mm2        Ans.

Fig. 3.25
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EXERCISE 3.3

1. A reinforced concrete column of 300 mm diameter contain 4 bars of 22 mm diameter. Find the
total load, the column can carry, if the stresses in steel and concrete is 50 MPa and 3 MPa
respectively. [Ans. 283.5 kN]

2. A concrete column of 350 mm diameter is reinforced with four bars of 25 mm diameter. Find
the stress in steel when the concrete is subjected to a stress of 4.5 MPa. Also find the safe load
the column can carry. Take ES/EC = 18. [Ans. 81 MPa; 583 kN]

3. A reinforced concrete column 300 mm × 300 mm has four reinforcing bars of 20 mm diameter
one in each corner. When the column is loaded with 600 kN weight, find the stresses developed
in the concrete and steel. Take ES/EC = 15. [Ans. 5.58 MPa ;  83.7 MPa]

QUESTIONS

1. Define the term bars of varying sections.

 2. How will you apply the principle of superposition in a stepped bar ?
3. Obtain a relation for the elongation of a uniformly circular tapering section.

4. Describe the procedure for finding out the stresses in a composite bar.

5. What is a composite section ? Explain the procedure for finding the stresses developed, when a
composite section is subjected to an axial load.

MULTIPLE CHOICE QUESTIONS

1. The total change in length of a bar of different sections is equal to the

(a) sum of changes in the lengths of different sections
(b) average of changes in the lengths of different sections

(c) difference of changes in the lengths of different sections

(d) none of these
2. A circular bar of length (l) uniformly tapers from diameter (d1) at one end to diameter (d2) at the

other. If the bar is subjected to an axial tensile load (P), then its elongation is equal to

(a)
Pl
AE

(b)
1 2

Pl
A A E

(c)
1 2

4Pl
E d dπ (d)

1 24
Pl

E d dπ

3.  The maximum stress produced in a bar of tapering sections is at
(a) larger end (b) smaller end (c) middle (d) anywhere

 4. In a composite section, the number of different materials is

(a) one only (b) two only (c) more than two (d) all of these
5. A composite section, contains 4 different materials. The stresses in all the different materials

will be

(a) zero (b) equal

(c) different (d) in the ratio of their areas.

ANSWERS

1. (a) 2. (c) 3. (b) 4. (c) 5. (c)
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Structures Supporting a Load.

5. Stresses in Composite
Structures of Equal Lengths.

6. Stresses in Composite
Structures of Unequal Lengths.

7. Stresses in Nuts and Bolts.

4.1. Introduction
In the previous chapters, we have been

discussing the cases, where simple equations of
statics were sufficient to solve the examples. But,
sometimes, the simple equations are not sufficient
to solve such problems. Such problems are called
statically indeterminate problems and the
structures are called statically indeterminate
structures.

For solving statically indeterminate
problems, the deformation characteristics of the
structure are also taken into account alongwith
the statical equilibrium equations. Such
equations, which contain the deformation
characteristics, are called compatibility equations.
The formation of such compatibility equations
needs lot of patience and consideration. The

4C h a p t e r
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solution of such statically indeterminate structures is somewhat different than the solution of simple
sections and varying sections as discussed in chapters 2 and 3. So we have to adopt some indirect
methods also for solving problems on statically indeterminate structures.

4.2. Types of Statically Indeterminate Structures
Though there are many types of statically indeterminate structures in the field of Strength of

Materials yet the following are important from the subject point of view :

1. Simple statically indeterminate structures.

2. Indeterminate structures supporting a load.

3. Composite structures of equal lengths.

4. Composite structures of unequal lengths.

Now we shall study the procedures for the stresses and strains in the above mentioned indeterminate
structures in the following pages. In order to solve the above mentioned types of statically indeterminate
structures, we have to use different types of compatible equations.

4.3. Stresses in Simple Statically Indeterminate Structures
The structures in which the stresses can be obtained by forming two or more equations are called

simple statically indeterminate structures. The stresses in such structures may be found out with the
help of two or three compatible equations.

EXAMPLE 4.1. A square bar of 20 mm side is held between two rigid plates and loaded by
an axial force P equal to 450 kN as shown in Fig. 4.1.

Fig. 4.1 Fig. 4.2

Find the reactions at the ends A and C and the extension of the portion AB. Take E = 200 GPa.

SOLUTION.  Given :  Area of bar (A) = 20 × 20 = 400 mm2 ;  Axial force (P) = 450 kN = 450 × 103

N ;  Modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2 ;  Length of AB (lAB) = 300 mm and
length of BC (lBC) = 200 mm.

Reaction at the ends
Let RA = Reaction at A, and

RC = Reaction at C.

Since the bar is held between the two rigid plates A and C, therefore, the upper portion will be
subjected to tension, while the lower portion will be subjected to compression as shown in Fig. 4.2.
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Moreover, the increase of portion AB will be equal to the decrease of the portion BC.
We know that sum of both the reaction is equal to the axial force, i.e.,

RA + RC = 450 × 103 ...(i)

Increase in the portion AB,

δlAB =
300×=A AB AR l R

A E A E

and decrease in the portion BC,

δlBC =
200×=C BC CR l R

A E A E
...(ii)

Since the value δlAB is equal to that of δlBC, therefore equating the equations (ii) and (iii),

300×AR
A E

=
200×CR

A E

RC =
300

200
AR ×

 = 1.5 RA

Now substituting the value of RC in equation (ii),
RA + 1.5 RA = 450          or          2.5 RA = 450

∴ RA =
450
2.5

 = 180 kN        Ans.

and RC = 1.5 RA = 1.5 × 180 = 270 kN        Ans.
Extension of the portion AB

Substituting the value of RA in equation (ii)

δAB =
3

3

300 (180 10 ) 300

400 (200 10 )

× × ×=
× ×

AR
A E

 = 0.675 mm        Ans.

EXAMPLE 4.2. An aluminium bar 3 m long and 2500 mm2 in cross-section is rigidly fixed
at A and D as shown in Fig. 4.3.

Fig. 4.3

Determine the loads shared and stresses in each portion and the distances through which the
points B and C will move. Take E for aluminium as 80 GPa.

SOLUTION.  Given :  Total length of bar (L) = 3 m ;  Area of cross-section A = 2500 mm2 ;
Modulus of elasticity (E) = 80 GPa = 80 × 103 N/mm2 and length of portion AB (lAB) = lBC = lCD = 1
m = 1 × 103 mm.

Loads shared by each portion
Let PAB = Load shared by the portion AB,

PBC = Load shared by the portion BC and

PCD = Load shared by the portion CD.
Since the bar is rigidly fixed at A and D, therefore the portion AB will be subjected to tension,

while the portions BC and CD will be subjected to compression as shown in Fig. 4.4. Moreover,
increase in the portion AB will be equal to the sum of the decreases in the portions BC and CD.



50 � Strength of Materials

Fig. 4.4

From the geometry of the bar, we find that
PAB + PBC = 200 or PAB = 200 – PBC ...(i)

and PCD – PBC = 125 or PCD = 125 + PBC ...(ii)

We know that increase in the length of portion AB,

δlAB =
3(1 10 )×=AB AB ABP l P

A E A E ...(iii)

Similarly, decrease in the length of portion BC,

δlBC =
3(1 10 )×=BC BC BCP l P

A E A E ...(iv)

and decrease in the length of portion CD,

δlCD =
3(1 10 )×=CD CD CDP l P

A E A E ...(v)

Since the value of δlAB is equal to δlBC + δlCD, therefore

3(1 10 )× ×ABP
A E

=
3 3(1 10 ) (1 10 )× × × ×+BC CDP P

A E A E

∴ PAB = PBC + PCD

Now substituting the values PAB and PCD from equations (i) and (ii) in the above equation,

(200 – PBC) = PBC + (125 + PBC)

∴ 3 PBC = 200 – 125 = 75 kN

or PBC =
75
3  = 25 kN

∴ PAB = 200 – PBC = 200 – 25 = 175 kN        Ans.
and PCD = 125 + PBC = 125 + 25 = 150 kN        Ans.
Stresses in each portion

We know that stress in AB,

σAB =
3175 10

2500
ABP
A

×=  = 70 N/mm2 = 70 MPa (tension)        Ans.

Similarly, σBC =
325 10

2500
BCP
A

×=  = 10 N/mm2 = 10 MPa (compression)    Ans.
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and σCD =
3150 10

2500
CDP
A

×=  = 60 N/mm2 = 60 MPa (compression)  Ans.

Distance through which the points B and C will move
Substituting the value of PAB in equation (iii), we get

δlAB =
3 3

3

175 10 (1 10 )

2500 (80 10 )

× × × ×=
× ×

AB ABP l
A E

 = 0.875 mm        Ans.

and now substituting the value of PCD in equation (iv), we get

δlCD =
3 3

3

(150 10 ) (1 10 )

2500 (80 10 )

× × × ×=
× ×

CD CDP l
A E

 = 0.75 mm        Ans.

EXAMPLE 4.3.  A circular steel bar ABCD, rigidly fixed at A and D is subjected to axial
loads of 50 kN and 100 kN at B and C as shown in Fig. 4.5.

Fig. 4.5

Find the loads shared by each part of the bar and displacements of the points B and C. Take E
for the steel as 200 GPa.

SOLUTION.  Given :  Axial load at B (P1) = 50 kN = 50 × 103 N ;  Axial load at C (P2) =100 kN =
100 × 103 N ;  Diameter of AB (DAB) = 25 mm ; length of AB (lAB) = 300 mm ;  Diameter of BC (DBC)
= 50 mm ;  Length of BC (lBC) = 400 mm ;  Diameter of CD (DCD) = 75 mm ;  Length of CD (lCD) =
500 mm and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Loads shared by each part of the bar
Let PAB = Load shared by AB,

PBC = Load shared by BC, and

PCD = Load shared by CD.

We know that area of the bar AB,

AAB =
4
π

 × (DAB)2 = 
4
π

 × (25)2 = 491 mm2

Similarly, area of the bar BC,

ABC =
4
π

 × (DBC)2 = 
4
π

 × (50)2 = 1964 mm2

and area of the bar CD,

ACD =
4
π

 × (DCD)2 = 
4
π

 (75)2 = 4418 mm2

Since the bar is rigidly fixed at A and D, therefore, the portion AB will be subjected to tension,
while the portions BC and CD will be subjected to compression as shown in Fig. 4.6. Moreover,
increase in the length AB is equal to the sum of decreases in the portions BC and CD.
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Fig. 4.6

From the geometry of the bar, we find that

PAB + PBC = 50 or PAB = 50 – PBC ...(i)

and PCD – PBC = 100 or PCD = 100 + PBC ...(ii)
We know that increase in the length of portion AB,

δlAB = 3

300

491 (200 10 )

×=
× ×

AB AB AB

AB

P l P
A E  = 3.05 × 10–6 PAB  mm ...(iii)

Similarly, δlBC = 3

400

1964 (200 10 )

×=
× ×

BC BC BC

BC

P l P
A E

 = 1.02 × 10–6 PBC  mm ...(iv)

and δlCD = CD CD

CD

P l
A E

 = 3

500

4418 (200 10 )
CDP ×
× ×

 = 0.57 × 10–6 PCD  mm ...(v)

Since the value of δlAB is equal to δlBC + δlCD, therefore

3.05 × 10–6 PAB = 1.02 × 10–6 PBC + 0.57 × 10–6 PCD

∴ 305 PAB = 102 PBC + 57 PCD

Now substituting the values of PAB and PCD from equations (i) and (ii) in the above equation,

305 (50 – PBC) = 102 PBC + 57 (100 + PBC)

15 250 – 305 PBC = 102 PBC + 5700 + 57 PBC

∴ 464 PBC = 9 550          or          
9550
464

=BCP  = 20.6 kN        Ans.

Similarly, PAB = 50 – PBC = 50 – 20.6 = 29.4 kN        Ans.
and PCD = 100 + PBC = 100 + 20.6 = 120.6 kN        Ans.
Displacements of the points B and C

Now substituting the value of PAB in equation (iii), we get
δlAB = 3.05 × 10–6 PAB = 3.05 × 10–6 × (29.4 × 103) = 0.90 mm        Ans.

and now substituting the value of PCD in equation (v), we get

δlCD = 0.57 × 10–6 × PCD = 0.57 × 10–6 × (120.6 × 103) = 0.07 mm Ans.
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EXERCISE 4.1

1. An alloy bar 800 mm long and 200 mm2 in cross-section is held between two rigid plates and is
subjected to an axial load of 200 kN as shown in Fig. 4.7.

Fig. 4.7

Find the reactions at the two ends A and C as well as extension of the portion AB.

[Ans. 125 kN ; 75 kN ; 0.094 mm]
2. A bar ABC fixed at both ends A and C is loaded by an axial load (P) at C. If the distances AB and

BC are equal to a and b respectively then find the reactions at the ends A and C.

3. An axial force of 20 kN is applied to a steel bar ABC which is fixed at both ends A and C as
shown in Fig. 4.8.

Fig. 4.8

Determine the reactions at both the supports and stresses developed in two parts of the bar. Take
E = 200 GPa. [Ans. RA = RC = 10 kN ; σAB = 50 MPa (C); σBC = 100 MPa (T)]

4. A prismatic bar ABCD has built-in ends A and D. It is subjected to two point loads P1 and P2
equal to 80 kN and 40 kN at B and C as shown in Fig. 4.9.

Fig. 4.9

Find the reactions at A and D. [Ans. 70 kN ; 50 kN]

4.4. Stresses in Indeterminate Structures Supporting a Load
Sometimes, we come across a set of two or more members supporting a load. In such cases, the

deformation of all the members will be the same. If the members are of different cross-sections or
have different modulus of elasticity, then the stresses developed in all the members will be different.

EXAMPLE 4.4. A block shown in Fig. 4.10 weighing 35 kN is supported by three wires. The
outer two wires are of steel and have an area of 100 mm2 each, whereas the middle wire of
aluminium and has an area of 200 mm2.
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Fig. 4.10

If the elastic modulii of steel and aluminium are 200 GPa and 80 GPa respectively, then
calculate the stresses in the aluminium and steel wires.

SOLUTION.  Given:  Total load (P) = 35 kN = 35 × 103 N ;  Total area of steel rods (AS) = 2 × 100
= 200 mm2 ;  Area of aluminium rod (AA) = 200 mm2 ;  Modulus of elasticity of steel (ES) = 200 GPa
= 200 × 103 N/mm2; Modulus of elasticity of aluminium (EA) = 80 GPa = 80 × 103 N/mm2 and load
supported by wires (P) = 35 kN = 35 × 103 N

Let σS = Stress in steel wires,

σA = Stress in aluminium wire and

l = Length of the wires.
We know that increase in the length of steel wires,

δlS = 3200 10
S S S

S

l l
E

σ × σ ×=
×

Similarly, δlA = 380 10
A A A

A

l l
E

σ × σ ×=
×

Since increase in the lengths of steel and aluminium wires is equal, therefore equating equations
(i) and (ii), we get

3200 10
S lσ ×
×

= 380 10
A lσ ×
×

          or          200
80Sσ =  × σA = 2.5 σA

We also know that load supported by the three wires (P),

35 × 103 = (σS . AS) + (σA . AA) = (2.5 σA × 200) + (σA × 200) = 700 σA

∴ σA =
335 10

700
×

 = 50 N/mm2 = 50 MPa        Ans.

and σS = 2.5 σA = 2.5 × 50 = 125 MPa        Ans.

EXAMPLE 4.5. A steel rod of cross-sectional area 800 mm2 and two brass rods each of cross-
sectional area 500 mm2 together support a load of 25 kN as shown in Fig. 4.11.

Fig. 4.11

Calculate the stresses in the rods. Take E for steel as 200 GPa and E for brass as 100 GPa.

SOLUTION.  Given :  Area of one steel rod, (AS) = 800 mm2 ;  Total Area of two brass rods (AB) = 2 × 500
= 1000 mm2 ;  Total load (P) = 25 kN = 25 × 103 N ;  Modulus of elasticity of steel (ES) = 200 GPa : Modulus
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of elasticity of brass (EB) = 100 GPa ;  Length of steel bar (lS) = 250 mm and length of brass rod (lB) = 200 mm.
Let σS = Stress in steel rod and

σB = Stress in brass rod.

We know that decrease in the length of the steel rod due to stress,

δlS = 3

250

200 10

σ σ ×=
×

S S S

S

l
E  = 1.25 × 10–3 σS

and decrease in the length of the brass rods due to stress,

δlB = 3

200

100 10

σ σ ×=
×

B B B

B

l
E  = 2 × 10–3 σB

Since the value of δlS is equal to that of δlB, therefore equating equations (i) and (ii), we get

1.25 × 10–3 σS = 2 × 10–3 σB          or          
2

1.25Sσ =  × σB = 1.6 σB

We also know that total load shared by all the three rods (P),

25 × 103 = σS AS + σB AB = (1.6 σB × 800) + (σB × 1000) = 2280 σB

∴ σB =
325 10

2280
×

 = 11.0 N/mm2 = 11.0 MPa        Ans.

and σS = 1.6 σB = 1.6 × 11.0 = 17.6 MPa        Ans.

EXAMPLE 4.6.    A load of 80 kN is jointly supported by three rods of 20 mm diameter as
shown in Fig. 4.12.

Fig. 4.12

The rods are adjusted in such a way that they share the load equally. If an additional load of
50 kN is added, find the final stresses in steel and copper. Take E for copper as 100 GPa and for
steel as 200 GPa.

SOLUTION.  Given :  Total load (P1) = 80 kN = 80 × 103 N ;  Diameter of each rod (d) = 20 mm ;
Additional load (P2) = 50 kN = 50 × 103 N ;  Modulus of elasticity of copper (EC) = 100 GPa = 100
× 103 N/mm2 and modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2.

We know that total area of two copper rods

AC = 2 × 
4
π

 × (d )2 = 2 × 
4
π

 × (20)2 = 200 π mm2

and area of one steel rod

AS =
4
π

 × (d )2 = 
4
π

 × (20)2 = 100 π mm2

First of all consider the 80 kN load only, which is shared equally by all the three rods. We know
that initial stress in each rod

=
380 10

3 100
×

× π  = 84.9 N/mm2 = 84.9 MPa ...(i)

Now consider an additional load of 50 kN, which is added to the existing load of 80 kN. We
know that this additional load will cause some additional stresses in all the three rods.
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Let σC = Additional stress in copper rods, and
σS = Additional stress in steel rod

We know that increase in the length of copper rods due to stress,

δlC =
3

3

(4 10 )

100 10
C C C

C

l
E

σ × σ × ×=
×

 = 0.04 σC ...(ii)

and increase in the length of steel rod due to stress,

δlS =
3

3

(3 10 )

200 10
S S S

S

l
E

σ × σ × ×=
×

 = 0.015 σS ...(iii)

Since the value of δlC is equal to that of δlS, therefore equating the equations (ii) and (iii)
0.04 σC = 0.015 σS         or         σC = 0.375 σS

We also know that additional load supported by the three rods (P2)

50 × 103 = (σS . AS) + (σC . AC) = (σS × 100 π) + (0.375 σS × 200 π)
= 175 π σS

or σS =
350 10

175
×

π  = 90.9 N/mm2 = 90.9 MPa

and σC = 0.375 σS = 0.375 × 90.9 = 34.1 MPa
∴ Final stress in the steel

= 84.9 + 90.9 = 175.8 MPa        Ans.
and final stress in copper = 84.9 + 34.1 = 119.0 MPa        Ans.

EXAMPLE 4.7.     Two vertical rods one of steel and the other of copper are rigidly fastened at
their upper end at a horizontal distance of 200 mm as shown in Fig. 4.13.

The lower ends support a rigid horizontal bar, which carries a load of 10 kN. Both the rods are
2.5 m long and have cross-sectional area of 12.5 mm2. Where should a load of 10 kN be placed
on the bar, so that it remains horizontal after loading? Also find the stresses in each rod. Take ES
= 200 GPa and EC = 110 GPa. Neglect bending of the cross-bar.

SOLUTION.  Given :  Distance between the bars = 200 mm ;  Total load (P) = 10 kN = 10 ×
103 N ;  Length of steel rod (lS) = lC = 2.5 m = 2.5 × 103 mm ;  Area of steel rod (AS) = AC = 12.5 mm2;
Modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2 and modulus of elasticity of copper
(EC) = 110 GPa = 110 × 103 N/mm2.

Fig. 4.13
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Position of the load
Let x = Distance between the load and steel rod in mm

As a matter of fact, the load of 10 kN will be shared by both the rods in such a way that they cause
equal extension.

Let PS = Load shared by the steel rod, and
PC = Load shared by the copper rod.

∴ PS + PC = 10 kN ...(i)

We know that extension of the steel rod,

δlS =
3

3

(2.5 10 )
100012.5 (200 10 )

× ×= =
× ×

S S S

S S

P l P P
A E

...(ii)

and extension of the copper rod,

δlC =
3

3

(2.5 10 )
55012.5 (110 10 )

× ×= =
× ×

C C C

C C

P l P P
A E

...(iii)

Since both the extensions are equal, therefore equating equations (ii) and (iii)

1000
SP

= 550
CP

           or          1000 20
550 11

S

C

P
P

= = (iv)

Now taking moments of the loads about the steel bar and equating the same,
10 × x = PC × 200 or (PS + PC) x = 200 PC

PS.x + PC.x = 200 PC or PS.x = 200 PC – PC.x = PC (200 – x)

∴ S

C

P
P

=
200 x

x
−

...(v)

Now equating two values of S

C

P
P

 from equations (iv) and (v),

20
11

=
200 x

x
−

          or          20x = 2200 – 11x

∴ 31x = 2200       or       
2200

31
x =  = 71 mm        Ans.

Stresses in each rod
From equation (iv), we find that

S

C

P
P

=
20
11

       or       11 PS – 20 PC – 20 (10 – PS) = 200 – 20 PS

∴ 31 PS = 200       or       
200
31SP =  = 6.45 kN = 6.45 × 103 N

and PC = 10 – PS = 10 – 6.45 = 3.5 kN = 3.5 × 103 N

∴ Stress in steel rod,

σS =
36.45 10

12.5
S

S

P
A

×=  = 516 N/mm2 = 516 MPa        Ans.

and stress in copper rod, σC =
33.5 10

12.5
×=C

C

P
A

 = 280 N/mm2 = 280 MPa        Ans.
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EXAMPLE 4.8.  A load of 5 kN is suspended by ropes as shown in Fig. 4.14 (a) and (b). In
both the cases, the cross-sectional area of the ropes is 200 mm2 and the value of E is 1.0 GPa.

Fig. 4.14

In (a) the rope ABC is continuous over a smooth pulley, from which the load is suspended. In
(b) the ropes AB and CB are separate ropes joined to a block, from which the load is suspended
in such a way, that both the ropes are stretched by the same amount. Determine, for both the
cases, stresses in the ropes and the deflections of the pulley and the block due to the load.

SOLUTION.  Given :  Total load (P) = 5 kN = 5 × 103 N ;  Length of AB (lAB) = 5 m = 5 × 103 mm;
Length of BC (lBC) = 7 m = 7 × 103 mm ;  Area of each rope (A) = 200 mm2 and modulus of elasticity
(E) = 1.0 GPa = 1.0 × 103 N/mm2.

First case
We know that the load of 5 kN is suspended from the pulley, therefore load shared by both the

ropes is equal. Or in other words, load shared by each rope.

P1 =
35 10

2
×

 = 2.5 × 103 N

∴ Stress in the ropes, σ =
3

1 2.5 10
200

P
A

×=  = 12.5 N/mm2 = 12.5 MPa        Ans.

and total elongation of the rope ABC,

δl =
11 BCAB P lP l

AE AE
=

=
3 3 3 3

3 3

(2.5 10 ) (5 10 ) (2.5 10 ) (7 10 )

200 (1.0 10 ) 200 (1.0 10 )

× × × × × ×+
× × × ×

= 62.5 + 87.5 = 150 mm

∴ Deflection of the pulley

=
150

2
 = 75 mm        Ans.

Second case
Let σAB = Stress in the rope AB, and

σBC = Stress in the rope BC.
We know that deflection of the rope AB,

δlAB =
3

3

. (5 10 )

1 10
AB AB ABl

E
σ σ × ×=

×
 = 5 σAB
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and deflection of the rope BC,

δlBC =
3

3

. (5 10 )

1 10
BC BC BCl

E
σ σ × ×=

×
 = 7 σAB

Since both the deflections are equal, therefore equating the value of (i) and (ii),

5 σAB = 7 σBC or σAB = 
7
5  × σBC

We also know that the load (P) of 5 kN is shared by both the ropes, therefore load (P)

5 × 103 = σAB × A + σBC × A = ( )7 200
5 BC× σ ×  + (σBC × 200)

= 480 σBC

∴ σBC =
35 10

480
×

 = 10.4 N/mm2 = 10.4 MPa        Ans.

and σAB =
7 7 10.4
5 5BCσ = ×  14.56 MPa        Ans.

Now substituting the value of σAB is equation (i),

δlAB = 5 σAB = 5 × 14.56 = 72.8 mm        Ans.

NOTE.  The deflection of the block may also be found out by equating the value of σBC in equation (ii),
δlBC = 7 σBC = 7 × 10.4 = 72.8 mm        Ans.

EXERCISE 4.2

1. Three long parallel wires equal in length are supporting a rigid bar connected at their bottoms as
shown in Fig. 4.15. If the cross-sectional area of each wire is 100 mm2, calculate the stresses in
each wire. Take EB = 100 GPa and ES = 200 GPa. [Ans. σB = 25 MPa ; σS = 50 MPa]

Fig. 4.15 Fig. 4.16

2. Three wires made of copper, zinc and aluminium are of equal lengths and have cross-sectional
areas of 100, 150 and 200 square mm respectively. They are rigidly connected at their ends as
shown in Fig. 4.16. If this compound member is subjected to a longitudinal pull of 220 kN,
estimate the load carried on each wire. Take EC = 130 GPa, EZ = 100 GPa and EA = 80 GPa.

[Ans. PC = 65 kN, PZ = 75 kN, PA = 80 kN]
3. Two steel rods and one copper rod each of 20 mm diameter together support a load of 50 kN as

shown in Fig.4.17. Find the stresses in each rod. Take E for steel and copper as 200 GPa and
100 GPa respectively. [Ans. σC = 39.8 MPa ; σS = 59.7 MPa]
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Fig. 4.17 Fig. 4.18

4. Two vertical wires are suspended at a distance of 500 mm apart as shown in Fig. 4.18. Their
upper ends are firmly secured and their lower ends support a rigid horizontal bar, which carries
a load of 200 N. The left hand wire has a diameter of 1.6 mm and is made of copper, and the
right hand wire has a diameter of 0.9 mm and is made of steel. Both wires, initially, are 4.5
metres long. Determine :
(a) Position of the line of action of the load, if both the wires extend by the same amount.

(b) Slope of the rigid wire, if the load is hung at the centre of the bar. Neglect weight of the bar.

Take E for copper as 100 GPa and E for steel as 200 GPa. [Ans. 170 mm ; 0.15°]

4.5. Stresses in Composite Structures of Equal Lengths
We have already discussed in Art 3.6 the procedure for stresses in the bars of composite sections.

The same principle can be extended to the statically indeterminate structures also. Though there are
many types of such structures, yet a rod passing axially through a pipe is an important structure from
the subject point of view.

EXAMPLE 4.9.    A mild steel rod of 20 mm diameter and 300 mm long is enclosed centrally
inside a hollow copper tube of external diameter 30 mm and internal diameter 25 mm. The ends
of the rod and tube are brazed together, and the composite bar is subjected to an axial pull of
40 kN as shown in Fig. 4.19.

Fig. 4.19

If E for steel and copper is 200 GPa and 100 GPa respectively, find the stresses developed in
the rod and the tube.

SOLUTION.  Given :  Diameter of steel rod = 20 mm ;  External diameter of copper tube = 30 mm;
Internal diameter of copper tube = 25 mm ;  Total load (P) = 40 kN = 40 × 103 N ;  Modulus of
elasticity of steel (ES) = 200 GPa and modulus of elasticity of copper (EC) = 100 GPa.

Let σS = Stress developed in the steel rod and

σC = Stress developed in the copper tube.
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We know that area of steel rod,

AS =
4
π

 × (20)2 = 314.2 mm2

and area of copper tube,

AC =
4
π

 [(30)2 – (25)2] = 216 mm2

We also know that stress in steel,

σS =
200
100

S
C

C

E
E

× σ =  × σC = 2 σC

and total load (P), 40 × 103 = (σS.AS) + (σC.AC)

= (2σC × 314.2) + (σC × 216) = 844.4 σC

∴ σC =
340 10

844.4
×

 = 47.4 N/mm2 = 47.4 MPa        Ans.

and σS = 2 σC = 2 × 47.4 = 94.8 MPa        Ans.

EXAMPLE 4.10.  A composite bar is made up of a brass rod of 25 mm diameter enclosed in a
steel tube of 40 mm external diameter and 30 mm internal diameter as shown in Fig. 4.20. The
rod and tube, being coaxial and equal in length, are securely fixed at each end. If the stresses in
brass and steel are not to exceed 70 MPa and 120 MPa respectively, find the load (P) the com-
posite bar can safely carry.

Fig. 4.20

Also find the change in length, if the composite bar is 500 mm long. Take E for steel tube as
200 GPa and brass rod as 80 GPa respectively.

SOLUTION.  Given : Diameter of brass rod = 25 mm ; External diameter of steel tube = 40 mm ;
Internal diameter of steel tube = 30 mm ; Maximum stress in brass (σB(max)) = 70 MPa = 70 N/mm2 ;
Maximum stress in steel (σS(max)) = 120 MPa = 120 N/mm2 ; Length of brass rod (lB) = lS = 500 mm;
Modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2 and modulus of elasticity of brass
(EB) = 80 GPa = 80 × 103 N/mm2.

Load the composite bar can safely carry
We know that area of brass rod,

AB =
4
π

 × (25)2 = 491 mm2

and area of steel tube, AS =
4
π

 × [(40)2 – (30)2] = 550 mm2
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We also know that as the brass rod and steel tube are securely fixed at each end, therefore strains
in both of them will be equal. i.e.,

εB = εS          or          SB

B SE E
σσ =

First of all, let us find out the maximum stresses in the brass rod and steel tube. We know that
when stress in the brass is 70 N/mm2 (maximum permissible), then stress in the steel tube,

σS = 200
80

S
B

B

E
E

× σ =  × 70 = 175 N/mm2

It is more than the permissible stress in the steel (which is given as 120 N/mm2). Therefore we
can not accept these values of stresses in brass and steel. Now when the stress in steel tube is 120 N/
mm2 (maximum permissible), then stress in the brass rod,

σB =
80
200

B
S

S

E
E

× σ =  × 120 = 48 N/mm2

It is less than the permissible stress in brass (which is given as 70 N/mm2). Thus we shall take the
stresses in the brass rod (σB) and steel tube (σS) as 48 N/mm2 and 120 N/mm2 respectively. Therefore
load which the composite bar can carry,

P = (σB.AB) + (σS.AS) = (48 × 491) + (120 × 550) N

= 89 570 N = 89.57 kN        Ans.
Change in length

We also know that change in length in the composite bar,

δl = 3

. 48 500

80 10
B B

B

ll
E E

σ ×σ ×= =
×

 = 0.3 mm        Ans.

NOTE.  The change in length of the composite bar may also be found out by the stress in steel from the relation :

δl = 3

120 500

200 10
S S

S

l
E

σ × ×=
×

 = 0.3 mm.

EXAMPLE 4.11.  A rigid bar AB is hinged at A and supported by a copper rod 2 m long and
steel rod 1 m long. The bar carries a load of 20 kN at D as shown in Fig. 4.21.

Fig. 4.21

If the cross-sectional areas of steel and copper rods are 200 mm2 and 400 mm2 respectively,
find the stresses developed in each rod. Take the values of E for steel and copper as 200 GPa and
100 GPa respectively.
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SOLUTION.  Given :  Length of copper rod (lC) = 2 cm = 2 × 103 mm ;  Length of steel rod (lS) =
1 m = 1 × 103 mm ;  Load (P) = 20 kN = 20 × 103 N ;  Area of steel rod (AS) = 200 mm2 ;  Area of
copper rod (AC) = 400 mm2 ;  Modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2 and
Modulus of elasticity of copper (EC) = 100 GPa = 100 × 103 N/mm2.

 Let PS = Load shared by the steel rod, and

PC = Load shared by the copper rod.

Taking moments of the loads about A and equating the same,
(PS × 1) + (PC × 3) = 20 × 4

or PS + 3PC = 80 ...(i)

We know that deformation of the steel rod due to the load (PS),

δlS =
3

3

. (1 10 )
. 200 (200 10 )

S S S

S S

P l P
A E

× ×=
× ×

 = 0.025 × 10–3 PS ...(ii)

and deformation of the copper rod due to the load (PC),

δlC =
3

3

. (2 10 )
. 400 (100 10 )

C C C

C C

P l P
A E

× ×=
× ×  = 0.05 × 10–3 PC ...(iii)

From the geometry of the elongations of the steel rod and copper rod, we find that

1
Clδ

= 3
Clδ

or δlC = 3δlS

Substituting the values of δlS ans δlC from equations (ii) and (iii) in the above equation,

0.05 × 10–3 PC = 3 × 0.025 × 10–3 PS         or           PC = 1.5 PS

and now substituting the value of PC in equation (i),

PS + 3 × (1.5 PS) = 80 or 5.5 PS = 80

∴ PS =
80
5.5  = 14.5 kN = 14.5 × 103 N

and PC = 1.5 PS = 1.5 × (14.5 × 103) = 21.75 × 103 N

We know that stress in steel rod,

σS =
314.5 10

200
S

S

P
A

×=  = 72.5 N/mm2 = 72.5 MPa        Ans.

and stress in copper rod,

σC =
321.75 10

400
C

C

P
A

×=  = 54.4 N/mm2 = 54.4 MPa        Ans.

4.6. Stresses in Composite Structures of Unequal Lengths
We have already discussed in the last article the procedure for stresses in composite section of

equal lengths. But sometimes, the length of one of the member is not equal to the other. In such cases,
some of the load (or force) is utilised in extending the member and making its length equal to the
other member. Now the remaining load is shared by both the members.

EXAMPLE 4.12.   A composite bar ABC, rigidly fixed at A and 1 mm above the lower support,
is subjected to an axial load of 50 kN at B as shown in Fig. 4.22.
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Fig. 4.22

If the cross-sectional area of the section AB is 100 mm2 and that of section BC is 200 mm2, find
the reactions at both the ends of the bar. Also find the stresses in both the section. Take
E = 200 GPa.

SOLUTION.  Given :  Length of AB (lAB) = 1 m = 1 × 103 mm ;  Area of AB (AAB) = 100 mm2;
Length of BC (lBC) = 2 m = 2 × 103 mm ;  Area of BC (ABC) = 200 mm2 ;  Axial load (P) = 50 kN = 50
× 103 N and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Reactions at both the ends of the bar
We know that as the bar is rigidly fixed at A and loaded at B, therefore, upper portion AB

is subjected to tensions. We also know that increase in length of the portion AB due to the load
at B.

δl =
3 3

3

. (50 10 ) (1 10 )
. 100 (200 10 )

× × ×=
× ×

AB

AB

P l
A E

 = 2.5 mm

From the geometry of the figure, we find that of increase in the length of the portion AB would
have been less than 1 mm (i.e., gap between C and lower support), then the lower portion of the bar
BC should not have been subjected to any stress. Now it will be interesting to know that as the
increase in length AB is 2.5 mm, therefore, first action of the 50 kN load will be to increase the length
AB by 1 mm, till the end C touches the lower support. And a part of the load will be required for this
increase. Then the remaining load will be shared by both the portions of the bar AB and BC of the bar.

Let P1 = Load required to increase 1 mm length of the bar AB,

We know that increase in length,

1 =
3

1 1
3

(1 10 )
. 100 (200 10 )

× × ×=
× ×

AB

AB

P l P
A E

 = 0.05 × 10–3 P1

∴ P1 = 3
1

0.05 10−×
= 20 × 103 N = 20 kN

and the remaining loas, which will be shared by the portion AB and CD

= 50 – 20 = 30 kN

Let RA = Reaction at A due to 30 kN load, and
RC = Reaction at C due to 30 kN load.

Thus, RA + RC = 30 kN = 30 × 103 N ...(i)
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We know that increase in length AB due to reaction RA (beyond 1 mm),

δl1 =
3

3

. (1 10 )
. 100 (200 10 )

A AB A

AB

R l R
A E

× ×=
× ×

 = 0.05 × 10–3 RA ...(ii)

and decrease in length BC due to reaction RC,

δl2 =
3

3

. (2 10 )
. 200 (200 10 )

C BC C

BC

R l R
A E

× ×=
× ×

 = 0.05 × 10–3 RC ...(iii)

Since δl1 is equal to δl2,  therefore equating equations (i) and (ii),

0.05 × 10–3 RA = 0.05 × 10–3 RC          or          RA = RC

Now substituting the value of RC in equation (i)

RA + RA = 30 or RA = RC = 
30
2

 = 15 kN

∴ Total reaction at A = (20 + 15) = 35 kN        Ans.
and total reaction at C = 15 kN        Ans.
Stresses in both the sections

We know that stress in the bar AB,

σAB =
335 10

100
×

 = 350 N/mm2 = 350 MPa        Ans.

and σBC =
315 10

200
×

 = 75 N/mm2 = 75 MPa        Ans.

EXAMPLE 4.13.  A solid steel bar 500 mm long and 50 mm diameter is placed inside an
aluminium tube 75 mm inside diameter and 100 mm outside diameter. The aluminium tube is 0.5
mm longer than the steel bar. An axial load of 600 kN is applied to the bar and cylider through
rigid plates as shown in Fig. 4.23.

Fig. 4.23

Find the stresses developed in the steel bar and aluminium tube. Assume E for steel as
200 GPa and E for aluminium is 70 GPa.

SOLUTION.  Given :  Length of steel bar (lS) = 500 mm ;  Diameter of steel bar (DS) = 50 mm;
Inside diameter of aluminium tube (dA) = 75 mm ;  Outside diameter of aluminium tube (DA) = 100
mm ;  Length of aluminium tube (lA) = 500 + 0.5 = 500.5 mm ;  Axial load (P) = 600 kN = 600 × 103

N ;  Modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2 and modulus of elasticity
aluminium (EA) = 70 × 103 N/mm2.
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We know that area of steel bar,

AS =
4
π

 × (DS)
2 = 

4
π

 × (50)3 = 1964 mm2

and area of aluminium tube,

AS =
4
π

 × [DA
2 – dA

2] = 
4
π

 × [(100)2 – (75)2] = 3436 mm2

We also know that as the aluminium tube is longer than the steel bar by 0.5 mm, therefore the load
will first come upon the tube. Therefore decrease in the length of the aluminium tube due to load,

δl =
3

3

. (600 10 ) (500.5)

. 3436 (70 10 )
A

A A

P l
A E

× ×=
× ×

 = 1.25 mm

From the geometry of the figure, we find that if the decrease in the length of the aluminium tube
would have been less than 0.5 mm (i.e., difference between the lengths of steel bar and aluminium
tube), then the steel bar should not have been subjected to any compressive load. Now it will be
interesting to know that as the decrease in the length of aluminium tube is 1.25 mm, therefore, first
action of the 600 kN load will be to decrease the length of the aluminium tube by 0.5 mm, till its
length becomes equal to that of the steel bar. And a part of the load will be required for this decrease.
Then the remaining load will be shared by both the aluminium tube and steel bar.

Let P1 = Load required to decrease 0.5 mm length of the aluminium
tube.

We know that decreases in length,

0.5 = 1 1
3

. 500.5

. 3436 (70 10 )
A

A A

P l P
A E

×=
× ×

 = 2.08 × 10–6 P1

or P1 = 6
0.5

2.08 10−×
 = 240 × 103 N = 240 kN

∴ Stress in the aluminium tube due to 240 kN load

=
3 3240 10 240 10

3436AA
× ×=  = 69.8 N/mm2

and the remaining load, which will be shared by both the aluminium tube and steel bar

= 600 – 240 = 360 kN = 360 × 103 N
Let σA = Stress developed in the aluminium tube due to 360 kN load

and

σS = Stress developed in the steel bar due to 360 kN load.

We know that stress in steel,

σS =
200
70

S
A

A

E
E

× σ =  × σA = 2.86 σA

and the load shared by both the aluminium tube and steel bar,

360 × 103 = (σS . AS) + (σA . AA)

= (2.86 σA × 1964) + σA × 3436) = 9053 σA

∴ σA =
3360 10

9053
×

 = 39.8 N/mm2
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and σS = 2.86 σA = 2.86 × 39.8 = 113.8 N/mm2 = 113.8 MPa        Ans.
∴ Total stress in aluminium tube

= 69.8 + 39.8 = 109.6 N/mm2 = 109.6 MPa        Ans.

EXERCISE 4.3

1. A composite bar is made up of a brass rod of 25 mm diameter enclosed in a steel tube of 40 mm
external diameter, and 35 mm internal diameter. The ends of the rod and tube are securely fixed.
Find the stresses developed in the brass rod and steel tube, when the composite bar is subjected
to an axial pull of 45 kN. Take E for brass as 80 GPa and E for steel as 200 GPa.

[Ans. 36.6 MPa ; 91.5 MPa]

2. A compound bar consists of a circular rod of steel of diameter 20 mm rigidly fitted into copper
tube of internal diameter of 20 mm and external diameter of 30 mm. If the composite bar is 750
mm long and is subjected to a compressive load of 30 kN, find the stresses developed in the
steel rod and copper tube. Take EC = 200 GPa and EA = 100 GPa. Also find the change in the
length of the bar. [Ans. 58.8 MPa, 29.4 MPa, 0.22 mm]

3. A uniform rigid block weighing 160 kN is to be supported on three bars as shown in Fig. 4.24.

Fig. 4.24

There is 4 mm gap between the block and the top of the steel bar. Find the stresses developed in
the bars. Take ES = 200 GPa and EA = 80 GPa. [Ans. σA = 148.9 MPa ; σS = 65.3 MPa]

4.7. Stresses in Nuts and Bolts
In our daily life, we use nuts and bolts to tighten the components of a machine or structure. It is

generally done by placing washers below the nuts as shown in Fig. 4.25.

Fig. 4.25

As a matter of fact, a nut can be easily tightened, till the space between the two washers becomes
exactly equal to the body placed between them. It will be interesting to know that if we further tighten
the nut, it will induce some load in the assembly. As a result of this, bolt will be subjected to some
tension, whereas the washers and body between them will be subjected to some compression. And the
induced load will be equally shared between the bolt and the body. Now consider an assembly con-
sisting of two nuts and a bolt alongwith a tube as shown in the figure.



68 � Strength of Materials

Let P = Tensile load induced in the bolt as a result of tightening the nut,
l = Length of the bolt,

A1 = Area of the bolt,

σ1 = Stress in the bolt due to induced load,
E1 = Modulus of elasticity for the bolt material.

A2, σ2, E2 =  Corresponding values for the tube

We know that as the tensile load on the bolt is equal to the compressive load on the tube, therefore
σ1 . A1 = σ2 . A2

∴ σ1 =
2

2
1

A
A

× σ Similarly, 1
2 1

2

A
A

σ × σ

and the total toad (P) = σ1 A1 + σ2 A2

We also know that increase in the length of the bolt due to tensile stress in it,

δl1 =
1

1

.l
E

σ
...(i)

and decrease in the length of the tube due to compressive stress in it,

δl2 =
2

2

.l
E

σ
...(ii)

∴ Axial advancement (i.e., movement) of the nut

= δl1 + δl2
EXAMPLE 4.14.  A solid copper rod 300 mm long and 40 mm diameter passes axially inside a

steel tube of 50 mm internal diameter and 60 mm external diameter. The composite bar is tightened
by using rigid washers of negligible thickness. Determine the stresses in copper rod and steel tube,
when the nut is tightened so as to produce a tensile load of 100 kN in the copper rod.

SOLUTION.  Given : Length of copper rod (l) = 300 mm ; Diameter of copper rod (DC) = 40 mm:
Internal diameter of steel tube (dS) = 50 mm ; External diameter of steel tube (DS) = 60 mm and tensile
load in copper rod (P) = 100 kN = 100 × 103 N.

Let σC = Stress in the copper rod and

σS = Stress in the steel rod.
We know that area of the copper rod,

AC =
4
π

 × (DC)2 = 
4
π

 × (40)2 = 400 π mm2

and area of the steel tube,

AS =
4
π

 × [DS
2 – dC

2] = 
4
π

 × [(60)2 – (50)2 = 275 π mm2

We also know that tensile load on the copper rod is equal to the compressive load on the steel
tube. Therefore stress in steel rod,

σS =
16400

275 11
C C

C C
S

A
A

σπ× σ = × σ =
π  = 1.455 σC

and load (P) 100 × 103 = (σC . AC) + (σS . AS) = (σC × 400 π) + (1.455 σC × 275 π)
= 800 π σC

∴ σC =
3100 10

800
×

π  = 39.8 N/mm2 = 39.8 MPa (tension)        Ans.

and σS = 1.455 σC = 1.455 × 39.8 N/mm2 = 57.9 N/mm2        Ans.
= 57.9 MPa (compression)        Ans.
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EXAMPLE 4.15.  A steel bolt of 500 mm length and 18 mm diameter passes coaxially through
a steel tube of the same length and 20 mm internal diameter and 30 mm external diameter. The
assembly is rigidly fixed at its both ends by washers. If one of the nut is tightened through 45°,
find the stresses developed in the steel bolt and steel tube. Take pitch of the threads as 2.4 mm and
E for the steel as 200 GPa.

SOLUTION.  Given :  Length of steel bolt (lb) = 500 mm ;  Diameter of steel bolt (Db) = 18 mm ;
Length of steel tube (lt) = 500 mm ; Internal diameter of steel tube (dt)= 20 mm ; External diameter of
steel tube (Dt) = 30 mm ;  Angle through which the nut is tightened = 45°;  Pitch = 2.4 mm and
modulus of elasticity of steel (E) = 200 GPa = 200 × 103 N/mm2.

Let σb = Stress developed in the steel bolt and

σt = Stress developed in the steel tube.
We know that area of the bolt,

Ab =
4
π

 × (Db)
2 = 

4
π

 × (18)2 = 81 π mm2

and area of tube, At =
4
π

 [Dt
2 – dt

2] = 
4
π

 × [(30)2 – (20)2] = 125 π mm2

We also know that tensile load on the steel bolt is equal to the compressive load on the steel tube.
Therefore stress in steel tube,

σt =
81

125
b

b b
t

A
A

π× σ = × σ
π  = 0.648 σb ...(i)

∴ Decrease in the length of the steel tube,

δlt = 3

. (0.648 ) 500

200 10
t t bl
E

σ σ ×=
×

 = 1.62 × 10–3 σb ...(ii)

and increase in the length of the steel bolt,

δlb = 3

. 500

200 10
b b bl
E

σ σ ×=
×

 = 2.5 × 10–3 σb ...(iii)

We know that when the nut is tightened through 45°, then its axial advancement

=
45

360
°
°  × Pitch = 

1
8  × 2.4 = 0.3 mm ...(iv)

Since the axial advancement of the nut is equal to the decrease in the length of the tube plus
increase in the length of the bolt, therefore

0.3 = (1.62 × 10–3 σb) + (2.5 × 10–3 σb) = 4.12 × 10–3 σb

∴ σb = 3
0.3

4.12 10−×
 = 72.8 N/mm2 = 72.8 MPa (Tension)        Ans.

and σt = 0.648 σb = 0.648 × 72.8 = 47.2 MPa (Compression)        Ans.

EXAMPLE 4.16.  A steel rod 20 mm diameter passes centrally through a copper tube of 25 mm
internal diameter and 35 mm external diameter. Copper tube is 800 mm long and is closed by
rigid washers of negligible thickness, which are fastened by nut threaded on the rod as shown in
Fig. 4.26.

Fig. 4.26
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The nuts are tightened till the load on the assembly is 20 kN. Calculate the initial stresses in
the copper tube and steel rod. Also calculate increase in the stresses, when one nut is tightened by
one-quarter of a turn relative to the other. Take pitch of the thread as 1.6 mm. Take E for steel and
copper as 200 GPa and 100 GPa respectively.

SOLUTION.  Given :  Diameter of steel rod (DS) = 20 mm ;  Internal diameter of copper tube (dC)
= 25 mm ;  External diameter of copper tube (DC) = 35 mm ;  Length of copper tube (l ) = 800 mm ;
Load on assembly (P) = 20 kN = 20 × 103 N ;  Pitch = 1.6 mm ;  Modulus of elasticity of steel (ES) =
200 GPa = 200 × 103 N/mm2 and modulus of elasticity of copper (EC) = 100 GPa = 100 × 103 N/mm2.
Initial stress in steel rod and copper tube

Let σS = Stress in steel rod, and

σC = Stress in copper tube.
We know that area of steel rod,

AS =
4
π

 × (DS)
2 = 

4
π

 × (20)2 = 100 π mm2

and area of copper tube, AC = 2 2

4 4C CD dπ π⎡ ⎤× − =⎣ ⎦  × [(35)2 – (25)2] = 150 π mm2

We also know that tensile load on the steel rod is equal to the compressive load on the copper
tube. Therefore stress in steel rod,

σS =
150
100

C
C C

S

A
A

π× σ = × σ
π  = 1.5 σC ...(i)

and load (P), 20 × 103 = σS . AS + σC . AC = (1.5 σC × 100 π) + (σC × 150 π)
= 300 π σC

∴ σC =
320 10

300
×

π  = 21.2 N/mm2 = 21.2 MPa        Ans.

and σC = 1.5 σC = 1.5 × 21.2 = 31.8 MPa        Ans.
Increase in stresses when nut is tightened by one-quarter of a turn

Let σS1 = Increase in the stress in the steel rod and

σC1 = Increase in the stress in the copper tube.
We know that increase in the length of the steel rod,

δlS = 1 1
3

. 1.5 800

200 10
S C

S

l
E

σ σ ×=
×

 = 6 × 10–3 σC1 ...(ii)

and decrease in the length of the copper tube,

δlS = 1 1
3

. 800

100 10
C C

C

l
E

σ σ ×=
×

 = 8 × 10–3 σC1 ...(iii)

We also know that when the nut is tightened by one-quarter of a turn, then its axial advancement

=
1
4

 × Pitch = 
1
4

 × 1.6 = 0.4 mm ...(iv)

Since the axial advancement of the nut is equal to the decrease in the length of the tube plus
increase in the length of the rod therefore,

0.4 = 6 × 10–3 σC1 + 8 × 10–3 σC1 = 14 × 10–3 σC1

∴ σC1 = 3
0.4

14 10−×
 = 28.6 N/mm2 = 28.6 MPa (Compression)        Ans.

and σS1 = 1.5 σC1 = 1.5 × 28.6 = 42.9 MPa (Tension)        Ans.
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EXERCISE 4.4

1. A steel rod of 20 mm diameter and 350 mm long passes centrally through a steel tube of 40 mm
external diameter and 30 mm internal diameter. The composite bar is tightened by using rigid
washers of negligible thickness, which are fastened by nuts threaded on the rod. Find the stresses
developed in the steel tube and rod, when the assembly is subjected to a tensile load of 22 kN.

[Ans. 20 MPa ; 35 MPa]

2. A steel bolt 25 mm diameter and 400 mm long is surrounded by a copper sleave of 30 mm
internal diameter 35 mm external diameter of the same length. The assembly is now rigidly
fixed at both ends by washers of negligible length. If pitch of the thread is 1.5 mm and one of the
nut is tightened through 60°, calculate the stresses developed in the copper sleeve and steel bolt.
Take ES = 200 GPa and EC = 100 GPa. [Ans. 82.2 MPa ; 42.7 MPa]

QUESTIONS

1. What is a statically indeterminate structure ?

2. Give the procedure for solving a statically indeterminate problem.

3. How will you find the load shared by three wires supporting a load at their bottom ?
4. Explain the procedure for finding out stresses developed in a statically indeterminate structure,

when one of the support is slightly smaller than the other.

5. Describe the principle for finding out the stresses in the nut and bolt arrangement.

MULTIPLE CHOICE QUESTIONS

1. Which of the following is a statically indeterminate structure ?
(a) a load supported on one member.

(b) a load supported on two membes.

(c) a load supported on three members.
(d) either ‘a’ or ‘b’.

2. A rod is enclosed centrally in a tube and the assembly is tightened by rigid washers. If the
assembly is subjected to a compressive load, then

(a) rod is subjected to a compressive load,
(b) tube is subjected to a compressive load,

(c) both are subjected to a compressive load,

(d) rod is subjected to a compressive load, while the tube is subjected to a tensile load.
3. A bolt is made to pass through a tube and both of them are tightly fitted with the help of washers

and nuts. If the nut is tightened, then

(a) bolt and tube are subjected to compressive load.

(b) bolt and tube are subjected to tensile load.
(c) bolt is subjected to compressive load, while tube is subjected to tensile load.

(d) bolt is subjected to tensile load  while tube is subjected to compressive load.

ANSWERS

1. (c) 2. (c) 3. (d)
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3. Thermal Stresses in Bars of
Circular Tapering Section.

4. Thermal Stresses in Bars of
Varying Section.

5. Thermal Stresses in Composite
Bars.

6. Superposition of Thermal Stresses.

5.1. Introduction
It has been established since long, that

whenever there is some increase or decrease in
the temperature of a body, it causes the body to
expand or contract. A little consideration will
show that if the body is allowed to expand or
contract freely, with the rise or fall of the
temperature, no stresses are induced in the body.
But if the deformation of the body is prevented,
some stresses are induced in the body. Such
stresses are called thermal stresses or temperature
stresses. The corresponding strain are called
thermal strains or temperature strains.

5C h a p t e r
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5.2. Thermal Stresses in Simple Bars
The thermal stresses or strains, in a simple bar, may be found out as discussed below :
1. Calculate the amount of deformation due to change of temperature with the assumption that

bar is free to expand or contract.

2. Calculate the load (or force) required to bring the deformed bar to the original length.

3. Calculate the stress and strain in the bar caused by this load.
The thermal stresses or strains may also be found out first by finding out amount of deformation

due to change in temperature, and then by finding out the thermal strain due to the deformation. The
thermal stress may now be found out from the thermal strain as usual. Now consider a body subjected
to an increase in temperature.

Let l = Original length of the body,

t = Increase of temperature and
α = Coefficient of linear expansion.

We know that the increase in length due to increase of temperature.

δl = l.α.t
If the ends of the bar are fixed to rigid supports, so that its expansion is prevented, then compressive

strain induced in the bar.

ε =
. .l tl

l l
αδ =  = α.t

∴ Stress σ = ε.E = α.t.E.

Cor.  If the supports yield by an amount equal to Δ, then the actual expansion that has taken place,
δ l =  lαt – Δ

and strain, ε = ( )α − Δδ Δ= = αl tl t
l l l

∴ Stress, σ = ε.E = ( )Δα −t E
l

The value of a (i.e., coefficient of linear expansion) of materials in every day use are given below
in table 5.1 :

TABLE 5.1
S. No. Material Coefficient of linear expansion/°C (ααααα)

1. Steel 11.5 × 10–6 to 13 × 10–6

2. Wrought iron, Cast iron 11 × 10–6 to 12 × 10–6

3. Aluminium 23 × 10–6 to 24 × 10–6

4. Copper, Brass, Bronze 17 × 10–6 to 18 × 10–6

EXAMPLE 5.1. A aluminium alloy bar, fixed at its both ends is heated through 20 K. Find
the stress developed in the bar. Take modulus of elasticity, and coefficient of linear expansion for
the bar material as 80 GPa and 24 × 10–6/K respectively.

SOLUTION.  Given :  Increase in temperature (t) = 20 K ;  Modulus of elasticity (E) = 80 GPa = 80
× 103 N/mm2 and Coefficient of linear expansion (α) = 24 × 10–6/K

We know that  thermal stress developed in the bar,

σ = α.t.E = (24 × 10–6) × 20 × (80 × 103) N/mm2

= 38.4 N/mm2 = 38.4 MPa        Ans.
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* Superfluous data
** Superfluous datar

EXAMPLE 5.2. A brass rod 2 m long is fixed at both its ends. If the thermal stress is not to
exceed 76.5 MPa, calculate the temperature through which the rod should be heated. Take the
values of α and E as 17 × 10–6/K and 90 GPa respectively.

SOLUTION.  Given : * Length (l) = 2 m ; Maximum thermal stress (σmax) = 76.5 MPa = 76.5 N/
mm2 ; α = 17 × 10–6/K and E = 90 GPa = 90 × 103 N/mm2.

Let t = Temperature through which the rod should be heated in K.

We know that maximum stress in the rod (σmax),

76.5 = α.t.E = (17 × 10–6) × t × (90 × 103) = 1.53 t

∴ t =
76.5
1.53  = 50 K        Ans.

EXAMPLE 5.3.   Two parallel walls 6 m apart are stayed together by a steel rod 25 mm
diameter passing through metal plates and nuts at each end. The nuts are tightened home, when
the rod is at a temperature of 100°C. Determine the stress in the rod, when the temperature falls
down to 60°C, if

(a) the ends do not yield, and

(b) the ends yield by 1 mm

Take E = 200 GPa and α = 12 × 10–6/°C

SOLUTION.  Given : Length (l) = 6 m = 6 × 103 mm ; ** Diameter (d) = 25 mm ; Decrease in
temperature (t) = 100° – 60° = 40°C ; Amount of yield in ends (Δ) = 1 mm ; Modulus of elasticity (E)
= 200 GPa = 200 × 103 N/mm2 and coefficient of linear expansion (α) = 12 × 10–6/°C.
(a) Stress in the rod when the ends do not yield

We know that stress in the rod when the ends do not yield,

σ1 = α.t.E = (12 × 10–6) × 40 × (200 × 103) N/mm2

= 96 N/mm2 = 96 MPa        Ans.
(b) Stress in the rod when the ends yield by 1 mm

We also know that stress in the rod when the ends yield,

σ2 =
6

3
1(12 10 ) 40

6 10
−⎡ ⎤Δ⎡ ⎤α − = × −⎢ ⎥⎢ ⎥⎣ ⎦ ×⎣ ⎦

t E
l

 200 × 103 N/mm2

= 62.6 N/mm2 = 62.6 MPa        Ans.

5.3. Thermal Stresses in Bars of Circular Tapering Section
Consider a circular bar of uniformly tapering section fixed at its ends A and B and subjected to an

increase of temperature as shown in Fig. 5.1.

Fig. 5.1.  Circular tapering section
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Let l = Length of the bar.

d1 = Diameter at the bigger end of the bar,
d2 = Diameter at the smaller end of the bar,

t = Increase in temperature and

a =  Coefficient of linear expansion.
We know that as a result of the increase in temperature, the bar AB will tend to expand. But since

it is fixed at both of its ends, therefore it will cause some compressive stress.

We also know that the increase in length due to increase in temperature,

δl =  l.α.t ...(i)
Now let P = Load (or force) required to bring the deformed bar to the

original length.
We know that decrease in the length of the circular bar due to load P

δl =
1 2

4Pl
E d dπ ...(ii)

Equating equations (i) and (ii),

l.α.t =
1 2

4Pl
E d dπ           or          1 2 .

4
E d d t

P
π α=

∴ *Max. stress, σmax = 1 2 1

2 2 2
2 2

.

4
4 4

E d d t t E dP
dd d

π α α= =π π× × ×

NOTE. If we substitute d1 = d2, the above relation is reduced to
σ = α.t.E ...(Same as for simple bars)

EXAMPLE 5.4.    A circular bar rigidly fixed at its both ends uniformly tapers from 75 mm at
one end to 50 mm at the other end. If its temperature is raised through 26 K, what will be the
maximum stress developed in the bar. Take E as 200 GPa and α as 12 × 10–6/K for the bar
material.

SOLUTION.  Given :  Diameter at end 1 (d1) = 75 mm ;  Diameter at end 2 (d2) = 50 mm ;  Rise in
temperature (t) = 26 K ;  E = 200 GPa = 200 × 103 N/mm2 and α = 12 × 10–6/K.

We know that maximum stress developed in the bar,

αmax =
6 3

1

2

. . (12 10 ) 26 (200 10 ) 75
50

t E d
d

−α × × × × ×=  N/mm2

= 93.6 N/mm2 = 93.6 MPa        Ans.

EXAMPLE 5.5.   A rigidly fixed circular bar 1.75 m long uniformly tapers from 125 mm
diameter at one end to 100 mm diameter at the other. If the maximum stress in the bar is not to
exceed 108 MPa, find the temperature through which it can be heated. Take E and α for the bar
material as 100 GPa and 18 × 10–6 / K respectively.

SOLUTION.  Given :  ** Length (l) = 1.75 m ;  Diameter at end 1 (d1) = 125 mm ;  Diameter at end
2 (d2) = 100 mm ;  Maximum stress (σmax) = 108 MPa = 108 N/mm2 ;  Modulus of elasticity (E) = 100
GPa = 100 × 103 N/mm2 and coefficient of linear expansion (α) = 18 × 10–6/K.

Let t = Temperature through which the bar can be heated in K.

We know that maximum stress in the bar (σmax),

108 =
6 3

1

2

. . (18 10 ) (100 10 ) 125
100

t E d t
d

−α × × × × ×=  = 2.25 t

* The stress will be maximum at B, because of lesser areas of cross-section.
* Superfluous data
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∴ t =
108
2.25  = 48 K        Ans.

5.4. Thermal Stresses in Bars of Varying Section
Consider a bar ABC fixed at its ends A and C and subjected to an increase of temperature as

shown in Fig. 5.2.

Fig. 5.2.  Bar of varying section

Let l1 = Length of portion AB,

σ1 = Stress in portion AB,

A1 = Cross-sectional area of portion AB,
l2, σ2, A2 = Corresponding values for the portion BC,

α = Coefficient of linear expansion and

t = Increase in temperature
We know that as a result of the increase in temperature, the bar ABC will tend to expand. But

since it is fixed at its ends A and C, therefore it will cause some compressive stress in the body.
Moreover, as the thermal stress is shared equally by both the portions, therefore

σ1 A1 = σ2 A2

Moreover, the total deformation of the bar (assuming it to be free to expand),

δl = δl1 + δl2 = 1 1 2 2l l l
E E E

σ σ+ =  (σ1 l1 + σ2 l2)

NOTE. Sometimes, the modulus of elasticity is different for different sections. In such cases, the total deformation.

δl =
1 1 2 2

1 2

l l
E E

σ σ⎛ ⎞+⎜ ⎟
⎝ ⎠

EXAMPLE 5.6.    A steel rod ABC is firmly held between two rigid supports A and C as shown in
Fig. 5.3.

Fig. 5.3

Find the stresses developed in the two portions of the rod, when it is heated through 15 K. Take
α = 12 × 10–6 / K and E = 200 GPa.

SOLUTION.  Given : Area of part 1 (A1) = 400 mm2 ;  Length of part 1 (l1) = 500 mm ; Area of
part 2 (A2) = 600 mm2 ; Length of part 2 (l2) = 800 mm ; Rise in temperature (t) = 15K ; Coefficient
of linear expansion (α) = 12 × 10–6/K and modulus of elasticity (E) = 200 GPa = 200 × 103

N/mm2.
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Let σ1 = Stress developed in the portion AB due to increase in
temperatures and

σ2 = Stress developed in the portion BC due to increase in
temperature

Since the thermal load is shared equally by both the portions, therefore stress developed in the
portion AB,

σ1 =
2

2
1

600
400

A
A

× σ =  × σ2 1.5 σ2 ...(i)

We know that free expansion of the part 1 due to increase in temperature,

δl1 =  l1α.t = 500 × (12 × 10–6) × 15 = 0.09 mm

and δl2 = l2.α.t = 800 × (12 × 10–6) × 15 = 0.144 mm

∴ Total expansion of the rod,

δl = δl1 + δl2 = 0.09 + 0.144 = 0.234 mm

Now let us assume a compressive force to be applied at A and C, which will cause a contraction
of 0.234 mm of the rod (i.e., equal to the total expansion). Therefore,

0.234 =
1
E

 (σ1.l1 + σ2.l2) = 3
1

200 10×
 (1.5 σ2 × 500 + σ2 × 800)

= 7.75 × 10–2 × σ2

∴ σ2 = 3
0.234

7.75 10−×
 = 30.2 N/mm2 = 30.2 MPa        Ans.

and σ1 = 1.5 σ2 = 1.5 × 30.2 = 45.3 MPa        Ans.

EXAMPLE 5.7.    A composite bar made up of aluminium and steel, is held between two
supports as shown in Fig. 5.4.

Fig. 5.4

The bars are stress-free at a temperature of 38°C. What will be the stresses in the two bars,
when the temperature is 21°C, if (a) the supports are unyielding, (b) the supports come nearer to
each other by 0.1 mm? It can be assumed that the change of temperature is uniform all along the
length of the bar.

Take E for steel as 200 GPa; E for aluminium as 75 GPa and coefficient of expansion for steel
as 11.7 × 10–6 per °C and coefficient of expansion for aluminium as 23.4 × 10–6 per °C.

SOLUTION.  Given :  Length of steel bar (lS) = 600 mm ;  Area of steel bar (AS) = 1000 mm2 ;
Length of aluminium bar (lA) = 300 mm ;  Area of aluminium bar (AA) = 500 mm2 ;  Decrease in
temperature (t) = 38 – 21 = 17°C ;  Modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2;
Modulus of elasticity of aluminium (EA) = 75 GPa = 75 N/mm2 ;  Coefficient of expansion for steel
(αS) = 11.7 × 10–6/°C and coefficient of expansion for aluminium (αA) = 23.4 × 10–6/°C.
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Let σS = Stress in the steel bar, and

σA = Stress in the aluminium bar.

(a) Stresses when the supports are unyielding

σS . AS = σA . AA           or           σS × 1000 = σA × 500

∴ σS = σA × 500/1000 = 0.5 σA

We know that free expansion of steel bar due to increase in temperature,

δlS = lS.αS.t = 600 × (11.7 × 10–6) × 17 = 0.119 mm

and δlA = lA.αA.t = 300 × (23.4 × 10–6) × 17 = 0.119 mm

∴ Total contraction of the bar,

δl =  δlS + δlA = 0.119 + 0.119 = 0.238 mm

Now let us assume a tensile force to be applied at A and C, which will cause an expansion of
0.238 mm of the rod (i.e., equal to the total contraction). Therefore

0.238 = 3 3

. . (0.5 ) 600 300

200 10 75 10
S S A A A A

S A

l l
E E

σ σ σ × σ ×+ = +
× ×

 = 5.5 × 10–3 σA

∴ σA = 3
0.238

5.5 10−×
 = 43.3 N/mm2 = 43.3 MPa        Ans.

and σS = 0.5 σA = 0.5 × 43.3 = 21.65 MPa        Ans.

(b) Stresses when the supports come nearer to each other by 0.1 mm

In this case, there is an expansion of composite bar equal to 0.238 – 0.1 = 0.138 mm. Now let us
assume a tensile force, which will cause an expansion of 0.138 mm. Therefore

0.138 = 3 3

. . (0.5 ) 600 300

200 10 75 10
S S A A A A

S A

l l
E E

σ σ σ × σ ×+ = +
× ×

 = 5.5 × 10–3 σA

∴ σA = 3
0.138

5.5 10−×  = 25.1 N/mm2 = 25.1 MPa        Ans.

and σS = 0.5 σA = 0.5 × 25.1 = 12.55 MPa        Ans.

 EXERCISE 5.1

1. A steel bar, fixed at its both ends, is heated through 15 K. Calculate the stress developed in the
bar, if modulus of elasticity and coefficient of linear expansion for the bar material is 200 GPa
and 12 × 10–6/K respectively. [Ans. 36 MPa]

2. An alloy bar 2 m long is held between two supports. Find the stresses developed in the bar,
when it is heated through 30 K if both the ends (i) do not yield; and (ii) yield by 1 mm. Take the
value of E and α for the alloy as 120 GPa and 24 × 10–6/K. [Ans. 86.4 MPa ; 26.4 MPa]

3. A circular bar rigidly fixed at its both ends is 1.2 m long. It uniformly tapers from 100 mm at
one end to 75 mm at the other. What is the maximum stress induced in the bar, when its tempera-
ture is raised through 25 K? Take E as 200 GPa and α as 12 × 10–6/K. [Ans. 80 MPa]

4. An alloy circular bar rigidly fixed at its both ends uniformly tapers from 90 mm to 60 mm from
one end to another. What will be the maximum stress developed in the bar, when its temperature
is raised through 20 K? Take E and α for the bar material as 150 GPa and 12 × 10–6/K. Also find
the maximum stress when the bar is lowered by the same temperature.

[Ans. 54 MPa (Compn.) ; 54 MPa (Tension)]
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5. A steel rod ABC firmly held at A and C has a cross-sectional area of 1000 mm2 for 400 mm
length and 1500 mm2 for 600 mm length as shown in Fig. 5.5.

Fig. 5.5

If the rod is heated through 10 K, find the stresses developed in the parts AB and BC.

[Ans. 30 MPa ; 20 MPa]

5.5. Thermal Stresses in Composite Bars
Whenever there is some increase or decrease in the temperature of a bar, consisting of two or

more different materials, it causes the bar to expand or contract. On account of different coefficients
of linear expansions the two materials do not expand or contract by the same amount, but expand or
contract by different amounts.

Fig. 5.6.  Composite bars

Now consider a composite bar consisting of two members, a bar of steel and another of brass as
shown in Fig. 5.6 (a).

Let the bar be heated through some temperature. If the component members of the bar (i.e., steel
and brass) could have been free to expand, then no internal stresses would have induced. But, since
the two members are rigidly fixed, therefore the composite bar, as a whole, will expand by the same
amount. We know that the brass expands more than the steel (because the coefficient of linear expansion
of the brass is greater than that of the steel). Therefore the free expansion of the brass will be more
than that of the steel. But since both the members are not free to expand, therefore the expansion of
the composite bar, as a whole, will be less than that of the brass; but more than that of the steel as
shown in Fig. 5.6 (b). It is thus obvious that the brass will be subjected to compressive force, whereas
the steel will be subjected to tensile force as shown in Fig. 5.6 (c).

Now let σ1 = Stress in brass

ε1 = Strain in brass,
α1 = Coefficient of linear expansion for brass,

A1 = Cross-sectional area of brass bar,

σ2, ε2, α2 A2 = Corresponding values for steel, and
ε = Actual strain of the composite bar per unit length.



80 � Strength of Materials

As the compressive load on the brass is equal to the tensile load on the steel, therefore
σ1.A1 = σ2.A2

Now strain in brass,

ε1 =  α1.t – ε ...(i)
and strain in steel, ε2 = α2.t – ε ...(ii)

Adding equation (i) and (ii), we get

ε1 + ε2 = – t (α1 + α2)
NOTES : 1. In the above equation the value of α1 is taken as greater of the two values of α1 and α2.

2. The values of strain (ε1 and ε2) may also be found out from the relation Stress or
Modulus of elasticity

l
l
δ .

EXAMPLE 5.8.     A flat steel bar 200 mm × 20 mm × 8 mm is placed between two aluminium
bars 200 mm × 20 mm × 6 mm so as to form a composite bar as shown in Fig. 5.7.

Fig. 5.7

All the three bars are fastened together at room temperature. Find the stresses in each bar,
where the temperature of the whole assembly is raised through 50°C. Assume :

Young’s modulus for steel = 200 GPa

Young’s modulus for aluminium = 80 GPa

Coefficient of expansion for steel = 12 × 10–6/°C

Coefficient of expansion for aluminium = 24 × 10–6/°C

SOLUTION.  Given :  Size of steel bar = 200 mm × 20 mm × 8 mm ;  Size of each aluminium bar
= 200 mm × 20 mm × 6 mm ;  Rise in temperature (t) = 50°C ;  Young’s modulus for steel (ES) = 200
GPa = 200 × 103 N/mm2 ;  Young’s modulus for aluminium (EA)= 80 GPa = 80 × 103 N/mm2;
Coefficient of expansion for steel (αS) = 12 × 10–6/°C and  coefficient of expansion for aluminium
(αA) = 24 × 10–6/°C.

Let σS = Stress in steel bar and
σA = Stress in each aluminium bar.

We know that area of steel bar

AS = 20 × 8 = 160 mm2

and total area of two aluminium bars,

AA = 2 × 20 × 6 = 240 mm2

We also know that when the temperature of the assembly will increase, the free expansion of
aluminium bars will be more than that of steel bar (because αA is more than αS). Thus the aluminium
bars will be subjected to compressive stress and the steel bar will be subjected to tensile stress. Since
the tensile load on the steel bar is equal to the compressive load on the aluminium bars, therefore
stress in steel bar,

σS =
240
160

A
A

S

A
A

× σ =  × σA = 1.5 σA
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We know that strain in steel bar,

εS = 3200 10
S S

SE
σ σ=

×

and εA = 380 10
A A

AE
σ σ=

×
We also know that total strain,

εS + εA = t (αA – αS)

3 3200 10 80 10
S Aσ σ+

× ×
= 50 [(24 × 10–6) – (12 × 10–6)]

3 3

1.5

200 10 80 10
A Aσ σ+

× ×
= 50 × (12 × 10–6)

20 × 10–6 σA = 600 × 10–6          or          20 σA = 600

∴ σA =
600
20  = 30 N/mm2 = 30 MPa        Ans.

and σS = 1.5 σA = 1.5 × 30 N/mm2 = 45 MPa        Ans.

EXAMPLE 5.9.    A gun metal rod 20 mm diameter, screwed at the ends, passes through a steel
tube 25 mm and 30 mm internal and external diameters respectively. The nuts on the rod are
screwed tightly home on the ends of the tube. Find the intensity of stress in each metal, when the
common temperature rises by 200°F. Take.

Coefficient of expansion for steel = 6 × 10–6/°F

Coefficient of expansion for gun metal = 10 × 10–6/°F

Modulus of elasticity for steel = 200 GPa

Modulus of elasticity for gun metal = 100 GPa.

SOLUTION.  Given :  Diameter of gun metal rod = 20 mm ;  Internal diameter of steel tube = 25
mm; External diameter of steel tube = 30 mm ;  Rise in temperature (t) = 200°F ;  Coefficient of
expansion for steel (αS) = 6 × 10–6/°F ;  Coefficient of expansion for gun metals (αG) = 10 × 10–6/°F;
Modulus of elasticity for steel  (ES) = 200 GPa = 200 × 103 N/mm2 and modulus of elasticity for gun
metal (EG) = 100 GPa = 100 × 103 N/mm2.

Fig. 5.8

Let σG = Stress in gun metal rod, and

σS = Stress in steel tube,
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We know that area of gun metal rod,

AG =
4
π

 × (20)2 = 100 π mm2

and area of steel tube AS =
4
π

 [(30)2 – (25)2] = 68.75 π mm2

We also know that when the common temperature of the gun metal rod and steel tube will increase,
the free expansion of gun metal rod will be more than that of steel tube (because αG is greater than
αS). Thus the gun metal rod will be subjected to compressive stress and the steel tube will be subjected
to tensile stress. Since the tensile load on the steel tube is equal to the compressive load on the gun
metal rod, therefore stress in steel,

σS =
100

68.75
G

S G
S

A
A

π× σ = × σ
π  = 1.45 σG

We know that strain in steel tube,

εS = 3200 10
S S

SE
σ σ=

×

and εG = 3100 10
G G

GE
σ σ=

×
We also know that total strain,

εS + εG = t (αG – αS)

3 3200 10 100 10
S Gσ σ+

× ×
= 200 [(10 × 10–6) – (6 × 10–6)]

3 3

1.45

200 10 100 10
G Gσ σ+

× ×
= 200 × (4 × 10–6)

3

3.45

200 10
Gσ

×
= 800 × 10–6

3.45 σG = (800 × 10–6) × (200 × 103) = 160

∴ σG =
160
3.45

 = 46.4 N/mm2 = 46.4 MPa        Ans.

and σS = 1.45 σG = 1.45 × 46.4 = 67.3 MPa        Ans.

EXAMPLE 5.10.  A composite bar is made up by connecting a steel member and a copper
member, rigidly fixed at their ends as shown in Fig. 5.9.

Fig. 5.9

The cross-sectional area of the steel member is A mm2 for half of the length and 2A mm2 for the
other half of the length ; while that for the copper member is A mm2. The coefficients of expansion
for steel and copper are α and 1.3 α ; while elastic modulii are E and 0.5 E respectively. Determine
the stresses induced in both the members when the composite bar is subjected to a rise of
temperature of t degrees.
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SOLUTION.  Given :  Area of steel bar AB = A mm2 ;  Area of steel bar BC = 2A mm2 ;  Area of
copper bar AB = A mm2 ;  Coefficient of expansion for steel (αS) = α ;  Coefficient of expansion for
copper (αC) = 1.3 α ;  Young’s modulus for steel (ES) = E and Young’s modulus for copper (EC) =
0.5 E.

A little consideration will show that due to rise in temperature, the free expansion of the copper
member will be more than that of the steel member (because αC is more than αS). Hence the copper
member will be subjected to compressive stress, whereas the steel member will be subjected to tensile
stress.

Let σS = Stress in the portion AB of the steel bar due to increase in
temperature, and

σC = Stress in the copper bar due to increase in temperature.
Since there is no external load on any member, therefore

σ = σS = σC
We know that stress in the portion BC of the steel bar

σS′ =
2
A
A

 × σS = 0.5 σ
We also know that elongation of the copper bar due to stress,

σlC =
2

0.5
C C

C

l l l
E E E

σ × σ × σ= =

and strain in the copper bar,

εC =
2 21C

C

l l
l E l E

δ σ σ= × = ...(i)

Similarly, extension of the steel bar,

δlS =

1 1 1× 0.5
2 2 2 2S S

S S

S S S S S

l
l

E E E E E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ × σ ′ σ × σ ×σ × ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=
3
4

l
E
σ

and strain in the steel bar,

εS =
3 31
4 4

S

S

l l
l E l E

δ σ σ= × = ...(ii)

Therefore total strain,

εC + εS = t (αC – αS)          or          
2 3

4E E
σ σ=  = t (1.3 α – α)

11
4E

σ
= 0.3 α t

∴ σ =
0.3 4

11
t Eα ×

 = 0.109 α t E        Ans.

and σS′ = 0.5 σ = 0.5 × 0.109 α t E = 0.0545 α t E        Ans.

5.6. Superposition of Thermal Stresses
In the last articles, we have been discussing the thermal stresses in the bars, which were initially

free of any type of tensile or compressive stresses. But sometimes, we come across structures, which
are subjected to same loading, before their temperature is increased or decreased. Such problems are
solved in the following two steps :
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1. First of all, find out the stresses caused in its members before there is any change in
temperature.

2. Now find out the stresses due to change in temperature and use the principal of superposition
on the stresses already obtained.

3. Finally add the two stresses obtained above.
NOTE : Such problems are very complicated and need lot of patience in knowing the type of stresses (i.e.,
tensile or compressive) in both the cases.

EXAMPLE 5.11.  A composite bar made up of aluminium bar and steel bar is firmly held
between two unyielding supports as shown in Fig. 5.10.

Fig. 5.10

An axial load of 200 kN is applied at B at 320 K. Find the stresses in each material, when the
temperature is 370 K. Take α for aluminium and steel as 70 GPa and 210 GPa respectively. Take
α for aluminium and steel as 24 × 10–6 /K and 12 × 10–6 /K respectively.

SOLUTION.  Given :  Length of aluminium bar (lA) = 100 mm ;  Area of aluminium bar (AA) = 1000
mm2 ;  Length of steel bar (lS) = 150 mm ;  Area of steel bar (AS) = 1500 mm2 ;  Axial load (P) = 200
kN = 200 × 103 N ;  Rise in temperature (t) = 370 – 320 = 50 K ;  Modulus of elasticity of aluminium
(EA) = 70 GPa = 70 × 103 N/mm2 ;  Modulus of elasticity of steel (ES) = 210 GPa = 210 × 103 N/mm2;
Coefficient of expansion of aluminium (αA) = 24 × 10–6/K and coefficient of expansion of steel (αS)
= 12 × 10–6/K.

First of all, let us find out the stresses developed in the aluminium bar and steel bar due to the
application of 200 kN load at B.

Let P1 = Load shared by the aluminium bar AB in kN.

We know that increase in length of the aluminium bar,

δlA =
3

1 1 1
3

. 10 100

. 7001000 (70 10 )

× ×= =
× ×

A

A A

P l P P
A E

...(i)

Similarly, decrease in length of the steel bar,

δlS =
3 3

1 1 1
3

(200 ) 10 (200 ) 10 150 (200 )
. 21001500 (210 10 )

S

S S

P l P P
A E

− × × − × × −= =
× ×

...(ii)

Since the values of δA is equal to that of δS , therefore equating equations (i) and (ii),

1

700
P

= 1200
2100

P−
          or          1 1200

1 3
P P−=

3P1 = 200 – P1            or          P1 = 200/4 = 50 kN

∴ Stress in aluminium bar due to axial load

σA1 =
3

1 50 10
1000A

P
A

×=  = 50 N/mm2 (Tension) ...(iii)
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and stress in steel bar due to axial load,

σS1 =
3 3

1(200 ) 10 (200 50) 10
1500S

P
A

− × − ×=  N/mm2

= 100 N/mm2 (Compression) ...(iv)
Now let us find out the stresses developed in aluminium bar and steel bar due to increase in the

temperature. Since the thermal load is shared equally by both the parts, therefore stress in aluminium
bar due to increase in temperature,

σA2 = 2 2
1500
1000

S
S S

A

A
A

× σ = × σ  = 1.5 σS2 ...(v)

We know that free expansion of the aluminium bar due to increase in temperature,

δlA2 = lA.αA.t = 100 × (24 × 10–6) × 50 = 0.12 mm
and δlS2 = lS.αS.t = 150 × (12 × 10–6) × 50 = 0.09 mm

∴ Total expansion of the bar,

δl = δlA2 + δlS2 = 0.12 + 0.09 = 0.21 mm
Now let us assume a tensile force to be applied at A and C, which will cause a contraction of 0.21

mm of the bar (i.e., equal to the total expansions). Therefore

0.21 = 2 2 22
3 3

. (1.5 ) 100 150.

70 10 210 10
S S S SA A

A S

ll
E E

σ σ × σ ×σ + = +
× ×

= 2
3

600

210 10
Sσ

×

∴ σS2 =
30.21 (210 10 )

600
× ×

 = 73.5 N/mm2 (Compression)

and σA2 = 1.5 × σS2 = 1.5 × 73.5  = 110.3 N/mm2 (Compression)

∴ Total stress in aluminium,
σA = σA1 + σA2 = 50 – 110.3 = – 60.3 N/mm2

= 60.3 MPa (Compression)         Ans.
and σS = σS1 + σS2 = 100 + 73.5 = 173.5 N/mm2

= 173.5 MPa (Compression)        Ans.

EXAMPLE 5.12.   A steel rod of 20 mm diameter passes centrally through a tight fitting copper
tube of external diameter 40 mm. The tube is closed with the help of rigid washers of negligible
thickness and nuts threaded on the rod. The nuts are tightened till the compressive load on the
tube is 50 kN as shown in Fig. 5.11.

Fig. 5.11

Determine the stresses in the rod and the tube, when the temperature of the assembly falls, by
50 K. Take E for steel and copper as 200 GPa and 100 GPa respectively. Take coefficient of
expansion for steel and copper as 12 × 10–6 K and 18 × 10–6 K respectively.
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SOLUTION.  Given :  Diameter of steel rod = 20 mm ;  External diameter of copper tube = 40 mm
; Internal diameter of copper tube = 20 mm (because of tight fitting) ;  Compressive load (P) = 50 kN
= 50 × 103 N ;  Fall in temperature (t) = 50 K; Modulus of elasticity for steel (ES) = 200 GPa = 200 ×
103 N/mm2 ; Modulus of elasticity for copper (EC) = 100 GPa = 100 × 103 N/mm2 ;  Coefficient of
expansion for steel (αS) = 12 × 10–6/K and coefficient of expansion for copper (αC) = 18 × 10–6/ K.

Let σS = Stress in steel rod, and

σC = Stress in copper tube.

We know that area of steel rod,

AS =
4
π

 (20)2 = 100 π mm2

and area of copper tube,

AC = 2 2(40) (20)
4
π ⎡ ⎤−⎣ ⎦  = 300 π mm2

First of all, let us find out the stresses of copper tube and steel rod due to a compressive load of
50 kN. We know that compressive load on the copper tube is equal to tensile load on the steel rod.
Therefore stress in the steel rod,

σS1 = 1 1
300
100

C
C C

S

A
A

π× σ = × σ
π  = 3 σC1

and load (P) 50 × 103 = (σS1 AS) + (σC1 AC) = (3σC1 × 100 π) + (σC1 × 300π)

= 600 π σC1

∴ σC1 =
350 10

600
×

π  = 26.5 N/mm2 (Compression)

and σS1 = 3 σC1 = 3 × 26.5 = 79.5 N/mm2 (Tension)

Now let us find out the stresses developed in the steel rod and copper tube due to fall in temperature.
We know that when temperature of the assembly will fall, the free contraction of the copper tube will
be more than that of steel rod (because αC is greater than αS). Thus the copper tube will be subjected
to tension and steel rod will be subjected to compression. Since the tensile load on the copper tube is
equal to the compressive load on the steel rod, therefore stress in steel,

σS2 = 3σC2 ... (As obtained earlier)
We know that strain in copper tube,

εC = 2 2
3100 10

C C

CE
σ σ=

×

and εS = 2 2
3200 10

S S

SE
σ σ=

×
∴ εC + εS = t (αC – αS)

2 2
3 3100 10 200 10

C Sσ σ+
× ×

= 50 [(18 × 10–6) – (12 × 10–6)]

2 2
3 3

3

100 10 200 10
C Sσ σ+
× ×

= 50 × (6 × 10–6)

2
3

5

200 10
Cσ

×
= 300 × 10–6

5 σC2 = (300 × 10–6) × (200 × 103) = 60
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or σC2 = 3 σC2 = 12 N/mm2 (Tension)
and σS2 = 3 σC2 = 3 × 12 = 36 N/mm2 (Compression)

∴ Net stress in the copper tube,

σC =  σC1 + σC2 = 26.5 – 12 = 14.5 N/mm2

= 14.5 MPa (Compression)        Ans.
and σS = σS1 + σS2 = 79.5 – 36 = 43.5 N/mm2 (Tension)        Ans.

EXAMPLE 5.13.  Two steel rods, each 50 mm diameter are connected end to end by means of
a turnbuckle as shown in Fig. 5.12. The other end of each rod is rigidly fixed with a little initial
tension in the rods.

Fig. 5.12

The length of each rod is 4 m and pitch of the threads on each rod = 5 mm. Neglecting the
extension of turnbuckle, calculate the initial tension, when the turnbuckle is tightened by one
quarter of a turn. E = 200 GPa. State with reason, whether effect of temperature rise would
nullify the increase in tension or add more to it.

SOLUTION.  Given :  Diameter of each rod (d) = 50 mm ;  Length of each rod (l) = 4 m = 4 × 103

mm ;  Pitch of the threads = 5 mm and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Initial tension in the rods, when the turnbuckle is tightened by one-quarter of a turn.
Let P = Tension in the rods, when the turnbuckle is tightened by

one-quarter of a turn in N.

We know that cross-sectional area of the steel rods,

A = 2 2( ) (50)
4 4

dπ π× = ×  = 1964 mm2

and extension of the first bar,

δl1 =
3

3 3

(4 10 )

1964 (200 10 ) 98.2 10

PPl P
AE

× ×= =
× × ×

 mm

Similarly, extension of the second bar,

δl2 =
3

3 3

(4 10 )

1964 (200 10 ) 98.2 10

PPl P
AE

× ×= =
× × ×

 mm

∴ Total extension of both the rods,

δl = δl1 + δl2 = 3 3 398.2 10 98.2 10 49.1 10
P P P+ =
× × ×

 mm

We also know that the total extension of the two rods, when the turnbuckle is tightened by one-
quarter of a turn.

δl = ( ) ( )1 15 5
4 4

× + ×  = 2.5 mm

Since the total extension of the two rods is equal to the sum of their extensions, therefore,

2.5 = 349.1 10
P
×

or P = 2.5 × (49.1 × 103) = 122750 N = 122.75 kN        Ans.
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Effect of temperature rise
A little consideration will show that the rise of temperature will increase the length of the bars,

whose effect will be to nullify the increase in tension as discussed below:

Let t = Increase of temperature which will nullify the increase in
tension in °C.

Since the increase in the length of the two rods due to increase in temperature is equal to the
increase in length due to tightening of the turnbuckle, therefore

2.5 = l α t = 2 × (4 × 103) × (12 × 10–6) × t = 96 × 10–3 t

( ä Standard value of α is 12 × 10–6)

∴ t = 3
2.5

96 10−×
 = 26°C        Ans.

EXAMPLE 5.14.  A rigid slab weighing 600 kN is placed upon two bronze rods and one steel
rod each of 6000 mm2 area at a temperature of 15°C as shown in Fig. 5.13.

Fig. 5.13

Find the temperature, at which the stress in steel rod will be zero. Take :

Coefficient of expansion for steel = 12 × 10–6/°C

Coefficient of expansion for bronze =  18 × 10–6/°C

Young’s modulus for steel =  200 GPa

Young’s modulus for bronze = 80 GPa.

SOLUTION.  Given :  Weight = 600 kN = 600 × 103 N ;  Area of bronze rod(AB) = AS = 6000 mm2;
Coefficient of expansion for steel (αS) = 12 × 10–6/°C ;  Coefficient of expansion for bronze (αB) = 18
× 10–6 /°C ;  Modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2 and modulus of
elasticity of bronze (EB) = 80 GPa = 80 × 103 N/mm2.

Let t = Rise in temperature, when the stress in the steel rod will be
zero.

A little consideration will show that due to increase in temperature all the three rods will expand.
The expansion of bronze rods will be more than the steel rod (because αB is greater than αS). If the
stress in the steel rod is to be zero, then the entire load should be shared by the two bronze rods. Or in
other words, the decrease in the length of two bronze rods should be equal to the difference of the
expansion of the bronze rods and steel rod.

We know that free expansion of the steel rod.

= lS.αS.t = 300 × 12 × 10–6 × t = 3.6 × 10–3 t
Similarly, free expansion of the bronze rods,

= lB.αB.t = 250 × 18 × 10–6 × t = 4.5 × 10–3 t
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∴ Difference in the expansion of the two rods
= (4.5 × 10–3) t – (3.6 × 10–3) t = 0.9 × 10–3 t ...(i)

We also know that the contraction of the bronze rods due to load of 600 kN

=
3

3

(600 10 ) 250

(2 6000) (80 10 )
Pl
AE

× ×=
× × ×  = 0.156 mm ...(ii)

Now equating equations  (i) and (ii),

0.9 × 10–3 × t = 0.156          or          4
0.156

9 10
t −=

×
 = 173.3°C        Ans.

 EXERCISE 5.2

1. An aluminium rod of 20 mm diameter is completely enclosed in a steel tube of 30 mm external
diameter and both the ends of the assembly are rigidly connected. If the composite bar is heated
through 50°C, find the stresses developed in the aluminium rod and steel tube. Take:

Modulus of elasticity for steel = 200 GPa

Modulus of elasticity for aluminium = 80 GPa
Coefficient of expansion for steel = 12 × 10–6/°C

Coefficient of expansion for aluminium = 18 × 10–6/°C
[Ans. 14.5 MPa (Comp.) ; 18.1 MPa (Tension)]

2. A steel rod of 10 mm diameter passes centrally through a copper tube of external diameter 40
mm and internal diameter 30 mm. The assembly is tightened with the help of washers and nuts.
If the whole assembly is heated through 60°C, then find the stresses developed in the steel rod
and copper tube. Assume :
Young’s modulus for steel = 200 GPa

Young’s modulus for copper = 100 GPa

Coefficient of expansion for steel = 11.5 × 10–6 /°C
Coefficient of expansion for copper = 17 × 10–6 /°C.

   [Ans. 4.4 MPa (Tension) ; 30.8 MPa (Comp.)]

3. A copper bar ABC of 500 mm2 cross-sectional area is firmly held between two unyielding
supports and subjected to an axial load as shown in Fig. 5.14.

Fig. 5.14

Calculate the stresses developed in the two portions, when the bar is subjected to an increase of
20 K temperature. Take E for the copper as 100 GPa and α for the copper as 18 × 10–6/ K.

[Ans. σAB = 20 MPa (Comp.) ; σBC = 60 MPa (Comp.)]

4. A steel rod of 25 mm diameter axially passes through a brass tube of 25 mm internal diameter
and 35 mm external diameter when the nut on the rod is tightened, initial stress of 10 MPa is
developed in the rod. The temperature of the tube is then raised by 60°C. Calculate the final
stresses in the rod and tube. Take ES = 200 GPa, EB = 80 GPa, αS = 11.7 × 10–6 /°C and
αB = 19 × 10–6 /°C.

[Ans. 34.2 MPa ; 35.6 MPa]
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QUESTIONS

1. Define thermal stress and thermal strain.
2. Explain the procedure for finding out the stresses developed in a body due to change of tem-

perature.

3. Obtain the relation for the thermal stress in a circular bar of uniformly tapering section.

4. What is the effect of thermal stresses of a body, when its ends (i) do not yield and (ii) yield by a
small amount ?

5. Describe the methods for finding out the stresses in a bar of varying section, when it is made up
of (a) one material throughout, (b) two different materials.

6. Explain clearly the effect of change of temperature in a composite bar.

OBJECTIVE TYPE QUESTIONS

1. Thermal stress is caused, when the temperature of a body
(a) is increased (b) is decreased

(c) remains constant (d) either ‘a’ or ‘b’

2. When the temperature of a body is increased, the stress induced will be
(a) tension (b) compression

(c) both ‘a’ and ‘b’ (d) neither ‘a’ nor ‘b’

3. If the ends of a body yield, the magnitude of thermal stress will
(a) increase (b) decrease

(c) remain the same (d) none of these

4. The maximum thermal stress in a circular tapering section is
(a) directly proportional to the bigger diameter

(b) directly proportional to the smaller diameter

(c) inversely proportional to the bigger diameter
(d) both ‘b’ and ‘c’

5. If a composite bar is cooled, then the nature of stress in the part with high coefficient of thermal
expansion will be

(a) tensile (b) zero
(c) compressive (d) none of these.

ANSWERS

1. (d) 2. (b) 3. (c) 4. (a) 5. (a)
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6.1. Introduction
In the previous chapter, we have discussed

the axial deformation of a body, when it is
subjected to a direct tensile or compressive stress.
But we have not discussed the lateral or side
effects of the pulls or pushes. It has been
experimentally found, that the axial strain of a
body is always followed by an opposite kind of
strain in all directions at right angle to it. Thus, in
general, there is always a set of the following two
types of strains in a body, when it is subjected to
a direct stress.

1. Primary or linear strain, and

2. Secondary or lateral strain.

6C h a p t e r
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6.2. Primary or Linear Strain

Fig. 6.1.  Linear and Lateral strain

We have already discussed in Art 2.2 that whenever some external force acts on a body, it
undergoes some deformation. Now consider a circular bar subjected to a tensile force as shown in
Fig. 6.1 (a).

Let l = Length of the bar,

d = Diameter of the bar,
P = Tensile force acting on the bar, and

d l = Increase in the length of the bar, as a result of the tensile force.

The deformation of the bar per unit length in the direction of the force, i.e., 
δl
l

 is known as

primary or linear strain.

6.3. Secondary or Lateral Strain
We have already discussed in the last article the linear deformation of a circular bar of length

l and diameter d subjected to a tensile force P. If we actually study the deformation of the bar, we
will find that bar has extended through a length δl, which will be followed by the decrease of
diameter from d to (d – δd) as shown in Fig. 6.1 (b). Similarly, if the bar is subjected to a compres-
sive force, the length of the bar will decrease by δl which will be followed by the increase of
diameter from d to (d + δd).

It is thus obvious that every direct stress is always accompanied by a strain in its own direction
and an opposite kind of strain in every direction at right angles to it. Such a strain is known as
secondary or lateral strain.

6.4. *Poisson’s Ratio
It has been experimentally found, that if a body is stressed within its elastic limit, the lateral strain

bears a constant ratio to the linear strain. Mathematically :

Lateral strain
Linear strain

= (constant)

This constant is known as Poisson’s ratio and is denoted by 
1
m

 or μ. Mathematically,

Lateral strain =
1
m × ε = μ ε

* Named after French mathematician Poisson, who first predicted its existence and value by using the
molcular theory of structure of the material. He found this value for many isotropic materials (i.e., the
materials which have the same properties in all directions).



Chapter 6 : Elastic Constants � 93

The corresponding change in the lateral length may be found out, as usual, i.e., by multiplying
the lateral length (i.e., width or thickness).
NOTE.  The value of Poisson’s ratio is the same in tension and compression.

Table 6.1.
The value of Poisson’s ratio of materials, in every day use, are given below :

S. No. Material Poisson’s ratio ( )1 or
m

μ

1. Steel 0.25 to 0.33

2. Cast iron 0.23 to 0.27

3. Copper 0.31 to 0.34

4. Brass 0.32 to 0.42

5. Aluminium 0.32 to 0.36

6. Concrete 0.08 to 0.18

7. Rubber 0.45 to 0.50

EXAMPLE 6.1.  A steel bar 2 m long, 40 mm wide and 20 mm thick is subjected to an axial pull
of 160 kN in the direction of its length. Find the changes in length, width and thickness of the bar.
Take E = 200 GPa and Poisson’s ratio = 0.3.

SOLUTION.  Given :  Length (l) = 2 m = 2 × 103 mm ;  Width (b) = 40 mm ;  Thickness (t) = 20 mm;
Axial pull (P) = 160 kN = 160 × 103 N ;  Modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2 and

poisson’s ratio (
1
m

) = 0.3.

Change in length
We know that change in length,

δl =
3 3

3

(160 10 ) (2 10 )

(40 20) (200 10 )
Pl
AE

× × ×=
× × ×

 = 2 mm        Ans.

Change in width
We know that linear strain,

ε = 3
2

2 10
l

l
δ =

×  = 0.001

and lateral strain =
1
m  × ε = 0.3 × 0.01 = 0.0003

∴ Change in width,
δb = b × Lateral strain = 40 × 0.0003 = 0.012 mm        Ans.

Change in thickness
We also know that change in thickness,

δt = t × Lateral strain = 20 × 0.0003 = 0.006 mm        Ans.

EXAMPLE 6.2.  A metal bar 50 mm × 50 mm in section is subjected to an axial compressive
load of 500 kN. If the contraction of a 200 mm gauge length was found to be 0.5 mm and the
increase in thickness 0.04 mm, find the values of Young’s modulus and Poisson’s ratio for the bar
material.

SOLUTION.  Given : Width (b) = 50 mm ;  Thickness (t) = 50 mm ;  Axial compressive load (P) =
500 kN = 500 × 103 N ;  Length (l) = 200 mm ;  Change in length (δl) = 0.5 mm and change in
thickness (δt) = 0.04 mm.
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Value of Young’s modulus for the bar material
Let E = Value of Young’s modulus for the bar material.

We know that contraction of the bar (δl ),

0.5 =
3 3. (500 10 ) 200 40 10

. (50 50)
P l
A E E E

× × ×= =
× ×

∴ E =
340 10

0.5
×

 = 80 × 103 N/mm2 = 80 GPa        Ans.

Value of Poisson’s ratio for the bar material

Let
1
m

= Value of Poisson’s ratio for the bar material.

We know that linear strain,

ε =
0.5
200

l
l
δ =  = 0.0025

and lateral strain =
1
m  × Linear strain = 

1
m  × 0.0025

We also know that increase in thickness (δt),

0.04 = t × Lateral strain = 50 × 
1
m  × 0.0025 = 

0.125
m

∴ 1
m =

0.04
0.125  = 0.32        Ans.

6.5. Volumetric Strain
We have already discussed that whenever a body is subjected to a single force (or a system of

forces), it undergoes some changes in its dimensions. A little consideration will show, that the change
in dimensions of a body will cause some changes in its volume. The ratio of change in volume, to the
original volume, is known as volumetric strain. Mathematically volumetric strain,

εV =
V

V
δ

where δV = Change in volume, and
V = Original volume.

Though there are numerous ways, in which a force (or a system of forces) may act, yet the
following are important from the subject point of view :

1. A rectangular body subjected to an axial force.
2. A rectangular body subjected to three mutually perpendicular forces.

Now we shall discuss the volumetric strains on all the types of bodies one by one in the following
pages :

6.6. Volumetric Strain of a Rectangular Body Subjected to an
Axial Force

Fig. 6.2.   Volumetric strain
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Consider a bar, rectangular in section, subjected to an axial tensile force as shown in Fig. 6.2.
Let l = Length of the bar,

b = Breadth of the bar,

t = Thickness of the bar,
P = Tensile force acting on the bar,

E = Modulus of elasticity and
1
m

= Poisson’s ratio.

We know that change in length,

δl =
P l Pl
A E bt E

= ...(i)

and linear stress, σ =
Force
Area

= P
b t

∴ Linear strain =
Stress P

E bt E
=

and lateral strain =
1
m

 × Linear strain = 
1 P
m bt E

×

∴ Change in thickness,

δt =
1 P Pt
m bt E mb E

× × = ...(ii)

and change in breadth,

δb =
1 P Pb
m bt E mt E

× × = ...(iii)

As a result of this tensile force, let the final length

= l + δl

Final breadth = b – δb ...(Minus sign due to compression)

and final thickness = t – δt ...(Minus sign due to compression)

We know that original volume of the body,
V = l.b.t.

and final volume = (l + δl) (b – δb) (t – δt)

= 1 1 1
l b t

lbt
l b t

δ δ δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= 1
l b t l b l t l t l b t

lbt
l b t l b l t b t l b t

⎡ δ δ δ δ δ δ δ δ δ δ δ δ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − − × − × + × + × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

= 1
l b t

lbt
l b t

δ δ δ⎡ ⎤+ − −⎢ ⎥⎣ ⎦
...(Ignoring other negligible values)

∴ Change in volume,

δV = Final volume – Original volume

= 1
l b t l b t

lbt lbt lbt
l b t l b t

δ δ δ δ δ δ⎛ ⎞ ⎛ ⎞+ − − − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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= ( )
P l P P

P P PbtE mtE mbElbt lbt
l b t btE mbtE mbtE

⎡ ⎤
⎢ ⎥− − = − −⎢ ⎥
⎢ ⎥
⎣ ⎦

= ( )21PV
btE m

× −

and volumetric strain,

V
V
δ

=
( ) ( )

21
21

PV
btE m P

V btE m

× −
= −

= ( )21
m

ε − ... ( )StrainP
btE

= ε =ä

NOTE.  The above formula holds good for compressive force also.

EXAMPLE 6.3.   A steel bar 2 m long, 20 mm wide and 15 mm thick is subjected to a tensile load
of 30 kN. Find the increase in volume, if Poisson’s ratio is 0.25 and Young’s modulus is 200 GPa.

SOLUTION.  Given :  Length (l) = 2 m = 2 × 103 mm ;  Width (b) = 20 mm ;  Thickness (t) = 15 mm;

Tensile load (P) = 30 kN = 30 × 103 N ;  Poisson’s ratio 
1
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.25 or m = 4 and Young’s modulus

of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Let δV = Increase in volume of the bar.
We know that original volume of the bar,

V = l.b.t = (2 × 103) × 20 × 15 = 600 × 103 mm3

and
V

V
δ

= ( ) ( )3

3

30 102 21 1
420 15 (200 10 )

P
btE m

×− = −
× × ×

 = 0.000 25

∴ δV = 0.000 25 × V = 0.000 25 × (600 × 103) = 150 mm3        Ans.

EXAMPLE 6.4.  A copper bar 250 mm long and 50 mm × 50 mm in cross-section is subjected
to an axial pull in the direction of its length. If the increase in volume of the bar is 37.5 mm3, find
the magnitude of the pull. Take m = 4 and E = 100 GPa.

SOLUTION.  Given:  Length (l) = 250 mm ; Width (b) = 50 mm ;  Thickness (t) = 50 mm ;  Increase
in volume (δV) = 37.5 mm3 ;  (m) = 4 and modulus of elasticity (E) = 100 GPa = 100 × 103 N/mm2.

Let P = Magnitude of the pull in kN.

We know that original volume of the copper bar,
V = l.b.t = (250 × 50 × 50) = 625 × 103 mm3

and
V

V
δ

= ( ) ( )3
2 21 1

450 10 (100 10 )
P P

btE m
− = =

× × ×

or 3
37.5

625 10×
= 6500 10

P
×

∴ P =
6

3

37.5 (500 10 )

625 10

× ×
×

 = 30 × 103 N = 30 kN       Ans.

EXAMPLE 6.5.   A steel bar 50 mm × 50 mm in cross-section is 1.2 m long. It is subjected to an
axial pull of 200 kN. What are the changes in length, width and volume of the bar, if the value of
Poisson’s ratio is 0.3? Take E as 200 GPa.
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SOLUTION.  Given : Width (b) = 50 mm ;  Thickness (t) = 50 mm ;  Length (l) = 1.2 m = 1.2 × 103

mm ;  Axial pull (P) = 200 kN = 200 × 103 N ; Poisson’s ratio ( )1
m

 = 0.3 and modulus of elasticity (E)

= 200 GPa = 200 × 103 N/mm2.
Change in length

We know that change in length,

δl =
3 3

3

200 10 (1.2 10 )

(50 50) (200 10 )

P l
AE

× × ×=
× × ×

 = 0.48 mm        Ans.

Change in width
We know that linear strain,

ε = 3
0.48

1.2 10

l
l

δ =
×

 = 0.0004

and lateral strain =
1
m

 × ε = 0.3 × 0.0004 = 0.000 12

∴ Change in width, δb = b × Lateral strain = 50 × 0.000 12 = 0.006 mm        Ans.
Change in volume

We also know that volume of the bar,
V = l.b.t = (1.2 × 103) × 50 × 50 = 3 × 106 mm3

and
V

V
δ

= ( ) 3

3

200 1021
50 50 (200 10 )

P
btE m

×− =
× × ×

 [1 – (2 × 0.3)]

= 0.000 16

∴ δV = 0.000 16 V = 0.00016 × (3 × 106) = 480 mm3       Ans.

6.7. Volumetric Strain of a Rectangular Body Subjected to Three
Mutually Perpendicular Forces

Consider a rectangular body subjected to direct tensile stresses along three mutually perpendicu-
lar axes as shown in Fig. 6.3.

Fig. 6.3.  Volumetric strain

Let σx = Stress in x-x direction,

σy = Stress in y-y direction,
σz = Stress in z-z direction and

E = Young’s modulus of elasticity.

∴ Strain in x-x direction due to stress σx,

εx = x

E
σ

Similarly, εy = y

E

σ
          and          εz = z

E
σ
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The resulting strains in the three directions, may be found out by the principle of superposition,
i.e., by adding algebraically the strains in each direction due to each individual stress.

For the three tensile stresses shown in Fig. 6.3. (taking tensile strains as +ve and compressive
strains as –ve) the resultant strain in x-x direction,

εx = 1y yx z z
xE mE mE E m m

σ σ⎡ ⎤σ σ σ− − = σ − −⎢ ⎥
⎣ ⎦

Similarly, εy =
1y x xz z

yE mE mE E m m

σ σ σσ σ⎡ ⎤− − = σ − −⎢ ⎥⎣ ⎦

and εz =
1y yx xz

zE mE mE E m m

σ σ⎡ ⎤σ σσ − − = σ − −⎢ ⎥
⎣ ⎦

The volumetric strain may then be found by the relation;
V

V
δ

= εx + εy + εz

NOTE.  In the above relation, the values of εx, εy and εz should be taken tensile as positive and compressive as
negative.

EXAMPLE 6.6.  A rectangular bar 500 mm long and 100 mm × 50 mm in cross-section is
subjected to forces as shown in Fig. 6.4.

Fig. 6.4

What is the change in the volume of the bar? Take modulus of elasticity for the bar material as
200 GPa and Poisson’s ratio as 0.25.

SOLUTION.  Given :  Length (l) = 500 mm ;  Width (b) = 100 mm ;  Thickness (t) = 50 mm ;  Force
in x-direction (Px) = 100 kN = 100 × 103 N (Tension) ;  Force in y-direction (Py) = 200 kN = 200 × 103

N (Tension) ;  Force in z-direction (Pz) = 300 kN = 300 × 103 N (Compression) ;  Modulus of
elasticity (E) = 200 GPa = 200 × 103 N/mm2 and Poisson’s ratio (1/m) = 0.25 or m = 4.

Let δV = Change in the volume of the bar.

We know that original volume of the rectangular bar,

V = l × b × t = 500 × 100 × 50 = 2.5 × 106 mm3

and stress in x-x direction,

σx =
3100 10

100 50
x

x

P
A

×=
×  = 20 N/mm2 (Tension)

Similarly, σy =
3200 10

500 50
y

y

P

A
×=
×  = 8 N/mm3 (Tension)

and σz =
3300 10

500 100
z

z

P
A

×=
×  = 6 N/mm2 (Compression)

We also know that resultant strain in x-x direction considering tension as positive and compres-
sion as negative
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εx =
20 8 6 19.5

4 4
yx z

E mE mE E E E E

σσ σ+ − + = + − + =

Similarly εy = 8 20 6 4.5
4 4

y x z

E mE mE E E E E

σ σ σ+ − + = + − + =

and εz = 6 20 8 13
4 4

yxz

E mE mE E E E E

σσσ− − − = − − − = −

We also know that volumetric strain,

V
V
δ

= εx + εy + εz

62.5 10

Vδ
×

= 3
19.5 4.5 13 11 11

200 10E E E E
+ − = =

×
 = 0.055 × 10–3

∴ δV = (0.055 × 10–3) × (2.5 × 106) = 137.5 mm3        Ans.

EXAMPLE 6.7.   A steel cube block of 50 mm side is subjected to a force of 6 kN (Tension), 8
kN (Compression) and 4 kN (Tension) along x, y and z direction respectively. Determine the
change in volume of the block. Take E as 200 GPa and m as 10/3.

SOLUTION.  Given :  Side of the cube = 50 mm ;  Force in x-
direction (Px) = 6 kN = 6 × 103 N (Tension) ;  Force in y-direction
(Py) = 8 kN = 8 × 103 N (Compression) ;  Force in z-direction (Pz)
= 4 kN = 4 × 103 N (Tension) and modulus of elasticity (E) = 200

GPa = 200 × 103 N/mm2 and 
10
3

m =  or   
1 3

10m
=

Let δV = Change in volume of the
block.

We know that original volume of the steel cube,

V = 50 × 50 × 50 = 125 × 103 mm3

and stress in x-x direction,

σx =
36 10

2500
xP

A
×=  = 2.4 N/mm2 (Tension)

Similarly σy =
38 10

2500
yP

A
×=  = 3.2 N/mm2 (Compression)

and σz =
34 10

2500
zP

A
×=  = 1.6 N/mm2 (Tension)

We also know that resultant strain in x-x direction considering tension as positive and compres-
sion as negative,

εx =
3.2 3 1.6 32.4 2.88
10 10

yx z

E mE mE E E E E

σσ σ × ×+ − = + − =

Similarly, εy =
2.4 3 1.6 33.2 4.4
10 10

y x z

E mE mE E E E E

σ σ σ × ×− − − = − − − = −

and εz =
2.4 3 3.2 31.6 1.84
10 10

yxz

E mE mE E E E E

σσσ × ×− + = − + =

Fig. 6.5
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We also know that volumetric strain,

V
V
δ

= εx + εy + εz

3125 10

Vδ
×

= 3
2.88 4.4 1.84 0.32 0.32

200 10E E E E
− + = =

×

∴ δV = 125 × 103 × 3
0.32

200 10×  = 0.2 mm3        Ans.

EXAMPLE 6.8.    A cubical block is subjected to a compressive load (P) in one of the direc-
tions. If the lateral strains, in other two directions are to be completely prevented, by the applica-
tion of another compressive load (P1), then find the value of P1 in terms of P.

SOLUTION.  Given :  A cubical block ABCDEFGH and load on two opposite faces ADHE and
BCGF = P.

Fig. 6.6

We know that when the compressive load (P) is applied on the faces ADHE and BCGF, the other
two faces will be subjected to lateral tensile stress as shown in Fig. 6.6 (a). Now in order to prevent
the lateral strains in the other two directions, we have to apply a compressive load (P1) as shown in
Fig. 6.6 (b).

We also know that lateral strain (εy)

0 = 1
1

1 1x z
y

PPP
E m m E m m

σ σ⎡ ⎤ ⎡ ⎤× σ − − = × − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
...(ä Stresses are directly proportional to loads)

∴ 1
1

PPP
m m

− − = 0          or          ( )1
1 1 1

111
P mP P P P

m m m m
−⎛ ⎞= − = − = ⎜ ⎟

⎝ ⎠

or P1 = 1 1
P m P
m m m

× =
− −         Ans.

EXERCISE 6.1

1. A steel rod 1.5 m long and 20 mm diameter is subjected to an axial pull of 100 kN. Find the
change in length and diameter of the rod, if E = 200 GPa and 1/m = 0.32.

[Ans. 2.4 mm ; 0.01 mm]

2. Determine the changes in length, breadth and thickness of a steel bar 4 m long, 30 mm wide and
20 mm thick, when subjected to an axial pull of 120 kN in the direction of its length. Take E =
200 GPa and Poisson’s ratio 0.3. [Ans. 4 mm ; 0.009 mm ; 0.006 mm]
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3. A steel bar 1.2 m long, 50 mm wide and 40 mm thick is subjected to an axial pull of 150 kN in
the direction of its length. Determine the change in volume of the bar. Take E = 200 GPa
and m = 4. [Ans. 450 mm3]

4. A steel block 200 mm × 20 mm × 20 mm is subjected to a tensile load of 40 kN in the direction
of its length. Determine the change in volume, if E is 205 GPa and 1/m = 0.3.

[Ans. 15.6 mm3]

5. A rectangular bar is subjected to an axial stress σ1, σ2 and σ3 on its sides. Show that the volu-
metric strain,

V
V
δ

= (σ1 + σ2 + σ3) × ( )1 21
E m

−

6.8. Bulk Modulus
When a body is subjected to three mutually perpendicular stresses, of equal intensity, the ratio of

direct stress to the corresponding volumetric strain is known as bulk modulus. It is, denoted by K.
Mathematically bulk modulus,

K =
Direct stress

Volumetric strain V
V

σ= δ

6.9. Relation Between Bulk Modulus and Young’s Modulus
Consider a cube ABCD A1B1C1D1 as shown in Fig. 6.7. Let the

cube be subjected to three mutually perpendicular tensile stresses of
equal intensity.

Let σ = Stress on the faces.

l = Length of the cube, and

E = Young’s modulus for the
material of the block.

Now consider the deformation of one side of cube (say AB)
under the action of the three mutually perpendicular stresses. We
know that this side will suffer the following strains due to the pair of stresses:

1. Tensile strain equal to 
E
σ  due to stresses on the faces BB1 CC1 and AA1 DD1.

2. Compressive lateral strain equal to  due to stresses on faces AA1 BB1 and DD1 CC1.

3. Compressive lateral strain equal to 1
m E

σ×  due to stresses on  faces ABCD and A1 B1 C1 D1.

Therefore net tensile strain, which the side AB will suffer, due to these stresses,

l
l

δ
= ( ) ( ) ( )1 1 21

E m E m E E m
σ σ σ σ− × − × = − ...(i)

We know that the original volume of the cube,

V = l3

Differentiating the above equation with respect to l,

V
l

δ
δ = 3 l2

Fig. 6.7.  Cube ABCD
A1B1C1D1
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or δV = 3 l 2 . δl = 3 l3 × 
l

l
δ

Substituting the value of 
l

l
δ

 from equation (i)

δV = 3 l 3 × ( )21
E m
σ −

or
V

V
δ

= ( ) ( )3

3

3 32 21 1
l

E m E ml

σσ× − = −

∴
V

V

σ
δ = ( )

1 1
3 32 21

E E
m

m m

× = ×
−⎛ ⎞− ⎜ ⎟

⎝ ⎠

or K = 3 ( 2)
m E
m −

EXAMPLE 6.9.  If the values of modulus of elasticity and Poisson’s ratio for an alloy body is
150 GPa and 0.25 respectively, determine the value of bulk modulus for the alloy.

SOLUTION.  Given:  Modulus of elasticity (E) = 150 GPa = 150 × 103 N/mm2 and Poisson’s ratio

( )1
m

 = 0.25          or          m = 4.

We know that value of the bulk modulus for the alloy,

K =
34 (150 10 )

3 ( 2) 3 (4 2)
m E
m

× ×=
− −  = 100 × 103 N/mm2

= 100 GPa        Ans.

EXAMPLE 6.10.  For a given material, Young’s modulus is 120 GPa and modulus of rigidity
is 40 GPa. Find the bulk modulus and lateral contraction of a round bar of 50 mm diameter and
2.5 m long, when stretched 2.5 mm. Take poisson’s ratio as 0.25.

SOLUTION.  Given :  Young’s modulus (E) = 120 GPa = 120 × 103 N/mm2 ;  Modulus of rigidity
(C) = 40 GPa = 40 × 103 N/mm2 ;  Diameter (d) = 50 mm ;  Length (l) = 2.5 m = 2.5 × 103 mm ;  Linear
stretching or change in length (δl) = 2.5 mm and poisson’s ratio  = 0.25 or m = 4.

Bulk modulus of the bar
We know that bulk modulus of the bar,

K =
34 (120 10 )

3 ( 2) 3 (4 2)
m E
m

× ×=
− −  = 80 × 103 N/mm2

= 80 GPa        Ans.
Lateral contraction of the bar

Let δd = Lateral contraction of the bar (or change in diameter)

We know that linear strain,

ε = 3
2.5 1

10002.5 10

l
l

δ = =
×

 = 0.001
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and lateral strain,
d

d
δ

=
1
m  × ε = 0.25 × 0.001 = 0.25 × 10–3

∴ δd = d × (0.25 × 10–3) = 50 × (0.25 × 10–3) = 0.0125 mm        Ans.

6.10. Shear Stress
When a section is subjected to two equal and opposite forces, acting tangentially across the

resisting section, as a result of which the body tends to shear off across the section as shown in Fig.
6.8, the stress induced is called shear stress. The corresponding strain is called shear strain.

Fig. 6.8. Shear stress on a rivet.

Consider a cube of length l fixed at the bottom face AB. Let a force P be applied at the face DC,
tangentially to the face AB. As a result of the force, let the cube be distorted from ABCD to AB C1 D1
through an angle φ as shown in Fig. 6.9. We know that

Shear strain =
Deformation

Original length

= 1CC
l

= φ

and shere stress, τ =
P

AB

6.11. Principle of Shear Stress
It states, “A shear stress across a plane, is always accompanied by a balancing shear stress

across the plane and normal to it.”

Proof

Consider a rectangular block ABCD, subjected to a shear stress of
intensity τ on the faces AD and CB as shown in Fig. 6.10. Now consider
a unit thickness of the block. Therefore force acting on the faces AD
and CB,

P = τ × .AD = τ × CB

A little consideration will show that these forces will form a couple,
whose moment is equal to τ × AD × AB i.e., force × distance. If the
block is in equilibrium, there must be a restoring couple, whose mo-
ment must be equal to this couple. Let the shear stress of intensity τ be
set up on the faces AB and CD as shown in Fig. 6.10. Therefore forces
acting on the faces AB and CD,.

P = τ′ × AB = τ′ × CD

Fig. 6.9. Shear strain.

Fig. 6.10.  Princciple of
         shear stress
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We see that these forces will also form a couple, whose moment is equal to τ′ × AD × AB i.e.,
force × distance. Equating these two moments, we get

τ × AD × AB = τ′ × AD × AB

or τ =  τ′
As a result of the two couples formed by the shear forces, the diagonal BD of the block will be

subjected to tension whereas the diagonal AC will be subjected to compression. A little consideration
will show that if the block material is poor in tension, it will fail due to excessive tensile stress across
the diagonal BD. Similarly if the block material is poor in compression, it will fail due to excessive
compressive forces across the diagonal AC.
NOTE. The stress τ′ is called complementary shear. The two stresses (i.e., τ and τ′) at right angles to each other

constitute a state of simple shear.

6.12. Shear Modulus or Modulus of Rigidity
It has been experimentally found that within the elastic limit, the shear stress is proportional to

the shear strain. Mathematically

τ ∝ φ
or τ = C × φ

or
τ
φ = C (or G or N)

where τ = Shear stress,
φ = Shear strain, and
C = A constant, known as shear modulus or modulus of rigidity.

It is also denoted by G or N.

TABLE 6.2.
The values of modulus of rigidity of materials in every day use are given below :

S. No. Material Modulus of rigidity (C)
in GPa i.e., GN/m2 or kN/mm2

1. Steel 80 to 100

2. Wrought iron 80 to 90

3. Cast iron 40 to 50

4. Copper 30 to 50

5. Brass 30 to 60

6. Timber 10

6.13. Relation Between Modulus of Elasticity and Modulus of Rigidity

Fig. 6.11

Consider a cube of length l subjected to a shear stress of τ as shown in Fig. 6.11 (a). A little
consideration will show that due to these stresses the cube is subjected to some distortion, such that
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the diagonal BD will be elongated and the diagonal AC will be shortened. Let this shear stress t cause
shear strain φ as shown in Fig. 6.11 (b). We see that the diagonal BD is now distorted to BD1.

∴ Strain of BD = 1BD BD
BD

−
... Strain

l
l

δ⎛ ⎞=⎜ ⎟
⎝ ⎠
ä

= 1 2 1 1cos 45
2 22

D D DD DD
BD ADAD

° φ= = =

Thus we see that the linear strain of the diagonal BD is half of the shear strain and is tensile in
nature. Similarly it can be proved that the linear strain of the diagonal AC is also equal to half of the
shear strain, but is compressive in nature. Now this linear strain of the diagonal BD.

= 2 2C
φ τ= ...(i)

where τ = Shear stress and

C = Modulus of rigidity.
Let us now consider this shear stress t acting on the sides AB, CD, CB and AD. We know that the

effect of this stress is to cause tensile stress on the diagonal BD and compressive stress on the diago-
nal AC. Therefore tensile strain on the diagonal BD due to tensile stress on the diagonal BD

=
E
τ

...(ii)

and the tensile strain on the diagonal BD due to compressive stress on the diagonal AC

=
1
m E

τ× ...(iii)

The combined effect of the above two stresses on the diagonal BD

= ( ) 11 11
m

E m E E m E m
+⎛ ⎞τ τ τ τ+ × = + = ⎜ ⎟

⎝ ⎠
...(iv)

Equating equations (i) and (iv),

2C
τ =

1m
E m

+⎛ ⎞τ
⎜ ⎟
⎝ ⎠

          or          
2 ( 1)

m E
C

m
=

+
EXAMPLE 6.11.  An alloy specimen has a modulus of elasticity of 120 GPa and modulus of

rigidity of 45 GPa. Determine the Poisson’s ratio of the material.

SOLUTION.  Given :  Modulus of elasticity (E) = 120 GPa and modulus of rigidity (C) = 45 GPa.

Let 1
m

= Poisson’s ratio of the material.

We know that modulus of rigidity (C),

45 =
120 120

2( 1) 2 ( 1) 2 2
m E m m
m m m

×= =
+ + +

90 m + 90 = 120 m          or          30 m = 90

∴ m =
90 3
30

=         or          
1 1

3m
=         Ans.

EXAMPLE 6.12.  In an experiment, a bar of 30 mm diameter is subjected to a pull of 60 kN.
The measured extension on gauge length of 200 mm is 0.09 mm and the change in diameter is
0.0039 mm. Calculate the Poisson’s ratio and the values of the three moduli.

SOLUTION.  Given :  Diameter (d) = 30 mm ;  Pull (P) = 60 kN = 60 × 103 N ;  Length (l ) = 200
mm;  Extension (δl) = 0.09 mm and change in diameter (δd) = 0.0039 mm.
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Poisson’s ratio
We know that linear strain,

ε =
0.09
200

l
l

δ =  = 0.000 45

and lateral strain =
0.0039

30
d

d
δ =  = 0.000 13

We also know that Poisson’s ratio,

m
1

=
Lateral strain 0.00013
Linear strain 0.000 45

=  = 0.289        Ans.

Values of three moduli
Let E = Value of Young’s modulus.
We know that area of the bar,

A =
4
π

 × (d)2 = 
4
π

 (30)2 = 706.9 mm2

and extension of the bar (δl),

0.09 =
3 3. (60 10 ) 200 17 10

. 706.9
P l
A E E E

× × ×= =

∴ E = 17 × 103/0.09 = 188.9 × 103 N/mm2 = 188.9 GPa        Ans.
We know from the value of Poisson’s ratio that

m =
1

0.289  = 3.46

and value of modulus of rigidity,

C =
3. 3.46 (188.9 10 )

2 ( 1) 2 (3.46 1)
m E
m

× ×=
+ + N/mm2

= 73.3 × 103 N/mm2 = 149.2 GPa        Ans.
We also know that the value of bulk modulus,

K =
3. 3.46 (188.9 10 )

3 ( 2) 2 (3.46 2)
m E
m

× ×=
− −  N/mm2

= 149.2 × 103 N/mm2 = 149.2 GPa        Ans.

EXERCISE 6.2

1. A steel plate has modulus of elasticity as 200 GPa and Poisson’s ratio as 0.3. What is the value
of bulk modulus for the steel plate? [Ans. 166.7 GPa]

2. In an experiment an alloy bar 1 m long and 20 mm × 20 mm in section was tested to increase
through 0.1 mm, when subjected to an axial tensile load of 6.4 kN. If the value of bulk modulus
for the bar is 133 GPa, find the value of Poisson’s ratio. [Ans. 0.3]

3. What is the value of modulus of rigidity of a steel alloy, if its modulus of elasticity is 180 GPa
and Poisson’s ratio is 0.25? [Ans. 72 GPa]

4. An alloy bar has bulk modulus as 150 GPa and Poisson’s ratio as 0.3. Find its modulus of
rigidity. [Ans. 69.2 GPa]

5. A round bar 40 mm diameter is subjected to an axial pull of 80 kN and reduction in diameter
was found to be 0.007 75 mm. Find Poisson’s ratio and Young’s modulus for the material of the
bar. Take value of shear modulus as 40 GPa. [Ans. 0.322 ; 105.7 GPa]
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QUESTIONS

1. Explain the difference between ‘primary strain’ and ‘secondary strain’.
2. Define Poisson’s ratio.

3. Derive a relation for the volumetric strain of a body.

4. Prove

E = ( )23 1K
m

−

where E = Young’s modulus,

K = Bulk modulus, and

1
m

= Poisson’s ratio

5. Define shear stress and state the principle of shear stress.
6. Explain clearly the term modulus of rigidity.

7. Derive a relation between modulus of elasticity and modulus of rigidity.

OBJECTIVE TYPE QUESTIONS

1. The ratio of lateral strain to the linear strain is called
(a) modulus of elasticity  (b) modulus of rigidity

(c) bulk modulus  (d) Poisson’s ratio

2. The value of Poisson’s ratio for steel varies from
(a) 0.20 to 0.25 (b) 0.25 to 0.35 (c) 0.35 to 0.40 (d) 0.40 to 0.55

3. When a rectangular bar is subjected to a tensile stress, then the volumetric strain is equal to

(a)
21
m

⎡ ⎤ε −
⎢ ⎥⎣ ⎦

(b) 21
m

⎡ ⎤ε +
⎢ ⎥⎣ ⎦

(c) 12 s
m

⎡ ⎤ε −
⎢ ⎥⎣ ⎦

(d) 12
m

⎡ ⎤ε −
⎢ ⎥⎣ ⎦

where ε = Linear strain for the bar, and

1/m = Poisson’s ratio for the bar material.

4. The bulk modulus of a body is equal to

(a)
3( 2)

m E
m − (b)

3( 2)
m E
m +

(c)
2 ( 2)

m E
m −

(d)
2 ( 2)

m E
m +

ANSWERS

1. (a) 2. (b) 3. (a) 4. (a)
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5. Types of Loading.

6. Strain Energy Stored in a Body
when the Load is Gradually
Applied.

7. Strain Energy Stored in a Body,
when the load is Suddenly Applied.

8. Strain Energy Stored in a  Body,
when the load is Applied with
Impact.

9. Strain Energy Stored in a Body of
varying section.

10. Strain Energy stored in a Body due
to Shear Stress.

8.1. Introduction
We have studied in Chapter 2 that whenever

some load is attached to a hanging wire, it extends
and the load moves downwards by an amount
equal to the extension of the wire. A little
consideration will show that when the load moves
downwards, it loses its *potential energy. This
energy is absorbed ( or stored ) in the stretched
wire, which may be released by removing the load.
On removing the load, the wire will spring back
to its original position. This energy, which is
absorbed in a body, when strained within its elastic

* It is the energy possessed by a body by virtue of
its position.

8C h a p t e r
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limit, is known as strain energy. It has been experimentally found that this strain energy is always
capable of doing some work. The amount of strain energy, in a body is found out by the principal of
work. Mathematically

Strain energy = Work done

8.2. Resilience
It is a common term used for the total strain energy stored in a body. Sometimes the resilience is

also defined as the capacity of a strained body for doing work (when it springs back) on the removal of
the straining force.

8.3. Proof Resilience
It is also a common term, used for the maximum strain energy, which can be stored in a body. (This

happens when the body is stressed up to the elastic limit). The corresponding stress is known as proof stress.

8.4. Modulus of Resilience
The proof resilience per unit volume of a material, is known as modulus of resilience and is an

important property of the material.

8.5. Types of Loading
In the previous chapter, we have solved the problems on the assumption that the load applied was

gradual. But in actual practice, it is not always possible that the load may act gradually. As a matter of
fact, a load may act in either of the following three ways:

1. gradually. 2. suddenly. 3.  with impact.
Now in the succeeding pages, we shall discuss the work done, or in other words strain energy

stored in a body, when loaded in any one of the above mentioned loadings.

8.6. Strain Energy Stored in a Body, when the Load is Gradually
Applied

It is the most common and practical way of loading a body, in which the loading starts from zero
and increases gradually till the body is fully loaded. e.g., when we lower a body with the help of a
crane, the body first touches the platform on which it is to be placed. On further releasing the chain,
the platform goes on loading till it is fully loaded by the body. This is the case of a gradually applied
load. Now consider a metallic bar subjected to a gradual load.

Let P = Load gradually applied,
A = Cross-sectional area of the bar,

l = Length of the bar,

E = Modulus of elasticity of the bar material and
δ = Deformation of the bar due to load.

Since the load applied is gradual, and varies from zero to P, therefore the average load is equal to 
2
P

∴ Work done = Force × Distance

= Average load × Deformation

= ( . )
2 2
P Pl l× δ = ε ...(ä δl = ε . l)

=
1
2

 σ . ε A . l ...(ä P = σ A)
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=
1
2

 × Stress × Strain × Volume

=
1
2

Al
E
σ× σ × × ...(ä 

E
σε = )

=
21

2
Al

E
σ× ×

Since the strain energy stored is also equal to the work done, therefore strain energy stored,

U =
2

2
Al

E
σ ×

2

2
V

E
σ= × ...(ä Al = Volume = V)

We also know that modulus of resilience
= Strain energy per unit volume

=
2

2E
σ

EXAMPLE 8.1.    Calculate the strain energy strored in a bar 2 m long, 50 mm wide and 40 mm
thick when it is subjected to a tensile load of 60kN. Take E as 200 GPa.

SOLUTION.  Given : Length of bar (l) = 2 m = 2 × 103 mm ;  Width of bar (b) = 50 mm ;  Thickness
of bar (t) = 40 mm ;  Tensile load on bar (P) = 60 kN = 60 × 103 N and modulus of elasticity (E) = 200
GPa = 200 × 103 N/mm2

We know that stress in the bar,

σ =
360 10

50 40
P
A

×=
×  = 30 N/mm2

∴ Strain energy stored in the bar,

U =
22

3
(30)

2 2 (200 10 )
V

E
σ × =

× ×  × 4 × 106 N-mm

= 9 × 103 N-mm = 9 kN-mm        Ans.

8.7. Strain Energy Stored in a Body when the Load is Suddenly
Applied

Sometimes in factories and workshops, the load is suddenly applied on a body. e.g., when we
lower a body with the help of a crane, the body is, first of all, just above the platform on which it is to
be placed. If the chain breaks at once at this moment the whole load of the body begins to act on the
platform. This is the case of a suddenly applied load. Now consider a bar subjected to a sudden load.

P = Load applied suddenly,
A = Cross-sectional area of the bar,

l = Length of the bar,

E = Modulus of elasticity of the material,
δ = Deformation of the bar, and

σ = Stress induced by the application of the sudden load

Since the load is applied suddenly, therefore the load (P) is constant throughout the process of
deformation of the bar.

∴ Work done = Force × Distance = Load × Deformation ...(i)

= P × δl
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We know that strain energy stored,

U =
2

2
σ × Al
E

...(ii)

Since the strain energy stored is equal to the work done, therefore
2

2
Al

E
σ × = P × δl = P × l

E
σ

... ( )l l
E
σδ =

or σ = 2 × 
P
A

It means that the stress induced in this case is twice the stress induced when the same load is
applied gradually. Once the stress (σ), is obtained, the corresponding instantaneous deformation (δl)
and the strain energy may be found out as usual.

EXAMPLE 8.2.  An axial pull of 20 kN is suddenly applied on a steel rod 2.5 m long and
1000 mm2 in cross-section. Calculate the strain energy, which can be absorbed in the rod. Take
E = 200 GPa.

SOLUTION.  Given : Axial pull on the rod (P) = 20 kN = 20 × 103 N ;  Length of rod (l) = 2.5 m
= 2.5  × 103 mm ;  Cross-sectional area of rod (A) =1000 mm2 and modulus of elasticity (E) = 200
GPa = 200 × 103 N/mm2.

We know that stress in the rod, when the load is suddenly applied,

σ =
220 10

2 2
1000

P
A

×× = ×  = 440 N/mm2

and volume of the rod,
V = l . A = (2.5 × 103) × 1000 = 2.5 × 106 mm3

∴ Strain energy which can be absorbed in the rod,

U =
22

3
(40)

2 2 (200 10 )
V

E
σ × =

× ×
 × (2.5 × 106) N-mm

= 10 × 103 N-mm = 10 kN-mm        Ans.

EXAMPLE 8.3 A steel rod of 28 mm diameter is 2.5 m long. Find the maximum instantaneous
stress and work done at maximum elongation, when an axial load of 50 kN is suddenly applied to
it. Also calculate the maximum dynamic force in the rod. Take E = 200 GPa.

SOLUTION.  Given : Diameter of rod (d) = 28 mm ;  Length of rod (l) = 2.5 m  = 2.5 × 103 mm ;
Axial load on rod (P) = 50 kN = 50 × 103 N and modulus of elasticity (E) = 200 GPa = 200 × 103

N/mm2.

Maximum Instantaneous stress
We know that cross-sectional area of rod,

A =
4
π

 × (d)2 = 
4
π

 × (28)2 = 615.8 mm2

and maximum instantaneous stress, when the load is suddenly applied,

σmax =
350 10

2 2
615.8

P
A

×× = ×  = 162.4 N/mm2 = 162.4 MPa        Ans.

Work done at maximum elongation
 We know that maximum elongation,

δl =
3

3

1 162.4 (2.5 10 )

200 10
max

E
σ × × ×=

×
 = 2.03 mm
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and work done = P × δl = (50 × 103) × 2.03 = 101.5 × 103 N-mm
= 101.5 kN-mm         Ans.

Maximum dynamic force
We also know that maximum dynamic force,

= A × σmax = 615.8 × 162.4 = 100 × 103 N = 100 kN        Ans.

8.8. Strain Energy Stored in a Body, when the Load is Applied
with Impact

Sometimes in factories and workshops, the impact load  is applied
on a body e.g., when we lower a body with the help of a crane, and the
chain breaks while the load is being lowered the load falls through a
distance, before it touches the platform. This is the case of a load applied
with impact.

Now consider a bar subject to a load applied with impact as shown
in Fig 8.1.

 Let P = Load applied with impact,

A = Cross-sectional area of the bar,

E = Modulus of elasticity of the bar material,
l = Length of the bar,

δl = Deformation of the bar, as a result of this load,

σ = Stress induced by the application of this load
with impact, and

h = Height through which the load will fall, before impacting on the collar of the bar.

∴ Work done = Load × Distance moved

= P (h + δl)

and energy stored,U =
2

2
Al

E
σ ×

Since energy stored is equal to the work done, therefore

2

2E
σ  × Al = P (h + δl) = ( ).P h l

E
σ+ ... ( ).l l

E
σδ =∵

2

2E
σ  × Al = Ph + 

P l
E
σ

∴ σ2

2
Al Pl

P h
E E

⎛ ⎞ ⎛ ⎞− σ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 0

Multiplying both sides by ( ) ,E
Al

( )2

2
P E hP

A Al
σ − σ − = 0

This is a quadratic equation. We know that

σ = ( ) ( )2 14
2

P E hP P
A A Al

⎛ ⎞± + × ⎜ ⎟
⎝ ⎠

Fig. 8.1
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=
2

1 1
AE hP

A Pl

⎡ ⎤
± +⎢ ⎥

⎣ ⎦

Once the stress (σ)is obtained, the corresponding instantaneous deformation (δl) or the strain
energy stored may be found out as usual.

Cor.  When δ is very small as compared to h, then
Work done = Ph

∴
2

2E
σ  Al = Ph

or σ2 =
2 E Ph

Al

∴ σ =
2 E P h

Al

EXAMPLE 8.4. A 2 m long alloy bar of 1500 mm2 cross-sectional area hangs vertically
and has a collar securely fixed at its lower end. Find the stress induced in the bar, when a
weight of 2 kN falls from a height of 100 mm on the collar. Take E = 120 GPa. Also find the
strain energy stored in the bar.

SOLUTION.  Given : Length of bar (l) = 2 m = 2 × 103 mm ;  Cross-sectional area of bar (A) = 1500
mm2 ;  Weight falling on collar of bar (P) = 2 kN = 2 × 103 N ;  Height from which weight falls (h) =
100 mm and modulus of elasticity (E) = 120 GPa = 120 × 103 N/mm2.
Stress induced in the bar

We know that in this case, extension of the bar will be small and negligible as compared to the
height (h) from where the weight falls on the collar (due to small value of weight i.e., 2 kN and a large
value of h i.e., 100 mm). Therefore stress induced in the bar

σ =
3 3

3

2 2 (120 10 ) (2 10 ) 100
. 1500 (2 10 )

E P h
A l

× × × × ×=
× ×  N/mm2

= 126.5 N/mm2 = 126.5 MPa        Ans.
Strain energy stored in the bar

We also know that volume of the bar,

V = l . A = (2 × 103) × 1500 = 3 × 106 mm3

and strain energy stored in the bar,

U =
22

2
(126.5)

2 2 (120 10 )
V

E
σ × =

× ×
 × (3 × 106) N-mm

= 200 × 103 N-mm = 200 N-m        Ans.

EXAMPLE 8.5. A steel bar 3 m long and 2500 mm2 in area hangs vertically, which is securely
fixed on a collar at its lower end. If a weight of 15 kN falls on the collar from a height of 10 mm,
determine the stress developed in the bar. What will be the strain energy stored in the bar? Take E
as 200 GPa.

SOLUTION.  Given : Length of bar (l) = 3 m = 3 × 103 mm ;  Area of bar (A) = 2500 mm2 ;  Weight
falling on collar of bar (P) = 15 kN = 15 × 103 N ;  Height from which weight falls (h) = 10 mm and
modulus of elasticity (E) = 200 GPa = 20 × 103 N/mm2.
Stress developed in the bar

We know that in this case, extension of the bar will be considerable as compared to the height (h)
from where the weight falls on the collar (due to a large value of weight i.e., 15 kN and a small value
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of h = 10 mm). Therefore stress developed in the bar,

σ =
2

1 1
AE hP

A Pl

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦

=

3 3

3 3

15 10 2 2500 (200 10 ) 10
1 1

2500 (15 10 ) (3 10 )

⎡ ⎤× × × × ×
⎢ ⎥+ +

× × ×⎢ ⎥⎣ ⎦
 N/mm2

= 6 ( 1 + 14.9) = 95.4 N/mm2 = 95.4 MPa        Ans.
Strain energy stored in the bar

We know that volume of the bar,

V = l . A = ( 3 × 103) × 2500 = 7.5 × 106 mm3

and strain energy stored in the bar,

U =
22

3
(95, 4)

2 2 (200 10 )
V

E
σ × =

× ×
 × 7.5 × 106 N-mm

= 170.6 × 103 N-mm = 170.6 N-m        Ans.

EXAMPLE 8.6.   A copper bar of 12 mm diameter gets stretched by 1 mm under a steady load
of 4 kN. What stress would be produced in the bar by a weight 500 N, the weight falls through 80
mm before striking the collar rigidly fixed to the lower end of the bar ? Take Young’s modulus for
the bar material as 100 GPa.

SOLUTION.  Given : Diameter of bar (d) = 12 mm ;  Change in length of bar (δl) = 1 mm ;  Load on
bar (P1) = 4 kN = 4 × 103 N ;  Weight falling on collar (P2) = 500 N ;  Height from which weight falls
(h) = 80 mm and modulus of elasticity (E) = 100 GPa = 100 × 103 N/mm2

Let l =  Length of the copper bar.

We know that cross-sectional area of the bar,

A =
4
π

 × (d)2 = 
4
π

 × (12)2 = 113.1 mm2

and stretching of the bar (δl),

l =
3

3 3

. (4 10 )
. 113.1 (100 10 ) 2.83 10

×= =
× × ×

P l l
A E

∴ l = 1 × (2.83 × 103) = 2.83 × 103 mm

We also know that stress produced in the bar by the falling weight.

σ = 2

2

2
1 1

P A E h
A P l

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠

=
3

3

2 113.1 (100 10 ) 801500 1 1
113.1 500 (2.83 10 )

⎛ ⎞× × × ×
⎜ ⎟+ +
⎜ ⎟× ×⎝ ⎠

 N/mm2

= 4.2 (1 + 35.77) = 162.52 N/mm2 = 162.52 MPa        Ans.

EXAMPLE 8.7.    An unknown weight falls through 10 mm on a collar rigidly attached to the lower
end of a vertical bar 4 m long and 600 mm2 in section. If the maximum instantaneous extension is known
to be 2 mm, what is the corresponding stress and the value of unknown weight. Take E = 200 GPa.

SOLUTION.  Given : Height from which weight falls (h) = 10 mm ;  Length (l ) = 4 m = 4 × 103 mm;
Cross-sectional area of bar (A) = 600 mm2 ;  Instananeous extension (δl) = 2 mm and modulus of
elasticity (E) = 200 GPa = 200 × 103 N/mm2.
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Stress in the bar
Let σ = Stress in the bar in N/mm2.

We know that instantaneous extension of the bar (δl),

2 =
3

3

. (4 10 )
50200 10

l
E

σ σ × × σ= =
×

σ = 2 × 50 = 100 N/mm2 = 100 MPa        Ans.
Value of unknown weight

Let P = Value of the unknown weight in N.

We also know that the stress (σ),

100 =
2

1 1
A E hP

A P l

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠

=
3

3

2 600 (200 10 ) 10
1 1

600 (4 10 )
P

P

⎛ ⎞× × × ×
⎜ ⎟+ +
⎜ ⎟× ×⎝ ⎠

100 600
P
×

=
3600 10

1 1
P
×+ +

360 10
1

P
× − =

3600 10
1

P
×+

Squaring both sides of the equation,
6 3

2

3600 10 120 10
1

PP

× ×+ − =
3600 10

1
P
×+

33600 10×
P

= 600 + 120 = 720

P =
3(3600 10 )

720
×

 = 5 × 103 N = 5 kN        Ans.

EXERCISE 8.1

1. Calculate the strain energy that can be stored in a steel bar 2.4 m long and 1000 mm2 cross-
sectional area, when subjected to a tensile stress of 50 MPa. Take E = 200 GPa.

[Ans. 15 kN-mm]
2. A mild steel rod 1 m long and 20 mm diameter is subjected to an axial pull of 62.5 kN. What is

the elongation of the rod, when the load is applied (i) gradually. and (ii) suddenly. Take E as
200 GPa [Ans. 1mm ;  2mm]

3. Find the maximum stress and strain energy stored in a 2 m long and 25 mm diameter bar, when
an axial pull of 15 kN is suddenly applied on it. Take E as 100 GPa.

[Ans. 61.1 MPa ;  18.3 kN-mm]

4. A steel bar 3 m long is 500 mm2 in cross-sectional area. What is the instantaneous stress produced
in the bar, due to an axial pull, when its extension was observed to be 1.5 mm? Also find
magnitude of the axial pull. Take modulus of elasticity as 200 GPa. [Ans. 100 MPa ;  25 kN]

5. An alloy bar 1.5 m long and of 1206 mm2 cross-sectional area has a collar securely fixed at its
lower end. Find the stress induced in the bar, when a load of 500 N falls from a height of 100
mm on the collar. Take E = 150 GPa. [Ans. 91.3 MPa]

Hint :  Extension of the bar will be negligible as compared to the height (100 mm).
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6. A load of 10 kN falls freely through a height of 12.5 mm on to a collar attached to the end of a
vertical rod 50 mm diameter and 3 m long, the upper end being fixed to the ceiling. What is the
maximum stress induced in the bar? Take E for the rod material as 120 GPa.  [Ans. 76.6 MPa]

8.9. Strain Energy Stored in a Body of Varying Section
Sometimes, we come across bodies of varying section. The strain energy in such a body is obtained

by adding the strain energies stored in different parts of the body. Mathematically total strain energy
stored in a body.

U = U1 + U2 + U3 + .......

Where U1 = Strain energy stored in part 1,
U2 = Strain energy stored in part 2,

U3 = Strain energy stored in part 3.
NOTE. The above relation is also used for finding strain energy stored in a composite body.

EXAMPLE 8.8.   A non-uniform tension bar 5 m long is made up of two parts as shown in
Fig 8.2.

Fig. 8.2

Find the total strain energy stored in the bar, when it is subjected to a gradual load of 70 kN.
Also find the total strain energy stored in the bar, when the bar is made of uniform cross-section
of the same volume under the same load. Take E = 200 GPa.

SOLUTION.  Given : Total length of bar (L) = 5 m = 5 × 103 mm ;  Length of part 1 (L1) = 3 m =
3 × 103 mm ;  Length of part 2 (L2) = 2 m = 2 × 103 mm ;  Area of part 1 (A1) = 1000 mm2 ;  Area
of part 2 (A2) = 2000 mm2 ;  Pull (P) = 70 kN = 70 × 103 N and modulus of elasticity (E) = 200 GPa
= 200 × 103 N/mm2

Total strain energy stored in the non-uniform bar
We know that stress in the first part,

σ1 =
3

1

70 10
1000

P
A

×=  = 70 N/mm2

and volume of the first part,

V1 = (3 × 103) × 1000 = 3 × 106 mm3

∴ Strain energy stored in the first part,

U1 =
2 2
1

1 3
(70)

2 2 (200 10 )
V

E
σ × =

× ×
 × (3 × 106) = 36.75 × 103 N-mm

...(i)
Similarly, stress in the second part,

σ2 =
3

2

70 10
2000

P
A

×=  = 35 N/mm2
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and volume of the second part,

V2 = (2 × 103) × 2000 = 4 × 106 mm3

∴ Strain energy stored in the second part,

U2 =
2 2
2

2 3
(35)

2 2 (200 10 )
V

E
σ × =

× ×
 × (4 × 106) = 12.25 × 103 N-mm

...(ii)
and total strain energy stored in the non-uniform bar,

U = U1 + U2 = (36.75 ×103) + (12.25 × 103) = 49 × 103 N= mm = 49 N-m        Ans.
Total strain energy in the uniform bar

We know that total volume of the bar,
V = V1 + V2 = (3 × 106) + (4 × 106) = 7 × 106 mm3

and cross-sectional area of the circular bar,

A =
6

3

Volume of the bar 7 10
Length of the bar 5 10

×=
×  = 1400 mm2

∴ Stress in the bar

σ =
370 10

1400
×

 = 50 N/mm2

and strain energy storad in the uniform bar,

U =
22

3

(50)
2 2 (200 10 )

V
E

σ × =
× ×

 × (7 × 106) = 43.75 × 103 N-mm

= 43.75 N-m        Ans.

EXAMPLE 8.9.  Two similar round bars A and B are each 300 mm long as shown in Fig 8.3.

The bar A receives an axial blow, which produces a maximum stress of 100 MPa. Find the
maximum stress produced by the same blow on the bar B. If the bar B is also stressed to 100 MPa,
determine the ratio of energies stored by the bars B and A.

SOLUTION.  Given : Total Length of the bars = 300 mm ;  Maximum stress in bar A in 20 mm
diameter portion (σA) 100 MPa = 100 N/mm2.

Bar-A Bar-B
Fig. 8.3

Maximum stress in the bar B
Let σB = Maximum stress produced in the bar B (in 20 mm diameter

portion)
E = Young’s modulus  for both the bars.
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We know that the area of 20 mm diameter portion,

A1 =
4
π

 × (20)2 = 100 π mm2

and area of 40 mm diameter portion,

A2 =
4
π

 × (40)2 = 400 π mm2

From the geometry of the figure, we find that stress in the 40 mm diameter of the bar A,

=
100

4
 = 25 N/mm2

and stress in the 40 mm diameter of the bar B

=
4
Bσ

 N/mm2

We know that energy stored in the bar A,

UA =
2 2

2 2
V

E E
σ σ× =  (l . A)

= [ ] [ ]
2 2(100) (25)

100 (100 ) 200 (400 )
2 2E E

× π + × π

=
675 10

E
× π

...(i)

and energy stored in the bar B,

UB = [ ] [ ]
2 2( / 4)

200 100 ) 100 (400 )
2 2

B B

E E
σ σ× π + × π

=
3 211.25 10 B

E
× πσ

...(ii)

Since the blow on both the bars A and B is the same, therefore energies stored in both the bars is
equal. Now equating equation (i) and (ii),

675 10
E

× π
=

3 211.25 10 B

E
× π σ

or 75 × 103 = 11.25 σ2
B

∴ σB = 3(75 10 ) /11.25×  = 81.6 N/mm2 = 81.6 MPa        Ans.

Ratio of energies stored by the bars B and A
We know that energies stored in the bar B, when it is also stressed to 100 MPa (i.e., 100 N/mm2).

UB =
3 2 3 2 611.25 10 11.25 10 (100) 112.5 10B

E E E
× π σ × π × × π= =

∴ Ratio of energies stored by the bars B and A,

=

6

6

112.5 10
112.5

7575 10
B

A

U E
U

E

× π
= =

× π
 = 1.5        Ans.

EXAMPLE 8.10.  A vertical tie fixed rigidly at the top, consists of a steel rod 2.5 m long and
20 mm diameter encased throughout in a brass tube 20 mm internal diameter and 30 mm external
diameter. The rod and casing are fixed together at both ends. The compound rod is suddenly
loaded in tension by a weight of 10 kN falling through 3 mm before being arrested by the tie.

Calculate the maximum stress in steel and brass. Take ES  = 200 GPa and EB = 100 GPa.
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SOLUTION.  Given : Length of rod (l) = 2.5 m = 2.5 × 103 mm ;  Load (P) = 10 kN = 10 × 103 N;
Height through which load falls (h) = 3 mm ;  Modulus of elasticity of steel (ES) = 200 GPa = 200 ×
103N/mm2 and modulus of elasticity of brass (EB) = 100 GPa = 100 N/mm2.

Let σS = Maximum stress in steel and

σB = Maximum stress in brass

We know that area of steel rod,

AS =
2(20)

4
π

 = 100 π mm2

and area of brass tube,

AB =
4
π

[(30)2 – (20)2] = 125 π mm2

We also know that stress in steel,

σS =
200 2
100

S
B B B

B

E
E

× σ = × σ = σ

∴ Strain energy stored in the steel rod,

US =
2 2

3
2

(2 )
(100 ) (2.5 10 )

2 2 (200 10 )
S B

S
S

V
E

σ σ ⎡ ⎤× = π × ×
⎣ ⎦× ×

= 7.854 σ2
B

and strain energy stored in the brass tube,

UB =
2 2

3
3

(125 ) (2.5 10 )
2 2 (100 10 )

B B
B

B

V
E

σ σ ⎡ ⎤× = π × ×
⎣ ⎦× ×

= 4.909 σ2
B

We know that work done by the falling weight (or loss of potential energy of the falling weight)

= P (h + δl) = 10 × 103 
3

3

(2.5 10 )
3

100 10
B

⎛ ⎞σ × ×
+⎜ ⎟

⎜ ⎟×⎝ ⎠

= (30 × 103) + (250 × σB)

We also know as per the principle of work that work done by the falling weight = Energy stored
by steel + Energy stored by brass,

(30 × 103) + (250 × σB) = 7.854 σ2
B + 4.909 σ2

B = 12.763 σ2
B

12.763 σ2
B – 250 σB – 30 × 103 = 0

or σ2
B – 19.6 σB – 2.35 × 103 = 0

This is a quadratic equation. Therefore

σB =
2 319.6 ( 19.6) 4 ( 2.35 10 ) 19.6 99

2 2
± − − × − × +=  N/mm2

= 59.3 N/mm2 = 59.3 MPa        Ans.
σS = 2σB = 2 × 59.3 = 118.6 MPa        Ans.

Fig. 8.4
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8.10. Strain Energy Stored in a Body due to Shear Stress
Consider a cube ABCD of length l fixed at the bottom face AB as shown in Fig 8.5.
Let P = Force applied tangentially on the face DC,

τ = Shear stress

φ = Shear strain, and
N = Modulus of rigidity or

shear modulus.

If the force P is applied gradually then the average force
is equal to P/2.

∴ Work done = Average force ×
Distance

=
2
P

× DD1

=
1
2

× P × AD × φ ...(ä DD1 = AD × φ)

=
1
2

× τ × DC × l × AD × φ ...(ä P = τ × DC × l)

=
1
2

× τ × φ × DC × AD × l

=
1
2

 (stress × strain × volume)

=
1
2

V
N
τ× τ × × ... ( )N

τφ =∵

=
2

2
V

N
τ × ...(where V is the volume)

Since energy stored is also equal to the work done, therefore energy stored,

U =
2

2
V

N
τ ×

We also know that modulus of resilience

= Strain energy per unit volume

=
2

2 N
τ

EXAMPLE 8.11.  A rectangular body 500 mm long, 100 mm wide and 50 mm thick is subjected
to a shear stress of 80 MPa. Determine the strain energy stored in the body. Take N = 85 GPa.

SOLUTION.  Given :  Length of rectangular body (l) = 500 mm ;  Width of rectangular body (b) =
100 mm ;  Thickness of rectangular body (t) = 50 mm ;  Shear stress (τ) = 80 MPa = 80 N/mm2 and
modulus of rigidity (N) = 85  N/mm2.

We know that volume of the bar,
V = l.b.t = 500 × 100 × 50 = 2.5 × 106 mm3

and strain energy stored in the body,

U =
22

3
(80)

2 2 (85 10 )
V

N
τ × =

× ×
 × 2.5 × 106 N-mm

= 94.1 × 103 N-mm = 94.1 N-m        Ans.

Fig. 8.5.  Strain energy due to
  shear stress
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EXERCISE 8.2

1. Find the ratio of strain energies stored in bars A and B of the same material and subjected to the
same axial tensile loads. The bar A is of 50 mm diameter throughout its length, while the bar B
though of the same length as of A but has diameter of 25 mm for the middle one-third of its
length and the remainder is of 50 mm diameter. [Ans. 1 : 2]

2. A rectangular body 400 mm × 50 mm × 40 mm is subjected to a shear stress of 60 MPa.
Calculate the strain energy stored in the body. Take N = 80 GPa. [Ans. 18 N-m]

QUESTIONS

1. Define strain energy and explain how it is stored in a body ?

2. Write short notes on :
(a) Resilience,

(b) Proof resilience,

(c) Modulus of resilience.
3. From first principle, derive an equation for the energy stored in a strained body.

4. Show that in a bar, subjected to an axial load, the instantaneous stress due to sudden application
of a load is twice the stress caused by the gradual application of load.

5. Obtain a relation for the stress induced in a body, if a load P is applied with an impact.
6. Derive an equation for the energy stored due to shear resilience.

OBJECTIVE TYPE QUESTIONS

1. Strain energy is the

(a) maximum energy which can be stored in a body
(b) energy stored in a body when stressed in the elastic limit

(c) energy stored in a body when stressed up to the breaking point

(d) none of the above
2. The total strain energy stored in a body is known as

(a) impact energy (b) resilience

(c) proof resilience (d) modulus of resilience
3. The strain energy stored in a body, when the load is gradually applied, is equal to

(a)
2

2
V

E
σ × (b)

2

V
E
σ × (c)

2

2
E

V
σ × (d)

2

E
V
σ ×

where σ = Stress in the body
E = Modulus of elasticity for the meterial and

V = Volume of the body.

4. The stress in a body if suddenly loaded is ...... the stress induced, when the same load is applied
gradually.
(a) One-half (b) euqal to (c) twice (d) four times.

ANSWERS

1. (b) 2. (b) 3. (a) 4. (c)
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2. Principal Planes.
3. Principal Stress.
4. Methods for the stresses on an Oblique Section

of a Body.
5. Analytical Method for the Stresses on an oblique

Section of a Body.
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Stress.
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Mutually Perpendicular Directions Accompanied
by Simple Shear Stress.

7.1. Introduction
In the previous chapters, we have studied

in detail, the direct tensile and compressive
stress as well as simple shear. In these chapters,
we have always referred the stress in a plane,
which is at right angles to the line of action of
the force (in case of direct tensile or
compressive stress). Moreover, we have
considered at a time one type of stress, acting
in one direction only. But the majority of
engineering, component and structures are
subjected to such loading conditions (or
sometimes are of such shapes) that there exists
a complex state of stresses; involving direct
tensile and compressive stress as well as shear
stress in various directions. Now in this chapter

7C h a p t e r
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we shall study the nature and intensity of stresses on planes, other than that, which is at right
angles to the line of action of the force.

7.2. Principal Planes
It has been observed that at any point in a strained material, there are three planes, mutually

perpendicular to each other, which carry direct stresses only, and no shear stress. A little
consideration will show that out of these three direct stresses one will be maximum, the other
minimum, and the third an intermediate between the two. These particular planes, which have no
shear stress, are known as principal planes.

7.3. Principal Stress
The magnitude of direct stress, across a principal plane, is known as principal stress. The

determination of principal planes, and then principal stress is an important factor in the design of
various structures and machine components.

7.4. Methods for the Stresses on an Oblique Section of a Body
The following two methods for the determination of stresses on an oblique section of a strained

body are important from the subject point of view :

1.  Analytical method and     2.  Graphical method.

7.5. Analytical Method for the Stresses on an Oblique Section
of a Body

Here we shall first discuss the analytical method for the determination of stresses on an oblique
section in the following cases, which are important from the subject point of view :

1. A body subjected to a direct stress in one plane.

2. A body subjected to direct stresses in two mutually perpendicular directions.

7.6. Sign Conventions for Analytical Method
Though there are different sign conventions, used in different books, yet we shall adopt the

following sign conventions, which are widely used and internationally recognised :

1. All the tensile stresses and strains are taken as positive, whereas
all the compressive stresses and strains are taken as negative.

2. The well established principles of mechanics is used for the shear
stress. The shear stress which tends to rotate the element in the
clockwise direction is taken as positive, whereas that which tends
to rotate in an anticlockwise direction as negative.

In the element shown in Fig. 7.1, the shear stress on the vertical
faces (or x-x axis) is taken as positive, whereas the shear stress on the
horizontal faces (or y-y axis) is taken as negative.

7.7. Stresses on an Oblique Section of a Body Subjected to a
Direct Stress in One Plane

Consider a rectangular body of uniform cross-sectional area and unit thickness subjected to a
direct tensile stress along x-x axis as shown in Fig. 7.2 (a). Now let us consider an oblique section AB

Fig. 7.1
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inclined with the x-x axis (i.e., with the line of action of the tensile stress on which we are required to
find out the stresses as shown in the figure).

Fig. 7.2

Let σ = Tensile stress across the face AC and

θ = Angle, which the oblique section AB makes with BC i.e. with

the x-x axis in the clockwise direction.

First of all, consider the equilibrium of an element or wedge ABC whose free body diagram is
shown in fig 7.2 (b) and (c). We know that the horizontal force acting on the face AC,

P = σ . AC (←)

Resolving the force perpendicular or normal to the section AB

Pn = P sin θ = σ . AC sin θ ....(i)

and now resolving the force tangential to the section AB,

Pt = P cos θ = σ . AC cos θ ....(ii)

We know that normal stress across the section AB*,

σn =
2sin . sin

sin

sin

nP AC AC
ACAB AB

σ θ σ θ= = = σ θ

θ

=
2
σ

 (1 – cos 2θ) = 
2
σ  – 

2
σ  cos 2θ ...(iii)

and shear stress (i.e., tangential stress) across the section AB,

τ =
. cos . cos

sin cos

sin

σ θ σ θ= = = σ θ θ

θ

tP AC AC
ACAB AB

= sin 2
2
σ θ ...(iv)

* It can also be obtained by resolving the stress along the normal and across the section AB as shown in Fig. 7.2.
(b).

We know that the stress across the section AB
= σ cos θ

Now resolving the stress normal to the section AB,

σn = σ cos θ . cos θ = σ cos2 θ
and now resolving the stress along the section AB

τ = σ sin θ . cos θ



Chapter 7 : Principal Stresses and Strains � 111

It will be interesting to know from equation (iii) above that the normal stress across the section
AB will be maximum, when sin2 θ = 1 or sin θ = 1 or θ = 90°. Or in other words, the face AC will carry
the maximum direct stress. Similarly, the shear stress across the section AB will be maximum when
sin 2θ = 1 or 2θ = 90° or 270°. Or in other words, the shear stress will be maximum on the planes
inclined at 45° and 135° with the line of action of the tensile stress. Therefore maximum shear stress
when θ is equal to 45°,

τmax = sin 90 1
2 2 2
σ σ σ° = × =

and maximum shear stress, when θ is equal to 135°,

τmax = sin 270 ( 1)
2 2 2
σ σ σ− ° = − − =

It is thus obvious that the magnitudes of maximum shear stress is half of the tensile stress. Now
the resultant stress may be found out from the relation :

σR = 2 2
nσ + τ

NOTE : The planes of maximum and minimum normal stresses (i.e. principal planes) may also be found out by
equating the shear stress to zero. This happens as the normal stress is either maximum or minimum on
a plane having zero shear stress. Now equating the shear stress to zero,

σ sin θ cos θ = 0

It will be interesting to know that in the above equation either sin θ is equal to zero or cos θ is
equal to zero. We know that if sin  is zero, then θ is equal to 0°. Or in other words, the plane coincides
with the line of action of the tensile stress. Similarly, if cos θ is zero, then θ is equal to 90°. Or in other
words, the plane is at right angles to the line of action of the tensile stress. Thus we see that there are
two principal planes, at right angles to each other, one of them coincides with the line of action of the
stress and the other at right angles to it.

EXAMPLE 7.1. A wooden bar is subjected to a tensile stress of 5 MPa. What will be the
values of normal and shear stresses across a section, which makes an angle of 25° with the
direction of the tensile stress.

SOLUTION.  Given : Tensile stress (σ) = 5 MPa and angle made by section with the direction of the
tensile stress (θ) = 25°.
Normal stress across the section

We know that normal stress across the section

σn =
5 5cos 2

2 2 2 2
σ σ− θ = − cos (2 × 25°) MPa

= 2.5 – 2.5 cos 50° = 2.5 – (2.5 × 0.6428) MPa

= 2.5 – 1.607 = 0.89 MPa        Ans.
Shear stress across the section

We also know that shear stress across the section,

τ = sin 2
2 2
σ σθ =  sin (2 × 25°) = 2.5 sin 50° MPa

= 2.5 × 0.766 = 1.915 MPa        Ans.
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EXAMPLE 7.2. Two wooden pieces 100 mm × 100 mm in cross-section are joined together
along a line AB as shown in Fig. 7.3.

Fig. 7.3

Find the maximum force (P), which can be applied if the shear stress along the joint AB is
1.3 MPa.

SOLUTION.  Given : Section = 100 mm × 100 mm ;  Angle made by section with the direction of
tensile stress (θ) = 60° and permissible shear stress (τ) = 1.3 MPa = 1.3 N/mm2.

Let σ = Safe tensile stress in the member
We know that cross- sectional area of the wooden member,

A = 100 × 100 = 10 000 mm2

and shear stress (τ),

1.3 =
2
σ

sin 2θ = 
2
σ

sin (2 × 60°) = 
2
σ

sin 120° = 
2
σ

 × 0.866

= 0.433 σ

or σ =
1.3

0.433  = 3.0 N/mm2

∴ Maximum axial force, which can be applied,

P = σ.A = 3.0 × 10 000 = 30 000 N = 30 kN        Ans.

EXAMPLE 7.3. A tension member is formed by connecting two wooden members 200 mm ×
100 mm as shown in the figure given below:

Fig. 7.4

Determine the safe value of the force (P), if permissible normal and shear stresses in the joint
are 0.5 MPa and 1.25 MPa respectively.

SOLUTION.  Given : Section = 200 mm × 100 mm ;  Angle made by section AB with the direction
of the tensile stress (σ) = 60° ;  Permissible normal stress (σn) = 0.5 MPa = 0.5 N/mm2 and permissible
shear stress (τ) = 1.25 MPa = 1.25 N/mm2.

Let σ = Safe stress in the joint in N/mm2.

We know that cross-sectional area of the member

A = 200 × 100 = 20 000 mm2
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We also know that normal stress (σn),

0.5 = cos 2
2 2 2 2
σ σ σ σ− θ = −  cos (2 × 60°)

= cos 120
2 2 2 2
σ σ σ σ− ° = −  (– 0.5) = 0.75 σ

∴ σ =
0.5

0.75  = 0.67 N/mm2 ...(i)

and shear stress (τ)

1.25 =
2
σ

sin 2θ = 
2
σ

sin (2 × 60°) = 
2
σ

sin 120° = 
2
σ

× 0.866 = 0.433σ

σ =
1.25
0.433  = 2.89 N/mm2 ...(ii)

From the above two values, we find that the safe stress is least of the two values, i.e. 0.67 N/mm2.
Therefore safe value of the force

P = σ . A = 0.67 × 20 000 = 13 400 N = 13.4 kN        Ans.

7.8. Stresses on an Oblique Section of a Body Subjected to
Direct Stresses in Two Mutually Perpendicular Directions

Fig. 7.5

Consider a rectangular body of uniform cross-sectional area and unit thickness subjected to
direct tensile stresses in two mutually perpendicular directions along x-x and y-y axes as shown in
Fig. 7.5. Now let us consider an oblique section AB inclined with x-x axis (i.e. with the line of action
of the stress along x-x axis, termed as a major tensile stress on which we are required to find out the
stresses as shown in the figure).

Let σx = Tensile stress along x-x axis (also termed as major tensile stress),

σy = Tensile stress along y-y axis (also termed as a minor tensile
stress), and

θ = Angle which the oblique section AB makes with x-x axis in
the clockwise direction.

First of all, consider the equilibrium of the wedge ABC. We know that horizontal force acting on
the face AC (or x-x axis).

Px = σx . AC (←)

and vertical force acting on the face BC (or y-y axis),

Py = σy . BC (↓)
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Resolving the forces perpendicular or normal to the section AB,

Pn = Px sin θ + Py cos θ = σx . AC sin θ + σy . BC cos θ ...(i)
and now resolving the forces tangential to the section AB,

Pt = Px cos θ – Py sin θ = σx . AC cos θ – σy . BC sin θ ....(ii)
We know that normal stress across the section AB,

σn =
. sin cosx yn
AC BCP

AB AB

σ θ + σ θ
=

=
. cos . cos. sin . sin

sin cos

y yx x
BC BCAC AC

AC BCAB AB

σ θ σ θσ θ σ θ+ = +

θ θ

= σx sin2 θ + σy . cos2 θ = 
2

xσ
 (1 – cos 2θ) + 

2
yσ

 (1 + cos 2θ)

= cos 2 cos 2
2 2 2 2

y yx x
σ σσ σ− θ + + θ

= cos 2
2 2

σ + σ σ − σ
− θx y x y

...(iii)

and shear stress (i.e., tangential stress) across the section AB,

τ =
. cos . sinx yt
AC BCP

AB AB

σ θ − σ θ
=

=
. sin . sin. cos . cos

sin cos

y yx x
BC BCAC AC

AC BCAB AB

σ θ σ θσ θ σ θ− = −

θ θ
= σx . sin θ cos θ – σy sin θ cos θ

= (σx – σy) sin θ cos θ = 
2

x yσ −σ
 sin 2θ ...(iv)

It will be interesting to know from equation (iii) the shear stress across the section AB will be
maximum when sin 2θ = 1 or 2θ = 90° or θ = 45°. Therefore maximum shear stress,

τmax =
2

x yσ −σ

Now the resultant stress may be found out from the relation :

σR = 2 2
nσ + τ

EXAMPLE 7.4. A point in a strained material is subjected to two mutually perpendicular
tensile stresses of 200 MPa and 100 MPa. Determine the intensities of normal, shear and resultant
stresses on a plane inclined at 30° with the axis of minor tensile stress.

SOLUTION.  Given : Tensile stress along x-x axis (σx) =150 MPa ;  Tensile stress along y-y axis
(σy) = 100 MPa and angle made by plane with the axis of tensile stress θ = 30°

Normal stress on the inclined plane
We know that normal stress on the inclined plane,

σn = cos 2
2 2

x y x yσ + σ σ − σ
− θ
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=
200 100 20 100

2 2
+ −−  cos (2 × 30°) MPa

= 150 – (50 × 0.5) = 125 MPa        Ans.
Shear stress on the inclined plane

We know that shear stress on the inclined plane,

τ =
200 100

sin 2
2 2

x yσ − σ −θ =  × sin (2 × 30°) MPa

= 50 sin 60° = 50 × 0.866 = 43.3 MPa        Ans.
Resultant stress on the inclined plane

We also know that resultant stress on the inclined plane,

σR = 2 2 2 2(125) (43.3)nσ + τ = +  = 132.3 MPa        Ans.

EXAMPLE 7.5. The stresses at point of a machine component are 150 MPa and 50 MPa
both tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an
angle of 55° with the axis of major tensile stress. Also find the magnitude of the maximum shear
stress in the component.

SOLUTION.  Given : Tensile stress along x-x axis (σx) = 150 MPa ;  Tensile stress along y-y axis
(σy) = 50 MPa and angle made by the plane with the major tensile stress (θ) = 55°.

Normal stress on the inclined plane
We know that the normal stress on the inclined plane,

σn =
2 2

x y x yσ + σ σ − σ
−  cos 2θ

=
150 50 150 50

2 2
+ −−  cos (2 × 55°) MPa

= 100 – 50 cos 110° = 100 – 50 (– 0.342) MPa

= 10 + 17.1 = 117.1 MPa        Ans.
Shear stress on the inclined plane

We know that the shear stress on the inclined plane,

τ =
150 50

sin 2
2 2

x yσ − σ −θ =  × sin (2 × 55°) MPa

= 50 sin 110° = 50 × 0.9397 = 47 MPa        Ans.
Resultant stress on the inclined plane

We know that resultant stress on the inclined plane,

σR = 2 2 2 2(117.1) (47.0)nσ + τ = +  = 126.2 MPa        Ans.

Maximum shear stress in the component
We also know that the magnitude of the maximum shear stress in the component,

τmax =
150 50

2 2
x yσ − σ −± = ±  = ± 50 MPa        Ans.

EXAMPLE 7.6. The stresses at a point in a component are 100 MPa (tensile) and 50 MPa
(compressive). Determine the magnitude of the normal and shear stresses on a plane inclined at
an angle of 25° with tensile stress. Also determine the direction of the resultant stress and the
magnitude of the maximum intensity of shear stress.
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SOLUTION.  Given : Tensile stress along x-x axis (σx) 100 MPa ;  Compressive stress along y-y axis
(σy) = –50 MPa ( Minus sign due to compression ) and angle made by the plane with tensile stress
(θ) = 25°.
Normal stress on the inclined plane

We know that the normal stress on the inclined plane,

σn = cos 2
2 2

x y x yσ + σ σ − σ
− θ

=
100 ( 50) 100 ( 50)

2 2
+ − − −−  cos (2 × 25°) MPa

= 25 – 75 cos 50° = 25 – (75 × 0.6428) = – 23.21 MPa        Ans.
Shear stress on the inclined plane

We know that the shear stress on the inclined plane,

τ =
100 ( 50)

sin 2
2 2

x yσ − σ − −θ =  sin (2 × 25°) MPa

= 75 sin 50° = 75 × 0.766 = 57.45 MPa        Ans.
Direction of the resultant stress

Let θ = Angle, which the resultant stress makes with x-x axis.

We know that tan θ =
57.45
23.21n

τ =
σ −  = – 2.4752          or          θ = – 68°        Ans.

Maximum shear stress
We also know that magnitude of the maximum shear stress,

τmax =
100 ( 50)

2 2
x yσ − σ − −± = ±  = ± 75 MPa        Ans.

7.9. Stresses on an Oblique Section of a Body Subjected to a
Simple Shear stress

Fig. 7.6

Consider a rectangular body of uniform cross-sectional area and unit thickness subjected to a
positive (i.e., clockwise) shear stress along x-x axis as shown in Fig.7.6 (a). Now let us consider an
oblique section AB inclined with x-x axis on which we are required to find out the stresses as shown
in the figure 7.6 (b).

Let τxy = Positive (i.e., clockwise) shear stress along x-x axis, and

θ = Angle , which the oblique section AB makes with x-x axis in

the anticlockwise direction.
First of all, consider the equilibrium of the wedge ABC. We know that as per the principle of

simple shear, the face BC, of the wedge will be subjected to an anticlockwise shear stress equal to τxy
as shown in the Fig. 7.6 (b). We know that vertical force acting on the face AC,

P1 = τxy . AC (↑)
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and horizontal force acting on the face BC,
P2 = τxy . BC (→)

Resolving the forces perpendicular or normal to the AB,

Pn = P1 cos θ + P2 sin θ = τxy . AC cos θ + τxy . BC sin θ
and now resolving the forces tangential to the section AB,

Pt = P2 sin θ – P1 cos θ = τxy . BC sin θ – τxy . AC cos θ
We know that normal stress across the section AB,

σn =
. cos . sinxy xyn
AC BCP

AB AB

τ θ + τ θ
=

=
. cos . sinτ θ τ θ

+xy xyAC BC

AB AB

=
. cos . sin

sin cos

τ θ τ θ
+

θ θ

xy xyAC BC

AC BC

= τxy . sin θ cos θ + τxy . sin θ cos θ
= 2 τxy . sin θ cos θ = τxy . sin 2θ

and shear stress (i.e. tangential stress) across the section AB

τ =
. sin . cosτ θ − τ θ

= xy xyt
BC ACP

AB AB

=
. sin . cos . sin . cos

sin cos

τ θ τ θ τ θ τ θ
− = −

θ θ

xy xy xy xyBC AC BC AC

BC ACAB AB

= τxy sin2θ – τxy cos2θ

=
2
xyτ

 (1 – cos 2θ) – 
2
xyτ

 (1 + cos 2θ)

= cos 2 cos 2
2 2 2 2
xy xy xy xyτ τ τ τ

− θ − − θ

= – τxy cos 2θ ...(Minus sign means that normal stress
     is opposite to that across AC)

Now the planes of maximum and minimum normal stresses (i.e., principal planes ) may be found
out by equating the shear stress to zero i.e.

– τxy cos 2θ = 0

The above equation is possible only if 2θ = 90° or 270° (because cos 90° or cos 270° = 0) or in
other words, θ = 45° or 135°.

7.10. Stresses on an Oblique Section of a Body Subjected to a Direct
Stress in One Plane and Accompanied by a Simple Shear Stress

Consider a rectangular body of uniform cross-sectional area and unit thickness subjected to a
tensile stress along x-x axis accompanied by a positive (i.e. clockwise ) shear stress along x-x axis as
shown in Fig. 7.7 (a). Now let us consider an oblique section AB inclined with x-x axis on which we
are required to find out the stresses as shown in the figure.
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Fig. 7.7

Let σx = Tensile stress along x-x axis,
τxy = Positive (i.e. clockwise) shear stress along x-x axis, and

θ = Angle which the oblique section AB makes with x-x axis in

clockwise direction.
First of all, consider the equilibrium of the wedge ABC. We know that as per the principle of

simple shear, the face BC of the wedge will be subjected to an anticlockwise shear stress equal to τxy
as shown in Fig. 7.7 (b). We know that horizontal force acting on the face AC,

Px = σx . AC (←) ...(i)

Similarly, vertical force acting on the face AC,
Py = τxy . AC (↑) ... (ii)

and horizontal force acting on the face BC,

P = τxy . BC (→) ...(iii)
Resolving the forces perpendicular to the section AB,

Pn = Px sin θ – Py cos θ – P sin θ
= σx . AC sin θ – τxy . AC cos θ – τxy . BC sin θ

and now resolving the forces tangential to the section AB,

Pt = Px cos θ + Py sin θ – P cos θ
= σx . AC cos θ + τxy . AC sin θ – τxy . BC cos θ

We know that normal stress across the section AB,

σn =
. sin . cos . sinσ θ − τ θ − τ θ

= x xy xyn
AC AC BCP

AB AB

=
. cos . sin. sin xy xyx
AC BCAC

AB AB AB

τ θ τ θσ θ − −

=
. cos . sin. sin

sin sin cos

xy xyx
AC BCAC

AC AC BC

τ θ τ θσ θ − −

θ θ θ
= σx . sin2 θ – τxy sin θ cos θ – τxy sin θ cos θ

=
2

xσ
 (1 – cos 2θ) – 2 τxy sin θ cos θ

=
2 2

x xσ σ−  cos 2θ – τxy sin 2θ ...(iv)

and shear stress (i.e., tangential stress) across the section AB,

τ =
. cos . sin . cosσ θ + τ θ − τ θ

= x xy xyt
AC AC BCP

AB AB
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=
sin . cos. cos xy xyx

AC BCAC
AB AB AB

τ θ τ θσ θ + −

=
sin . cos. cos

sin sin cos

xy xyx
AC BCAC

AC AC BC

τ θ τ θσ θ + −

θ θ θ
= σx sin θ cos θ + τxy sin2 θ – τxy cos2 θ

= sin 2 (1 cos 2 ) (1 cos 2 )
2 2 2

xy xyx
τ τσ θ + − θ − + θ

= sin 2 cos 2 cos 2
2 2 2 2 2

xy xy xy xyx
τ τ τ τσ θ + − θ − − θ

= 2
xσ

 sin 2θ – τxy cos 2θ ...(v)

Now the planes of maximum and minimum normal stresses (i.e., principal planes) may be found
out by equating the shear stress to zero i.e., from the above equation, we find that the shear stress on
any plane is a function of σx, τxy and θ. A little consideration will show that the values of σx and τxy are
constant and thus the shear stress varies with the angle θ. Now let θp be the value of the angle for
which the shear stress is zero.

∴
2

σx sin 2θp – τxy cos 2θp = 0          or          
2

xσ
sin 2θp = τxy cos 2θp

∴ tan 2θp =
2 xy

x

τ
σ

From the above equation we find that the following two cases satisfy this condition as shown in
Fig 7.8 (a) and (b)

Fig. 7.8
Thus we find that these are two principal planes at right angles to each other, their inclination

with x-x axis being θp1
 and θp2

.

Now for case 1,

sin 2θp1
=

2 2

2

4

− τ

σ + τ
xy

x xy

          and          cos 2θp1
 = 

2 24

−σ

σ + τ
x

x xy

Similarly for case 2,

sin 2θp2
=

2 2

2

4

τ

σ + τ
xy

x xy

          and          cos 2θp2
 = 

2 24

σ

σ + τ
x

x xy

Now the values of principal stresses may be found out by substituting the above values of 2θp1and 2θp2
 in equation (iv).
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Maximum principal stress, σp1
=

2 2
x xσ σ−  cos 2θ – τxy sin 2θ

=
2 2 2 2

– 2
–

2 2 4 4

τσ σ −σ− × τ ×
σ + τ σ + τ

xyx x x
xy

x xy x xy

=
22

2 2 2 2

2

2 2 4 4

τσ σ+ +
σ + τ σ + τ

xyx x

x xy x xy

=

2 22 2

2 2

44

2 2 22 4

x xyx xyx x

x xy

σ + τσ + τσ σ+ = +
σ + τ

=
2

2

2 2
x x

xy

⎛ ⎞σ σ+ + τ⎜ ⎟⎜ ⎟
⎝ ⎠

Minimum principal stress, σp2
= cos 2 sin 2

2 2
σ σ− θ − τ θx x

xy

=
2 2 2 2

2

2 2 4 4

τσ σ σ− × − τ ×
σ + τ σ + τ

xyx x x
xy

x xy x xy

=

22

2 2 2 2

2

2 2 4 4

τσ σ− −
σ + τ σ + τ

xyx x

x xy x xy

=
2 24

2 2

σ + τσ − x xyx
2 2

2 2

4

2 2 4

σ + τσ= −
σ + τ
x xyx

x xy

2
2

2 2
σ σ⎛ ⎞= − + τ⎜ ⎟⎝ ⎠

x x
xy

EXAMPLE 7.7.  A plane element in a body is subjected to a tensile stress of 100 MPa
accompanied by a shear stress of 25 MPa. Find (i) the normal and shear stress on a plane
inclined at an angle of 20° with the tensile stress and (ii) the maximum shear stress on the plane.

SOLUTION.  Given : Tensile stress along x-x axis (σx) = 100 MPa ;  Shear stress (τxy) = 25 MPa and
angle made by plane with tensile stress (θ) = 20°.
Normal and shear stresses on inclined section

We know that the normal stress on the plane,

σn =
2 2

x xσ σ−  cos 2θ – τxy sin 2θ

=
100 100

2 2
−  cos (2 × 20°) – 25 sin (2 × 20°) MPa

= 50 – 50 cos 40° – 25 sin 40° MPa
= 50 – (50 × 0.766) – (25 × 0.6428) MPa
= 50 – 38.3 – 16.07 = – 4.37 MPa        Ans.

and shear stress on the plane, τ =
2

xσ
 sin 2θ – τxy cos 2θ

=
100

2
 sin (2 × 20°) – 25 cos (2 × 20°) MPa

= 50 sin 40° – 25 cos 40° MPa
= (50 × 0.6428) – (25 × 0.766) MPa
= 32.14 – 19.15 = 12.99 MPa        Ans.
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Maximum shear stress on the plane
We also know that maximum shear stress on the plane,

τmax = ( )2 2
2 2100 (25)

2 2
x

xy
σ⎛ ⎞ + τ = +⎜ ⎟

⎝ ⎠
 = 55.9 MPa        Ans.

EXAMPLE 7.8.  An element in a strained body is subjected to a tensile stress of 150 MPa
and a shear stress of 50 MPa tending to rotate the element in an anticlockwise direction. Find
(i) the magnitude of the normal and shear stresses on a section inclined at 40° with the tensile
stress; and (ii) the magnitude and direction of maximum shear stress that can exist on the element.

SOLUTION.  Given : Tensile stress along horizontal x-x axis (σx) = 150 MPa ;  Shear stress
(τxy) – 50 MPa (Minus sign due to anticlockwise) and angle made by section with the tensile
stress (θ) = 40°.
Normal and Shear stress on the inclined  section

We know that magnitude of the normal stress on the section,

σn =
2 2

x xσ σ− cos 2θ – τxy sin 2θ

=
150 150

2 2
− cos (2 × 40°) – (– 50) sin (2 × 40°) MPa

= 75 – (75 × 0.1736) + (50 × 0.9848) MPa
= 75 – 13.02 + 49.24 = 111.22 MPa        Ans.

and shear stress on the section

τ =
2

xσ
 sin 2θ – τxy cos 2θ

=
150

2
sin (2 × 40°) – (– 50) cos (2 × 40°) MPa

= (75 × 0.9848) + (50 × 0.1736) MPa

= 73.86 + 8.68 = 82.54 MPa        Ans.
(ii) Maximum shear stress and its direction that can exist on the element

We know that magnitude of the maximum shear stress.

τmax = ( )2 2
2 2150 ( 50)

2 2
σ⎛ ⎞± + τ = ± + −⎜ ⎟

⎝ ⎠
x

xy  = ± 90.14 MPa   Ans.

Let θx = Angle which plane of maximum shear stress makes with x-x
axis.

We know that, tan 2θs =
150 1.5

2 2 50
x

xy

σ = =
τ ×           or          2θs = 56.3°

∴ θs = 28.15°          or          118.15°        Ans.

EXAMPLE 7.9. An element in a strained body is subjected to a compressive stress of 200
MPa and a clockwise shear stress of 50 MPa on the same plane. Calculate the values of normal
and shear stresses on a plane inclined at 35° with the compressive stress. Also calculate the value
of maximum shear stress in the element.

SOLUTION.  Given : Compressive stress along horizontal x-x axis (σx) = – 200 MPa (Minus sign
due to compressive stress) ;  Shear stress (τxy) = 50 MPa and angle made by the plane with the
compressive stress (θ) = 35°
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Normal and shear stresses across inclined section
We know that normal stress on the plane,

σn =
2 2

x xσ σ− cos 2θ – τxy sin 2θ

=
200 200
2 2

− −− cos (2 × 35°) – 50 sin (2 × 35°) MPa

= – 100 + (10 × 0.342) – (50 × 0.94) MPa
= – 100 + 34.2 – 46.9 = – 112.9 MPa        Ans.

and shear stress on the plane,

τ =
2

xσ
sin 2θ – τxy cos 2θ

=
200
2

−
sin (2 × 35°) – 50 cos (2 × 35°) MPa

= (– 100 × 0.9397) – (50 × 0.342) MPa

= – 93.97 – 17.1 = – 111.07 MPa        Ans.
Maximum shear stress in the element

We also know that value of maximum shear stress in the element,

τmax =
2 2

2 2200
(50)

2 2
x

xy
σ −⎛ ⎞ ⎛ ⎞+ τ = +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 = 111.8 MPa        Ans.

7.11. Stresses on an Oblique Section of a Body Subjected to
Direct Stresses in Two Mutually Perpendicular Directions
Accompanied by a Simple Shear Stress

Fig. 7.9

Consider a rectangular body of uniform cross-sectional area and unit thickness subjected to
tensile stresses along x-x and y-y axes and accompanied by a positive ( i.e., clockwise) shear stress
along x-x axis as shown in Fig.7.9 (b). Now let us consider an oblique section AB inclined with x-x
axis on which we are required to find out the stresses as shown in the figure.

Let σx = Tensile stress along x-x axis,
σy = Tensile stress along y-y axis,

τxy = Positive (i.e. clockwise) shear stress along x-x axis, and

θ = Angle, which the oblique section AB makes with x-x axis in
an anticlockwise direction.

First of all, consider the equilibrium of the wedge ABC. We know that as per the principle of
simple shear, the face BC of the wedge will be subjected to an anticlockwise shear stress equal to τxy
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as shown in Fig. 7.9 (b). We know that horizontal force acting on the face AC,
P1 = σx . AC (←) ... (i)

and vertical force acting on the face AC,
P2 = τxy . AC (↑) ...(ii)

Similarly, vertical force acting on the face BC,
P3 = σy . BC (↓) ...(iii)

and horizontal force on the face BC,
P4 = τxy . BC (→) ...(iv)

Now resolving the forces perpendicular to the section AB,
Pn = P1 sin θ – P2 cos θ + P3 cos θ – P4 sin θ

= σx . AC sin θ – τxy . AC cos θ + σy . BC cos θ – τxy . BC sin θ
and now resolving the forces tangential to AB,

Pt = P1 cos θ + P2 sin θ – P3 sin θ – P4 cos θ
= σx . AC cos θ + τxy . AC sin θ – σy . BC sin θ – τxy . BC cos θ

Normal Stress (across the inclined section AB)

σn =
. sin . cos . cos . sinx xy y xyn
AC AC BC BCP

AB AB

σ θ − τ θ + σ θ − τ θ
=

=
. cos . cos . sin. sin xy y xyx
AC BC BCAC

AB AB AB AB

τ θ σ θ τ θσ θ − + −

=
. cos . cos . sin. sin

sin sin cos cos

xy y xyx
AC BC BCAC

AC AC BC BC

τ θ σ θ τ θσ θ − + −

θ θ θ θ
= σx . sin2 θ – τxy sin θ cos θ + σy . cos2 θ – τxy . sin θ cos θ

=
2

xσ
 (1 – cos 2θ) + 

2
yσ

 (1 + cos 2θ) – 2 τxy . sin θ cos θ

= cos 2
2 2 2 2

y yx x
σ σσ σ− θ + + cos 2θ – τxy sin 2θ

or σn =
2 2

σ + σ σ − σ
−x y x y  cos 2θ – τxy sin 2θ ...(v)

Shear Stress or Tangential Stress (across inclined the section AB)

τ =
. cos . sin . sin cosσ θ + τ θ−σ θ − τ θ

= x xy y xyt
AC AC BC BCP

AB AB

=
. sin . sin cos. cos τ θ σ θ τ θσ θ + − −xy y xyx
AC BC BCAC

AB AB AB AB

=
. sin . sin . cos. cos

sin sin cos cos

xy y xyx
AC BC BCAC

AC AC BC BC

τ θ σ θ τ θσ θ + − −

θ θ θ θ
= σx sin θ cos θ + τxy sin2 θ – σy sin θ cos θ – τxy cos2 θ

= (σx – σy) sin θ cos θ + 
2
xyτ

 (1 – cos 2θ) – 
2
xyτ

 (1 + cos 2θ)

or τ =
2

x yσ − σ
 sin 2θ – τxy cos 2θ ...(vi)
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Now the planes of maximum and minimum normal stresses (i.e. principal planes) may be found
out by equating the shear stress to zero. From the above equations, we find that the shear stress to any
plane is a function of σy, σx, τxy and θ. A little consideration will show that the values of σy, σx and τxy
are constant and thus the shear stress varies in the angle θ. Now let θp be the value of the angle for
which the shear stress is zero.

∴
2

x yσ − σ
 sin 2θp – τxy cos 2θp = 0

or
2

x yσ − σ
sin 2θp = τxy cos 2θp          or          tan 2θp = 

2 xy

x y

τ
σ − σ

From the above equation, we find that the following two cases satisfy this condition as shown in
Fig 7.10 (a) and (b).

Fig. 7.10

Thus we find that there are two principal planes, at right angles to each other, their inclinations
with x-x axis being θp1

 and θp2
 .

Now for case 1,

sin 2θp1
=

2 2

2

( ) 4

− τ

σ − σ + τ
xy

x y xy

     and     
1 2 2

( )
cos 2

( ) 4

− σ −σ
θ =

σ − σ + τ
x y

p

x y xy
Similarly for case 2,

sin 2θp2
=

2 2

2

( ) 4

τ

σ − σ + τ
xy

x y xy

     and     
2 2 2

( )
cos 2

( ) 4

σ −σ
θ =

σ − σ + τ
x y

p

x y xy

Now the values of principal stresses may be found out by substituting the above values of 2θp1
and 2θp2

 in equation (v).

Maximum Principal Stress,

σp1
=

2 2

σ + σ σ − σ
−x y x y

 cos 2θ – τxy sin 2θ

=
2 2 2 2

( ) 2

2 2 ( ) 4 ( ) 4

⎛ ⎞ ⎛ ⎞σ + σ σ − σ − σ − σ − τ
⎜ ⎟ ⎜ ⎟− × − τ ×
⎜ ⎟ ⎜ ⎟σ − σ + τ σ − σ + τ⎝ ⎠ ⎝ ⎠

x y x y x y xy
xy

x y xy x y xy

=

2 22 2

2 2

( ) 4( ) 4

2 2 22 ) 4

x y xyx y x y xy x y

x y xy

σ −σ + τσ + σ σ −σ + τ σ + σ
+ = +

σ −σ + τ

or σp1
=

2
2

2 2
x y x y

xy

σ + σ σ − σ⎛ ⎞
+ + τ⎜ ⎟

⎝ ⎠
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Minimum Principal Stress

σp2 =
( )

cos 2 sin 2
2 2

σ + σ σ −σ
− θ − τ θx y x y

xy

=
2 2 2 2

( ) 2

2 2 ( ) 4 ( ) 4

⎛ ⎞ ⎛ ⎞σ + σ σ − σ σ − σ τ
⎜ ⎟ ⎜ ⎟− × − τ ×
⎜ ⎟ ⎜ ⎟σ − σ + τ σ −σ + τ⎝ ⎠ ⎝ ⎠

x y x y x y xy
xy

x y xy x y xy

= 
2 2

2 2

( ) 4

2 2 ( ) 4

σ + σ σ −σ + τ
−

σ −σ + τ
x y x y xy

x y xy

= 
2 2( ) 4

2 2

σ −σ + τσ −σ
− x y xyx y

or σp2
=

2
2

2 2

σ + σ σ − σ⎛ ⎞
− + τ⎜ ⎟⎝ ⎠

x y x y
xy

EXAMPLE 7.10.  A point is subjected to a tensile stress of 250 MPa in the horizontal direction
and another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a
simple shear stress of 25 MPa, such that when it is associated with the major tensile stress, it
tends to rotate the element in the clockwise direction. What is the magnitude of the normal and
shear stresses on a section inclined at an angle of 20° with the major tensile stress?

SOLUTION.  Given : Tensile stress in horizontal x-x direction (σx) = 250 MPa ;  Tensile stress in
vertical y-y direction (σy) = 100 MPa ;  Shear stress (τxy) = 25 MPa and angle made by section with
the major tensile stress (θ) = 20°.

Magnitude of normal stress
We know that magnitude of normal stress,

σn =
2 2

x y x yσ + σ σ −σ
−  cos 2θ – τxy sin 2θ

=
250 100 250 100

2 2
+ −−  cos (2 × 20°) – 25 sin (2 × 20°)

= 175 – 75 cos 40° – 25 sin 40° MPa
= 175 – (75 × 0.766) – (25 × 0.6428) MPa
= 175 – 57.45 – 16.07 = 101.48 MPa        Ans.

Magnitude of shear stress
We also know that magnitude of shear stress,

τ =
2

x yσ −σ
 sin 2θ – τxy cos 2θ

=
250 100

2
−

 sin (2 × 20°) – 25 cos (2 × 20°)

= 75 sin 40° – 25 cos 40° MPa
= (75 × 0.6428) – (25 × 0.766) MPa
= 48.21 – 19.15 = 29.06 MPa        Ans.

EXAMPLE 7.11.  A plane element in a boiler is subjected to tensile stresses of 400 MPa on one
plane and 150 MPa on the other at right angles to the former. Each of the above stresses is
accompanied by a shear stress of 100 MPa such that when associated with the minor tensile
stress tends to rotate the element in anticlockwise direction. Find

(a) Principal stresses and their directions.

(b) Maximum shearing stresses and the directions of the plane on which they act.
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SOLUTION.  Given : Tensile stress along x-x axis (σx) = 400 MPa ;  Tensile stress along y-y axis
(σy) = 150 MPa and shear stress (τxy) = – 100 MPa (Minus sign due to anticlockwise on x-x direction).
(a) Principal stresses and their directions

We know that maximum principal stress,

σmax =

2
2

2 2
x y x y

xy

σ + σ σ − σ⎛ ⎞
+ + τ⎜ ⎟

⎝ ⎠

=
2

2400 150 400 150
( 100)

2 2
+ −⎛ ⎞+ + −⎜ ⎟

⎝ ⎠
 MPa

= 275 + 160.1 = 435.1 MPa        Ans.
and minimum principal stress,

σmin =

2
2

2 2
x y x y

xy

σ + σ σ − σ⎛ ⎞
− + τ⎜ ⎟

⎝ ⎠

=
2

2400 150 400 150
( 100)

2 2
+ −⎛ ⎞− + −⎜ ⎟

⎝ ⎠
 MPa

= 275 – 160.1 = 114.9 MPa        Ans.
Let θp = Angle which plane of principal stress makes with x-x axis.

We know that, tan 2θp =
2 2 100

400 150
xy

x y

τ ×=
σ − σ −  = 0.8          or          2θp = 38.66°

∴ θp = 19.33°          or          109.33°        Ans.
(b) Maximum shearing stresses and their directions

We also know that maximum shearing stress

τmax =

2 2
2 2400 150

( 100)
2 2

x y
xy

σ − σ⎛ ⎞ −⎛ ⎞+ τ = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

= 160.1 MPa        Ans.
Let θs = Angle which plane of maximum shearing stress makes with

x-x axis.

We know that, tan 2θs =
400 150

2 2 100
x y

xy

σ − σ −=
τ ×  = 1.25          or          2θs = 51.34°

θs = 25.67°          or          115.67°        Ans.

EXAMPLE 7.12.  A point in a strained material is subjected to the stresses as shown in Fig. 7.11.

Fig. 7.11

Find graphically, or otherwise, the normal and shear stresses on the section AB.
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SOLUTION.  Given : Tensile stress along horizontal x-x axis (σx) = 75 MPa ;  Tensile stress along
vertical y-y axis (σy) = 150 MPa ;  Shear stress (τxy) = 25 MPa and angle made by section with the
horizontal direction (θ) = 55°.
Normal stress on the section AB

We know that normal stress on the section AB,

σn =
2 2

x y x yσ −σ σ −σ
−  cos 2θ – τxy sin 2θ

=
75 150 75 150

2 2
+ −−  cos (2 × 55°) – 25 sin (2 × 55°) MPa

= 112.5 + 37.5 cos 110° – 25 sin 110° MPa

= 11.25 + 37.5 × (– 0.342) – (25 × 0.9397) MPa
= 112.5 – 12.83 – 23.49 = 76.18 MPa        Ans.

Shear stress on the section AB
We also know that shear stress on the section AB.

τ =
2

x yσ −σ
 sin 2θ – τxy cos 2θ

=
75 150

2
−

 sin (2 × 55°) – 25 cos (2 × 55°) MPa

= – 37.5 sin 110° – 25 cos 110° MPa

= – 37.5 × 0.9397 – 25 × (– 0.342) MPa

= – 35.24 + 8.55 = – 26.69 MPa        Ans.

EXAMPLE 7.13.  A plane element of a body is subjected to a compressive stress of 300 MPa in
x-x direction and a tensile stress of 200 MPa in the y-y direction. Each of the above stresses is
subjected to a shear stress of 100 MPa such that when it is associated with the compressive
stress, it tends to rotate the element in an anticlockwise direction. Find graphically, or otherwise,
the normal and shear stresses on a plane inclined at an angle of 30° with the x-x axis.

SOLUTION.  Given : Compressive stress in x-x direction (σx) = – 300 MPa (Minus sign due to
compressive stress) ;  Tensile stress in y-y direction (σy) = 200 MPa ;  Shear stress (τxy) = – 100 MPa
(Minus sign due to anticlockwise direction along the compressive stress i.e., σx) and angle made by
section with the x-x axis (θ) = 30°.

Normal stress on the plane
We know that normal stress on the plane,

σn =
2 2

x y x yσ + σ σ −σ
−  cos 2θ – τxy sin 2θ

=
300 200 300 200

2 2
− + − −−  cos (2 × 30°) – [–100 sin (2 × 30°]

= – 50 – (– 250 cos 60°) + 100 sin 60° MPa

= – 50 + (250 × 0.5) + (10 × 0.866) MPa
= – 50 + 125 + 86.6 = 161.6 MPa        Ans.

Shear stress on the plane
We also know that shear stress on the plane.

τ =
2

x yσ −σ
 sin 2θ – τxy cos 2θ
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=
300 200

2
− −

 sin (2 × 30°) – [– 100 cos (2 × 30°)] MPa

= – 250 sin 60° + 100 cos 60° MPa

= – 250 × 0.866 + 100 × 0.5 MPa
= – 216.5 + 50 = – 166.5 MPa        Ans.

EXAMPLE 7.14.  A machine component is subjected to the stresses as shown in the figure
given below :

Fig. 7.12

Find the normal and shearing stresses on the section AB inclined at an angle of 60° with x-x
axis. Also find the resultant stress on the section.

SOLUTION.  Given : Compressive stress along horizontal x-x axis (σx) = – 100 MPa (Minus sign
due to compressive stress) ;  Compressive stress along vertical y-y axis (σy) = – 50 MPa (Minus sign
due to compressive stress) ;  Shear stress (τxy) = – 25 MPa (Minus sign due to anticlockwise on x-x
axis) and angle made by section AB with x-x axis (θ) = 60°.

Normal stress on the section AB
We know that normal stress on the section AB,

σn =
2 2

x y x yσ + σ σ −σ
−  cos 2θ – τxy sin 2θ

=
100 ( 50) 100 ( 50)

2 2
− + − − − −− cos (2 × 60°) – [–25 sin (2 × 60°)]

= – 75 + 25 cos 120° + 25 sin 120° MPa
= – 75 + [25 × (– 0.5)] + (25 × 0.866) MPa
= – 75 – 12.5 + 21.65 = – 65.85 MPa        Ans.

Shearing stress on the section AB
We know that shearing stress on the section AB,

τ =
2

x yσ −σ
 sin 2θ – τxy cos 2θ

=
100 ( 50)

2
− − −

 sin (2 × 60°) – [– 25 cos (2 × 60°)]

= – 25 sin 120° + 25 cos 120° = – 25 × 0.866 + [25 × (–0.5)] MPa
= – 21.65 – 12.5 = – 34.15 MPa        Ans.

Resultant stress on the section AB
We also know that resultant stress on the section AB,

σR = 2 2 2 2( 65.85) ( 34.15)nσ + τ = − + −  = 74.2 MPa        Ans.
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EXERCISE 7.1

1. A bar is subjected to a tensile stress of 100 MPa, Determine the normal and tangential stresses
on a plane making an angle of 30° with the direction of the tensile stress.

(Ans. 75 MPa ; 43.3 MPa)
2. A point in a strained material is subjected to a tensile stress of 50 MPa. Find the normal and

shear stress at an angle of 50° with the direction of the stress. (Ans. 29.34 MPa ; 24.62 MPa)

3. At a point in a strained material, the principal stresses are 100 MPa and 50 MPa both tensile.
Find the normal and shear stresses at a section inclined at 30° with the axis of the major princi-
pal stress. (Ans. 87.5 MPa ; 21.65 MPa)

4. A point in a strained material is subjected to a tensile stress of 120 MPa and a clockwise shear
stress of 40 MPa. What are the values of normal and shear stresses on a plane inclined at 45°
with the normal to the tensile stress. (Ans. 20 MPa ; 60 MPa)

5. The principal stresses or a point in the section of a member are 50 MPa or 20 MPa both tensile.
If there is a clockwise shear stress of 30 MPa, find the normal and shear stresses on a section
inclined at an angle of 15° with the normal to the major tensile stress.

(Ans. 32.99 MPa ; 33.48 MPa)

7.12. Graphical Method for the Stresses on an Oblique Section
of a Body

In the previous articles, we have been discussing the analytical method for the determination of
normal, shear and resultant stresses across a section. But we shall now discuss a graphical method for
this purpose. This is done by drawing a Mohr’s Circle of Stresses. The construction of Mohr’s Circle
of Stresses as well as determination of normal, shear and resultant stresses is very easier than the
analytical method. Moreover, there is a little chance of committing any error in this method. In the
following pages, we shall draw the Mohr’s Circle of Stresses for the following cases :

1. A body subjected to a direct stress in one plane.
2. A body subjected to direct stresses in two mutually perpendicular directions.

3. A body subjected to a simple shear stress.

4. A body subjected to a direct stress in one plane accompanied by a simple shear stress.
5. A body subjected to direct stresses in two mutually perpendicular directions accompanied by a

simple shear stress.

7.13. Sign Conventions for Graphical Method
Though there are different sign conventions used in different books for graphical method also, yet

we shall adopt the following sign conventions, which are widely used and internationally recognised :

1. The angle is taken with reference to the X-X axis. All the angles traced in the anticlockwise
direction to the X-X axis are taken as negative, whereas those in the clockwise direction as
positive as shown in Fig. 7.13 (a). The value of angle θ, until and unless mentioned is taken as
positive and drawn clockwise.

2. The measurements above X-X axis and to the right of Y-Y axis are taken as positive, whereas
those below X-X axis and to the left of Y-Y axis as negative as shown in Fig 7.13 (b) and (c).

3. Sometimes there is a slight variation in the results obtained by analytical method and graphical
method. The values obtained by graphical method are taken to be correct if they agree upto the
first decimal point with values obtained by analytical method, e.g., 8.66 (Analytical) = 8.7
(Graphical), similarly 4.32 (Analytical) = 4.3 (Graphical)
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Fig. 7.13

7.14. Mohr’s Circle for Stresses on an Oblique Section of a
Body Subjected to a Direct Stress in One Plane

Fig. 7.14

Consider a rectangular body of uniform cross-sectional area and unit thickness subjected to a direct
tensile stress along X–X axis as shown in Fig 7.14 (a) and (b). Now let us consider an oblique section AB
inclined with X–X axis, on which we are required to find out the stresses as shown in the figure.

Let σ = Tensile stress, in x-x direction and

θ = Angle which the oblique section AB makes with the x-x axis
in clockwise direction.

First of all, consider the equilibrium of the wedge ABC. Now draw the Mohr’s* Circle of Stresses
as shown in Fig.7.15 and as discussed below :

1. First of all, take some suitable point O and through it draw a horizontal line XOX.

2. Cut off OJ equal to the tensile stress (σ) to some suitable scale and towards right (because σ is
tensile). Bisect OJ at C. Now the point O represents the stress system on plane BC and the point
J represents the stress system on plane AC.

3. Now with C as centre and radius equal to CO and or CJ draw a circle. It is known as Mohr’s
Circle for Stresses.

Fig. 7.15

* The diagram was first presented by German Scientist Otto Mohr in 1982.
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4. Now through C draw a line CP making an angle of 2θ with CO in the clockwise direction
meeting the circle at P. The point P represents the section AB.

5. Through P, draw PQ perpendicular to OX. Join OP.
6. Now OQ, QP and OP will give the normal stress, shear stress and resultant stress respectively to

the scale. And the angle POJ is called the angle of obliquity (θ).

Proof
From the geometry of the Mohr’s Circle of Stresses, we find that,

OC = CJ = CP = σ/2 ... (Radius of the circle)

∴ Normal Stress.

σn = OQ = OC – QC = ( ) ( )2 2
σ σ−  cos 2θ ...(Same as in Art. 7.7)

and shear stress

τ = QP = CP sin 2θ = 
2
σ

sin 2θ ...(Same as in Art. 7.7)

We also find that maximum shear stress will be equal to the radius of the Mohr’s Circle of

Stresses i.e., 
2
σ

. It will happen when 2θ is equal to 90° or 270° i.e., θ is equal to 45° or 135°.

However when θ = 45° then the shear stress is equal to 
2
σ .

And when θ = 135° then the shear stress is equal to – 
2
σ

.

7.15. Mohr’s Circle for Stresses on an Oblique Section of a Body
Subjected to Direct Stresses in Two Mutually Perpendicular
Directions

Fig. 7.16

Consider a rectangular body of uniform cross-sectional area and unit thickness subjected to
direct tensile stresses in two mutually perpendicular directions along x-x and y-y axis as shown in Fig
7.16 (a) and (b). Now let us consider an oblique section AB inclined with x-x axis on which we are
required to find out the stresses as shown in the figure.

Let σx = Tensile stress in x-x direction
(also termed as major tensile stress),

σy = Tensile stress in y-y direction
(also termed as minor tensile stress). and

θ = Angle which the oblique section AB makes with x-x axis
in clockwise direction.

First of all consider the equilibrium of the wedge ABC. Now draw the Mohr’s Circle of Stresses
as shown in Fig. 7.17 and as discussed below :
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Fig. 7.17

1. First of all, take some suitable point O and draw a horizontal line OX.

2. Cut off OJ and OK equal to the tensile stresses σx and σy to some suitable scale towards right
(because both the stresses are tensile). The point J represents the stress system on plane AC and
the point K represents the stress system on plane BC. Bisect JK at C.

3. Now with C as centre and radius equal to CJ or CJ draw a circle. It is known as Mohr’s Circle
of Stresses.

4. Now through C, draw a line CP making an angle of 2θ with CK in clockwise direction meeting
the circle at P. The point P represents the stress systems on the section AB.

5. Through P, draw PQ perpendicular to the line OX. Join OP.

6. Now OQ, QP and OP will give the normal stress, shear stress and resultant stress respectively to
the scale. Similarly CM or CN will give the maximum shear stress to the scale. The angle POC
is called the angle of obliquity.

Proof
From the geometry of the Mohr’s Circle of Stresses, we find that

KC = CJ = CP = 
2

x yσ −σ

or OC = OK + KC = σy + 
2

2 2 2
x y y x y x yσ −σ σ + σ −σ σ + σ

= =

∴ Normal stress, σn = OQ = OC – CQ = 
2

x yσ −σ
 – CP cos 2θ

=
2 2

x y x yσ + σ σ −σ
−  cos 2θ ...(Same as Art. 7.8)

and shear stress, τ = QP = CP sin 2θ

=
2

x yσ + σ
 sin 2θ ...(Same as Art. 7.8)

We also find that the maximum shear stress will be equal to the radius of the Mohr’s Circle of

Stresses. i.e., 
2

x yσ − σ
. It will happen when 2θ is equal to 90° or 270° i.e., when θ is equal to 45° or

135°.
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However  when θ = 45° then the shear stress is equal to 
2

σ −σx y

And when θ = 135° then the shear stress will be equal to 
( )

or
2 2

− σ −σ σ −σx y y x .

EXAMPLE 7.15.  The stresses at a point of a machine component are 150 MPa and 50 MPa
both tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an
angle of 55° with the axis of major tensile stress.

Also find the magnitude of the maximum shear stresses in the component.

*SOLUTION.  Given : Tensile stress along horizontal x-x axis (σx) = 150 MPa ;  Tensile stress along
vertical y-y axis (σy) = 50 MPa and angle made by the plane with the axis of major tensile stress (θ)
= 55°.

The given stresses on the planes AC and BC in the machine component are shown in Fig. 7.18
(a). Now draw the Mohr’s Circle of Stresses as shown in Fig. 7.18 (b) and as discussed below :

Fig. 7.18

1. First of all, take some suitable point O and draw a horizontal line OX.

2. Cut off OJ and OK equal to the tensile stresses σx and σy respectively (i.e. 150 MPa and 50
MPa) to some suitable scale towards right. The point J represents the stress system on the plane
AC and the point K represents the stress system on the plane BC. Bisect KJ at C.

3. Now with C as centre and radius equal to CJ or CK draw the Mohr’s Circle of Stresses.
4. Now through C draw two lines CM and CN at right angles to the line OX meeting the circle at M

and N. Also through C draw a line CP making an angle of 2 × 55° = 110° with CK in clockwise
direction meeting the circle at P. The point P represents the stress system on the plane AB.

5. Through P, draw PQ perpendicular to the line OX. Join OP.

By measurement, we find that the normal stress (σn) = OQ = 117.1 MPa ;  Shear stress (τ) = QP
= 47.0 MPa ;  Resultant stress (σR) = OP = 126.2 MPa and maximum shear stress (τmax) = CM
= ± 50 MPa        Ans.

EXAMPLE 7.16.  The stresses at a point in a component are 100 MPa (tensile) and 50 MPa
(compressive). Determine the magnitude of the normal and shear stresses on a plane inclined at
an angle of 25° with tensile stress. Also determine the direction of the resultant stress and the
magnitude of the maximum intensity of shear stress.

* We have already solved this question analytically, as example 7.5.
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Fig. 7.19

*SOLUTION.  Given : Tensile stress along horizontal x-x axis (σx) = 100 MPa ;  Compressive stress
along vertical y-y axis (σy) = – 50 MPa (Minus sign due to compressive) and angle made by plane
with tensile stress (θ) = 25°.

The given stresses on the planes AC and BC of the component are shown in Fig 7.19 (a). Now
draw the Mohr’s Circle of Stresses as shown in Fig. 7.19 (b) and as discussed below :

1. First of all, take some suitable point O and through it draw a horizontal line XOX.
2. Cut off OJ and OK equal to the stresses  and  respectively (i.e., 100 MPa and  – 50 MPa) to some

suitable scale such that J is towards right (because of tensile stress) and B is towards left (be-
cause of compressive stress). The point J represents the stress system on the plane AC and the
point K represents the stress systems on the plane BC. Bisect KJ at C.

3. Now with C as centre and radius equal to CJ or CK draw the Mohr’s Circle of Stresses.

4. Now through C, draw two lines CM and CN at right angles to the line OX meeting the circle
at M and N. Also through C, draw a line CP making an angle of 2 × 25° = 50° with CK in
clockwise direction meeting the circle at P. The point P represents the stress system on the
plane AB.

5. Through P, draw PQ perpendicular to the line OX. Join OP.

By measurement, we find that the normal stress (σn) = – 23.2 MPa ;  Shear stress (τ) = PQ =
57.45 MPa;  Direction of the resultant stress ∠POQ = 68.1° and maximum shear stress (τmax) = CM
= CN = ± 75 MPa        Ans.

7.16. Mohr’s Circle for Stresses on an Oblique Section of a Body
Subjected to a Direct Stresses in One Plane Accompanied
by a Simple Shear Stress

Consider a rectangular body of uniform cross-sectional area and unit thickness subjected to
a direct tensile stress along X-X axis accompanied by a positive (i.e. clockwise ) shear stress
along X-X axis as shown in Fig 7.20 (a) and (b). Now let us consider an oblique section AB
inclined with x-x axis on which we are required to find out the stresses as shown in the figure
7.20.

* We have already solved this question analytically, as example 7.6.
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Fig. 7.20

Let σx = Tensile stress in x-x direction,

τxy = Positive (i.e., clockwise) shear stress along x-x axis, and

θ = Angle which oblique section AB makes with x-x axis in clock
wise direction.

First of all consider the equilibrium of the wedge ABC. We know that as per the principle of
simple shear the face BC of the wedge will also be subjected to an anticlockwise shear stress.
Now draw the Mohr’s Circle of Stresses as shown in Fig.7.21 and as discussed below :

Fig. 7.21

1. First of all, take some suitable point O and through it draw a horizontal line XOX.

2. Cut off OJ equal to the tensile stress σx to some suitable scale and towards right (because σx is
tensile).

3. Now erect a perpendicular at J above the line X-X (because τxy is positive along x-x axis) and cut
off JD equal to the shear stress τxy to the scale. The point D represents the stress system on plane
AC. Similarly, erect a perpendicular below the line x-x (because τττττxy is negative along y-y axis)
and cut off OE equal to the shear stress τxy to the scale. The point E represents the stress system
on plane BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw a circle. It is known as Mohr’s Circle
of Stresses.

5. Now through C, draw a line CP making an angle 2θ with CE in clockwise direction meeting the
circle at P. The point P represents the stress system on the section AB.

6. Through P, draw PQ perpendicular to the line OX. Join OP.
7. Now OQ, QP and OP will give the normal, shear and resultant stresses to the scale. And the

angle POC is called the angle of obliquity.
Proof

From the geometry of the Mohr’s Circle of Stresses, we find that

OC = 2
xσ
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and radius of the circle,

R = EC = CD = CP = 
2

2

2
σ⎛ ⎞ + τ⎜ ⎟⎝ ⎠

x
xy

Now in the right angled triangle DCJ,

sin α =
xyDJ

CD R

τ
=           and          cos α = 

1
2 2

x xJC
CD R R

σ σ= × =

and similarly in right angled triangle CPQ,

∠ PCQ = ( 2θ – α)
∴ CQ = CP cos (2θ – α) = R [cos (2θ – α)]

= R [cos α cos 2θ + sin α sin 2θ]

= R cos α cos 2θ + R sin α sin 2θ

= cos 2 sin 2
2

τσ× θ + × θxyxR R
R R

=
2
xσ

cos 2θ + τxy sin 2θ

We know that normal stress across the section AB,

σn = OQ = OC – CQ = cos 2 sin 2
2 2

σ σ⎛ ⎞− θ + τ θ⎜ ⎟⎝ ⎠
x x

xy

=
2 2

σ σ−x x cos 2θ – τxy sin 2θ ...(Same as in Art. 7.10)

and shear stress, τ = QP = CP sin (2θ – α) = R sin (2θ– α)

= R (cos α sin 2θ – sin α cos 2θ)
= R cos α sin 2θ – R sin α cos 2θ

= sin 2 cos 2
2 2

τσ× θ − × θxyxR R
R

=
2

xσ
 sin 2θ – τxy cos 2θ ...(Same as in Art. 7.10)

We also know that maximum stress,

σmax = OG = OC + CG = 
2

2

2 2
x x

xy
σ σ⎛ ⎞+ + τ⎜ ⎟

⎝ ⎠

and minimum stress

σmin = OH = OC – CH = 
2

2

2 2
x x

xy
σ σ⎛ ⎞− + τ⎜ ⎟

⎝ ⎠

We also find that the maximum shear stress will be equal to the radius of the Mohr’s circle of

stresses i.e., 
2

2

2
x

xy
σ⎛ ⎞ + τ⎜ ⎟

⎝ ⎠
. It will happen when (2θ – α) is equal to 90° or 270°.

However when (2θ – α) is equal to 90° then the shear stress is equal to 
2

2

2
σ⎛ ⎞+ + τ⎜ ⎟⎝ ⎠

x
xy  .

And when (2θ – α) = 270° then the shear stress is equal to 
2

2

2
σ⎛ ⎞− + τ⎜ ⎟⎝ ⎠

x
xy .
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 EXAMPLE 7.17.    A plane element in a body is subjected to a tensile stress of 100 MPa
accompanied by a clockwise shear stress of 25 MPa. Find (i) the normal and shear stress on
a plane inclined at an angle of 20° with the tensile stress ;  and (ii) the maximum shear stress
on the plane.

*SOLUTION.  Given : Tensile stress along horizontal x-x axis (σx) = 100 MPa ;  Shear stress (τxy)
= 25 MPa and angle made by plane with tensile stress (θ) = 20°.

The given stresses on the element and a complimentary shear stress on the BC plane are shown in
Fig. 7.22 (a). Now draw the Mohr’s Circle of Stresses as shown in Fig 7.22 (b) and as discussed
below :

Fig. 7.22

1. First of all, take some suitable point O, and through it draw a horizontal line XOX.
2. Cut off OJ equal to the tensile stress on the plane AC (i.e., 100 MPa) to some suitable scale

towards right.

3. Now erect a perpendicular at J above the line X-X and cut off JD equal to the positive shear
stress on the plane BC (i.e., 25 MPa) to the scale. The point D represents the stress system on
the plane AC. Similarly erect a perpendicular at O below the line X-X and cut off OE equal to the
negative shear stress on the plane BC (i.e., 25 MPa) to the scale. The point E represents the
stress system on the plane BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw the Mohr’s Circle of Stresses.
5. Now through C, draw two lines CM and CN at right angle to the line OX meeting the circle at

M and N. Also through C, draw a line CP making an angle of 2 × 20° = 40° with CE in
clockwise direction meeting the circle at P. The point P represents the stress system on the
section AB.

6. Through P, draw PQ perpendicular to the line OX.

By measurement, we find that the normal stress (σn) = OQ = 4.4 MPa (compression) ;  Shear
stress (τ) = QP = 13.0 MPa and maximum shear stress (τmax) = CM = 55.9 MPa        Ans.

EXAMPLE 7.18.  An element in a strained body is subjected to a tensile stress of
150 MPa and a shear stress of 50 MPa tending to rotate the element in an anticlockwise
direction. Find (i) the magnitude of the normal and shear stresses on a section inclined at
40° with the tensile stress ; and (ii) the magnitude and direction of maximum shear stress
that can exist on the element.

* We have already solved this question analytically, as example 7.7.
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Fig. 7.23

*SOLUTION.  Given : Tensile stress along horizontal x-x axis (σx) = 150 MPa ;  Shear stress (τxy) =
– 50 MPa (Minus sign due to anticlockwise) and angle made by section with the tensile stress (θ) = 40°.

The given stresses on the plane AB of the element and a complimentary shear stress on the plane
BC are shown in Fig 7.23 (a). Now draw the Mohr’s Circle of Stresses as shown in Fig. 7.23 (b) and
as discussed below :

1. First of all, take some suitable point O, and through it draw a horizontal line XOX.
2. Cut off OJ equal to the tensile stress on the plane AC (i.e., 150 MPa) to some suitable scale

towards right.

3. Now erect a perpendicular at J below the line X-X and cut off JD equal to the negative shear
stress on the plane AC (i.e., 50 MPa) to the scale. The point D represents the stress system on the
plane AC. Similarly, erect a perpendicular at O above the line X-X and cut off OE equal to the
positive shear stress on the plane BC (i.e., 50 MPa) to the scale. The point E represents the
stress system on the plane BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw the Mohr’s Circle of  Stresses meeting
the line X-X at G and H.

5. Through C, draw two lines CM and CN at right angles to the line X-X meeting the circle at M
and N. Also through C, draw a line CP making an angle of 2 × 40° = 80° with CE in clockwise
direction meeting the circle at P. The point P represents the stress system on the section AB.

6. Through P, draw PQ perpendicular to the line OX.

By measurement, we find that the Normal stress (σn) = OQ = 112.2 MPa ;  Shear stress (τ) = QP
= 82.5 MPa and maximum shear stress, that can exist on element (τmax) = ± CM =
CN = 90.14 MPa        Ans.

EXAMPLE 7.19.  An element in a strained body is subjected to a compressive stress of 200
MPa and a clockwise shear stress of 50 MPa on the same plane. Calculate the values of normal
and shear stresses on a plane inclined at 35° with the compressive stress. Also calculate the value
of maximum shear stress in the element.

**SOLUTION.  Given : Compressive stress along horizontal x-x axis (σx) = – 200 MPa (Minus sign
due to compressive stress) ;  Shear stress (τxy) = 50 MPa ;  and angle made by plane with the compressive
stress (θ) = 35°.

* We have already solved this question analytically, as example 7.8.
** We have already solved this question analytically, as example 7.9.
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Fig. 7.24

The given stresses on the plane AC of the element and a complimentary shear stress on the plane
BC are shown in Fig. 7.24 (a). Now draw the Mohr’s Circle of Stresses as shown in Fig.7.24 (b) and
as discussed below :

1. First of all, take some suitable point O, and through it draw a horizontal line XOX.

2. Cut off OJ equal to the compressive stress on the plane AC (i.e., 200 MPa) to some suitable
scale towards left .

3. Now erect a perpendicular at J above the line X-X and cut off JD equal to the positive shear
stress on the plane AC (i.e., 50 MPa) to the scale. The point D represents the stress system on the
plane AC. Similarly, erect a perpendicular at O below the line X-X and cut off OE equal to the
negative shear stress on the plane BC (i.e., 50 MPa) to the scale. The point E represents the
stress system on the plane BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw the Mohr’s Circle of Stresses. Meeting
the line X-X at G and H.

5. Through C, draw two lines CM and CN at right angles to the line X-X meeting the circle at M
and N. Also through C draw a line CP making an angle of 2 × 35° = 70° with CE in clockwise
direction meeting the circle at P. The point P represents the stress system on the plane AB.

6. Through P, draw PQ perpendicular to the line OX.

By measurement, we find that the Normal stress (σn) = OQ = – 112.8 MPa ;  Shear stress (τ)
= QP = – 111.1 MPa and maximum shear stress in the element (tmax) = ± CM = CN = 112.1
MPa         Ans.

7.17. Mohr’s Circle for Stresses on an Oblique Section of a Body
Subjected to Direct Stresses in Two Mutually Perpendicular
Directions Accompanied by a Simple Shear Stress

Fig. 7.25
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Consider a rectangular body of uniform cross-sectional area and unit thickness subjected to
direct tensile stresses in two mutually perpendicular directions along X-X and Y-Y axes accompanied
by a positive (i.e., clockwise) shear stress along X-X axis as shown in Fig. 7.25 (a) and (b). Now let us
consider an oblique section AB inclined with X-X axis on which we are required to find out the
stresses as shown in the figure.

Let σx = Tensile stress in X-X direction,

σy = Tensile stress in Y-Y direction,

τxy = Positive (i.e., clockwise) shear stress along X-X axis, and
θ = Angle which the oblique section AB makes with X-X axis in

clockwise direction.

First of all, consider the equilibrium of the wedge ABC. We know that as per the principle of
simple shear, the face BC of the wedge will be subjected to an anticlockwise shear stress equal to
τxy as shown in Fig. 7.25 (b). Now draw the Mohr’s Circle of Stresses as shown in Fig. 7.26 and as
discussed below :

Fig. 7.26

1. First of all, take some suitable point O and through it draw a horizontal line OX.
2. Cut off OJ and OK equal to the tensile stresses σx and σy respectively to some suitable scale and

towards right (because both the stresses are tensile).

3. Now erect a perpendicular at J above the line X-X (because τxy is positive along X-X axis) and
cut off JD equal to the shear stress τxy to the scale. The point D represents the stress system on
plane AC. Similarly, erect perpendicular below the line X-X (because τxy is negative along Y-Y
axis) and cut off KE equal to the shear stress τxy to the scale. The point E represents the plane
BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw a circle. It is known as Mohr’s Circle
of Stresses.

5. Now through C, draw a line CP making an angle 2θ with CE in clockwise direction meeting the
circle at P. The point P represents the stress system on section AB.

6. Through P, draw PQ perpendicular to the line OX. Join OP.

7. Now OQ, QP and OP will give the normal stress, shear stress and resultant stress respectively to
the scale. Similarly OG and OH will give the maximum and minimum principal shear stresses to
the scale. The angle POC is called the angle of obliquity.

Proof
From the geometry of the Mohr’s Circle of Stresses, we find that

OC = 2
x yσ + σ
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and radius of the circle

R = EC = CD = CP = 

2
2

2
x y

xy

σ − σ⎛ ⎞
+ τ⎜ ⎟

⎝ ⎠

Now in the right angled triangle DCJ

sin α =
xyJD

DC R

τ
=        and       cos α = 1

2 2
x y x yJD

DC R R

σ − σ σ − σ
= × =

Similarly in right angled triangle CPQ

∴ ∠ PCQ = (2θ – α)
CQ = CP cos 2θ – α

= R [ cos (2θ – α)]
= R [cos α cos 2θ + sin α sin 2θ]
= R cos α cos 2θ + R sin α sin 2θ

= R × 
2

x y

R

σ −σ
 cos 2θ + R × xy

R

τ
 sin 2θ

=
2

σ −σx y  cos 2θ + τxy sin 2θ

Normal Stress (across the inclined section AB)
σn = OQ  = OC – CQ

or σn =
2 2

σ + σ σ − σ
−x y x y  cos 2θ – τxy sin 2θ ...(Same as in Art. 7.11)

Shear Stress or Tangential Stress (across the inclined section AB)
τ = QP = CP sin [(2θ – α )] = R sin (2θ – α )

= R (cos α sin 2θ – sin α cos 2θ)

= R cos α sin 2θ – R sin α cos 2θ

= sin 2 cos 2
2

σ −σ τ
× θ − × θx y xyR R

R R

or τ =
2

x yσ −σ
 sin 2θ – τxy cos 2θ ...(Same as in Art. 7.11)

Maximum Principal Stress

σmax = OG = OC + CG = 

2
2

2 2
x y x y

xy

σ + σ σ − σ⎛ ⎞
+ + τ⎜ ⎟

⎝ ⎠
Minimum Principal Stress

σmin = OH = OC – CH = 

2
2

2 2

σ + σ σ − σ⎛ ⎞
− + τ⎜ ⎟

⎝ ⎠

x y x y
xy

We also find the maximum shear stress will be equal to the radius of the Mohr’s circle of  Stresses.

i.e., 

2
2

2
x y

xy

σ − σ⎛ ⎞
+ τ⎜ ⎟

⎝ ⎠
. It will happen when (2θ – α) is equal to 90° or 270°.

However when (2θ – α) = 90° then the shear stress is equal to +

2
2

2
x y

xy

σ − σ⎛ ⎞
+ τ⎜ ⎟

⎝ ⎠
.

And  when (2θ – α) = 270° then the shear stress is equal to – 

2
2

2
x y

xy

σ − σ⎛ ⎞
+ τ⎜ ⎟

⎝ ⎠
.
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EXAMPLE 7.20.  A point is subjected to a tensile stress of 250 MPa in the horizontal
direction and another tensile stress of 100 MPa in the vertical direction. The point is also
subjected to a simple shear stress of 25 MPa, such that when it is associated with the
major tensile stress, it tends to rotate the element in the clockwise direction. What is the
magnitude of the normal and shear stresses inclined on a section at an angle of 20° with
the major tensile stress ?

*SOLUTION.  Given : Tensile stress in horizontal direction (σx) = 250 MPa ;  Tensile stress in
vertical direction (σy) = 100 MPa ;  Shear stress (τ) = 25 MPa and angle made by section with major
tensile stress (θ) = 20°.

Fig. 7.27

The given stresses on the face AC of the point alongwith a tensile stress on the plane BC and a
complimentary shear stress on the plane BC are shown in Fig 7.27 (a). Now draw the Mohr’s Circle
of Stresses as shown in Fig. 7.27 (b) and as discussed below :

1. First of all, take some suitable point O, and through it draw a horizontal line OX.
2. Cut off OJ and OK equal to the tensile stresses σx and σy respectively (i.e., 250 MPa and 100

MPa) to some suitable scale towards right.

3. Now erect a perpendicular at J above the line OX and cut off JD equal to the positive shear
stress on the plane AC (i.e., 25 MPa) to the scale. The point D represents the stress system on
the plane AC. Similarly, erect a perpendicular at K below the OX and cut off KE equal to the
negative shear stress on the plane BC (i.e., 25 MPa) to the scale. The point E represents the
stress system on the plane BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw the Mohr’s Circle of Stresses.
5. Now through C draw a line CP making an angle of 2 × 20° = 440° with CE in clockwise

direction meeting the circle at P. The point P represents the stress system on the section to AB.

6. Through P, draw PQ perpendicular to the line OX.

By measurement, we find that the normal stress, (σx) = OQ = 101.5 MPa and shear stress τ = QP
= 29.0 MPa        Ans.

EXAMPLE 7.21.  A plane element in a boiler is subjected to tensile stresses of 400 MPa
on one plane and 150 MPa on the other at right angle to the former. Each of the above
stresses is accompanied by a shear stress of 100 MPa such that when associated with the
major tensile stress tends to rotate the element in an anticlockwise direction. Find (a)
Principal stresses and their directions. (b) Maximum shearing stresses and directions of
the plane on which they act.

* We have already solved this question analytically, as example 7.10.
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*SOLUTION.  Given : Tensile stress along horizontal x-x axis (σx) = 400 MPa ;  Tensile stress along
vertical y-y axis (σy) = 150 MPa and Shear stress (τxy) = – 100 MPa (Minus sign due to anticlockwise
on x-x axis).

Fig. 7.28

The given stresses on the plane AC and BC of the element along with a complimentary shear

stress on the plane BC are shown in Fig. 7.28 (a). Now Draw the Mohr’s Circle of Stresses as shown

in Fig 7.28 (b) and as discussed below :

1. First of all, take some suitable point O, and draw a horizontal line OX.

2. Cut off OJ and OK equal to the tensile stresses σx and σy respetitively (i.e,. 400 MPa and 150

MPa) to some suitable scale towards right.

3. Now erect a perpendicular at J below the line OX and cut off JD equal to the negative shear

stress on the plane AC (i.e., 100 MPa) to the scale. The point D represents the stress systems on

the plane AC. Similarly, erect a perpendicular at K above the line OX and cut off  KE equal to the

positive shear stress on the plane BC (i.e., 100 MPa) to the scale. The point E represents the

stress system on the plane BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw the Mohr’s Circle of Stresses meeting

the line OX at G and H.

5. Through C draw two lines CM and CN at right angles to the line OX meeting the circle at M and N.

By measurement, we find that maximum principal stress (σmax) = OG = 435.0 MPa ;  Minimum

principal stress (σmin) = OH = 115.0 MPa ;  By measurement ∠JCD therefore angle which the plane

of principal stress makes with x-x axis (θp) = 
38.66

2 2
JCD∠ °=  = 19.33° ;  Maximum shearing stress

(τmax) = CM = 160.0  MPa ;  By measurement ∠ MCE = 2θs = 51.34°, therefore angle which the plane

of maximum shearing stress makes with x-x axis (θs) = 
51.34

2
°

 = 25.7°        Ans.

* We have already solved this question analytically, as example 7.11.
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EXAMPLE 7.22.  A point in a strained material is subjected to the stresses as shown in Fig.
7.29. Find graphically, or otherwise, the normal and shear stresses on the section AB.

Fig. 7.29

*SOLUTION.  Given : Tensile stress along horizontal x-x axis (σx) = 75 MPa ;  Tensile stress along
vertical y-y axis (σy) = 150 MPa ;  Shear stress (τxy) = 25 MPa and angle made by section with
horizontal tensile stress in clockwise direction (θ) = 55°.

The given stresses on the planes AC and BC are shown in Fig.7.30 (a). Now draw the Mohr’s
Circle of Stresses as shown in Fig. 7.30 (b) and as discussed below :

1. First of all, take some suitable point O, and draw a horizontal line OX.
2. Cut off OJ and OK equal to the tensile stresses σx and σy respectively (i.e.,75 MPa and 150

MPa) to some suitable scale towards right.

Fig. 7.30

3. Now erect a perpendicular at J above the line OX and cut off JD equal to the positive shear
stress on the plane AC (i.e., 25 MPa) to the scale. The point D represents the stress system on the
plane AC. Similarly, erect a perpendicular at K below the line OX and cut off KE equal to the
negative shear stress on the plane BC (i.e., 25 MPa) to the scale. The point E represents the
stress system on the plane BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw the Mohr’s Circle of Stresses.
5. Now through C draw a line CP making an angle of 2 × 55° = 110° with CD in an anticlockwise

direction meeting the circle at P. The point P represents the stress system on the section AB.

By measurement, we find that the normal stress (σn) = OQ = 76.1 MPa and shear stress (τ) =
PQ = – 26.7 MPa.        Ans.

* We have already solved this question analytically, as example 7.12.
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EXAMPLE 7.23.  A plane element of a body is subjected to a compressive stress of 300 MPa in
x-x direction and a tensile stress of 200 MPa in the y-y direction. Each of the above stresses is
subjected to a shear stress of 100 MPa such that when it is associated with the compressive
stress, it tends to rotate the element in an anticlockwise direction.

Find graphically, or otherwise, the normal and shear stresses on a plane inclined at an angle
of 30° with the x-x axis.

*SOLUTION. Given : Compressive stress in x-x direction (σx) = – 300 MPa (Minus sign due to com-
pressive). Tensile stress in y-y direction (σy) = 200 MPa ;  Shear stress (τxy) = 100 MPa (Minus sign due
to anticlockwise direction along the compressive stress i.e., σx) and angle of plane with x-x axis (θ) = 30°.

Fig. 7.31

The given stresses on the plane AC of the element alongwith a tensile stress on the plane BC and
a complimentary shear stress on the plane BC are shown in Fig. 7.31 (a). Now draw the Mohr’s Circle
of Stresses as shown in Fig. 7.31 (b) and as discussed below :

1. First of all, take some suitable point O, and through it draw horizontal line XOX.
2. Cut off OJ and OK equal to the stresses σx and σy respectively (i.e., – 300 MPa and 200 MPa)

to some suitable scale such that J is towards left (because of compressive) and K is towards
right (because of tensile).

3. Now erect a perpendicular at J below the line XOX and cut off JD equal to the negative shear
stress on the plane AC (i.e., 100 MPa) to the scale. The point D represents the stress system on
the plane AC. Similarly, erect a perpendicular at K above the line XOX and cut off KE equal to
the positive shear stress on the plane BC (i.e., 100 MPa) to the scale. The point E represents the
stress system on the plane BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw the Mohr’s Circle of Stresses.
5. Now through C draw a line CP making an angle of 2 × 30° = 60° with CE in clockwise direction

meeting the circle at P. The point P represents the stress system on plane AB.
6. Through, P, draw PQ perpendicular to the line OX.

By measurement, we find that the normal stress (σn) = OQ = 161.6 MPa ;  and shear stress (τ) = QP
= – 166.5 MPa   Ans.

EXAMPLE 7.24.  A machine component is subjected to the stresses as shown in Fig. 7.32.

Fig. 7.32
* We have already solved this question analitically, as example 7.13.
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Find the normal and shearing stresses on the section AB inclined at an angle of 60° with x-x
axis. Also find the resultant stress on the section.

*SOLUTION.  Given : Compressive stress along horizontal x-x axis (σx) = – 100 MPa (Minus sign
due to compressive) ;  Compressive stress along vertical y-y axis (σy) = – 50 MPa (Minus sign due to
compressive) ;  Shear stress (τxy) = – 25 MPa (Minus sign due to anticlockwise on x-x axis and angle
between section and horizontal x-x axis (θ) = 60°.

The given stresses on the planes AC and BC are shown in Fig. 7.33 (a). Now draw the Mohr’s
Circle of Stresses as shown in Fig. 7.33 (b) and as discussed below :

1. First of all, take some suitable point O and through it draw a horizontal line, such that X is
towards left. (because both the stress are compressive)

2. Cut off OJ and OK equal to the compressive stresses σx and σy respectively (i.e., –100 MPa and
–50 MPa) to some suitable scale towards left.

Fig. 7.33

3. Now erect a perpendicular at J below the line XO and cut off JD equal to the negative shear
stress on the plane AC (i.e., 25 MPa) to the scale. The point D represents the stress system on the
plane AC. Similarly, erect a perpendicular at K above the line XO and cut off KE equal to the
positive shear stress on the plane BC (i.e., 25 MPa) to the scale. The point E represents the
stress system on the plane BC. Join DE and bisect it at C.

4. Now with C as centre and radius equal to CD or CE draw the Mohr’s Circle of Stresses.
5. Now through C, draw a line CP making an angle of 2 × 60° = 120° with CE in clockwise

direction meeting the circle at P. The point P represents the stress system on the section AB.

6. Through P, draw PQ perpendicular to the line XO. Join OP.

By measurement, we find that the normal stress (σn) = OQ = – 65.8 MPa ;  Shear stress (τ) = QP
= – 34.1 MPa and resultant stress (σR) = OP = 74 MPa         Ans.

EXERCISE 7.2

1. At a point in a strained material, the principal stresses are 100 MPa and 50 MPa both tensile.
Find the normal and shear stresses at a section inclined at 60° with the axis of the major princi-
pal stress. (Ans. 87.5 MPa ;  21.65 MPa)

2. A point in a strained material is subjected to a tensile stress of 120 MPa and a clockwise shear
stress of 40 MPa. What are the values of normal and shear stresses on a plane inclined at 25°
with the normal to the tensile stress. (Ans. 20 MPa ;  60 MPa)

* We have already solved this question analytically, as example 7.14.
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3. The principal stresses at a point in the section of a member are 50 MPa and 20 MPa both tensile.
If there is a clockwise shear stress of 30 MPa, find graphically the normal and shear stresses on
a section inclined at an angle of 15° with the normal to the major tensile stress.

(Ans. 32.99 MPa ;  33.48 MPa)
4. A point is subjected to tensile stresses of 200 MPa and 150 MPa on two mutually perpendicular

planes and an anticlockwise shear stress of 30 MPa. Determine by any method the values of
normal and shear stresses on a plane inclined at 60° with the minor tensile stress.

(Ans. 188.48 MPa ;  36.65 MPa)

5. At a point in a stressed element, the normal stresses in two mutually perpendicular directions
are 45 MPa and 25 MPa both tensile. The complimentary shear stress is these directions is
15 MPa. By using Mohr’s circle method, or otherwise, determine the maximum and minimum
principal stresses. (Ans. 188.48 MPa ;  36.65 MPa)

QUESTIONS

1. Define principal planes and principal stresses and explain their uses.
2. Derive an expression for the stresses on an oblique section of a rectangular body, when it is

subjected to (a) a direct stress in one plane only and (b) direct stresses in two mutually perpen-
dicular directions.

3. Obtain an expression for the major and minor principal stresses on a plane, when the body is sub-
jected to direct stresses in two mutually perpendicular directions accompanied by a shear stress.

4. How will you find out graphically the resultant stress on an oblique section when the body is
subjected to direct stresses in two mutually perpendicular directions?

OBJECTIVE TYPE QUESTIONS

1. When a body is subjected to a direct tensile stress (σ) in one plane, then normal stress on an
oblique section of body inclined at an angle  to the normal of the section is equal to

(a) σ sin θ (b) σ cos θ (c) σ sin2 θ (d) σ cos2 θ
2. When a body is subjected to a direct tensile stress (σ) in one plane, then the tangential stress on

an oblique section of the body inclined at an angle (θ) to normal of the section is equal to

(a) p sin 2θ (b) p cos 2θ (c) sin 2
2
P θ (d) cos 2

2
P θ

3. When a body is subjected to a direct tensile stress (σ) in one plane and accompanied by a single
shear stress (τ), the maximum normal stress is

(a) 2 21 4
2 2
σ + σ + τ (b) 2 21 4

2 2
σ − σ + τ

(c) 2 24
2
σ + σ − τ (d) 2 21 4

2 2
σ − σ − τ

4. When a body is subjected to the mutually perpendicular stress (σx and σy) then the centre of the
Mohr’s circle from y-axis is taken as

(a)
2

x yσ + σ
(b)

2
x yσ −σ

(c)
2

σ − σ
+ τx y

xy (d)
2

x y
xy

σ −σ
− τ

ANSWERS

1. (d) 2. (c) 3. (a) 4. (b)
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9.1. Introduction
It has been established, since long, that every

particle of a body is attracted by the earth towards
its centre. The force of attraction, which is
proportional to the mass of the particle, acts
vertically downwards and is known as weight of
the body. As the *distance between the different
particles of a body and the centre of the earth is
the same, therefore these forces may be taken to
act along parallel lines.

We have already discussed in Art. 4.6 that a
point may be found out in a body, through which

* Strictly speaking, this distance is not the same.
But it is taken to the same, because of the very
small size of the body as compared to the earth.

9C h a p t e r

Note :
Important Results related to this
chapter are given at the end of this
book. See Appendix Table 2
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the resultant of all such parallel forces act. This point, through which the whole weight of the body
acts, irrespect of its position, is known as centre of gravity (briefly written as C.G.). It may be noted
that every body has one and only one centre of gravity.

9.2. Centroid
The plane figures (like triangle, quadrilateral, circle etc.) have only areas, but no mass. The

centre of area of such figures is known as centroid. The method of finding out the centroid of a figure
is the same as that of finding out the centre of gravity of a body. In many books, the authors also write
centre of gravity for centroid and vice-versa.

9.3. Methods for Centre of Gravity
The centre of gravity (or centroid) may be found out by any one of the following two methods:

1. By geometrical considerations

2. By moments

3. By graphical method

As a matter of fact, the graphical method is a tedious and cumbersome method for finding out the
centre of gravity of simple figures. That is why, it has academic value only. But in this book, we shall
discuss the procedure for finding out the centre of gravity of simple figures by geometrical consider-
ations and by moments one by ones.

9.4.  Centre of Gravity by Geometrical Considerations
The centre of gravity of simple figures may be found out from the geometry of the figure as given

below.

1. The centre of gravity of uniform rod is at its middle point.

Fig. 9.1. Rectangle Fig. 9.2. Triangle

2. The centre of gravity of a rectangle (or a parallelogram) is at the point, where its diagonals
meet each other. It is also a middle point of the length as well as the breadth of the rect-
angle as shown in Fig. 9.1.

3. The centre of gravity of a triangle is at the point, where the three medians (a median is a
line connecting the vertex and middle point of the opposite side) of the triangle meet as
shown in Fig. 9.2.

4. The centre of gravity of a trapezium with parallel sides a and b is at a distance of

2

3

h b a

b a

⎛ ⎞+× ⎜ ⎟+⎝ ⎠
 measured form the side b as shown in Fig. 9.3.
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5. The centre of gravity of a semicircle is at a distance of 
4

3

r

π
 from its base measured along

the vertical radius as shown in Fig. 9.4.

              

  Fig. 9.3. Trapezium      Fig. 9.4. Semicircle
6. The centre of gravity of a circular sector making semi-vertical angle α is at a distance

of 
2 sin

3

r α
α

 from the centre of the sector measured along the central axis as shown

in Fig. 9.5.

    

Fig. 9.5. Circular sector   Fig. 9.6. Hemisphere

7. The centre of gravity of a cube is at a distance of 
2

l
 from every face (where l is the length

of each side).

8. The centre of gravity of a sphere is at a distance of 
2

d
from every point (where d is the

diameter of the sphere).

9. The centre of gravity of a hemisphere is at a distance of 
3

8

r
 from its base, measured along

the vertical radius as shown in Fig. 9.6.

               

Fig. 9.7. Right circular solid cone  Fig. 9.8. Segment of a sphere
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10. The centre of gravity of right circular solid cone is at a distance of 
4

h
from its base,

measured along the vertical axis as shown in Fig. 9.7.

11. The centre of gravity of a segment of sphere of a height h is at a distance of 
23 (2 – )

4 (3 – )

r h

r h
from the centre of the sphere measured along the height. as shown in Fig. 9.8.

9.5. Centre of Gravity by Moments
The centre of gravity of a body may also be found out by moments as discussed below:

Fig. 9.9. Centre of gravity by moments

Consider a body of mass M whose centre of gravity is required to be found out. Divide the body
into small masses, whose centres of gravity are known as shown in Fig. 9.9. Let m1, m2, m3....;  etc. be
the masses of the particles and (x1, y1), (x2, y2), (x3, y3), ...... be the co-ordinates of the centres of
gravity from a fixed point O as shown in Fig. 9.9.

Let x  and y be the co-ordinates of the centre of gravity of the body. From the principle of
moments, we know that

     M x = m1 x1 + m2 x2 + m3 x3 .....

or
mx

x
M

Σ=

Similarly
m y

y
M

Σ= ,

where  M = m1 + m2 + m3 + .....

9.6. Axis of Reference
The centre of gravity of a body is always calculated with reference to some assumed axis known

as axis of reference (or sometimes with reference to some point of reference). The axis of reference,
of plane figures, is generally taken as the lowest line of the figure for calculating y and the left line of
the figure for calculating x .

9.7. Centre of Gravity of Plane Figures
The plane geometrical figures (such as T-section, I-section, L-section etc.) have only areas but no

mass. The centre of gravity of such figures is found out in the same way as that of solid bodies. The
centre of area of such figures is known as centroid, and coincides with the centre of gravity of the
figure. It is a common practice to use centre of gravity for centroid and vice versa.
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Let x and y be the co-ordinates of the centre of gravity with respect to some axis of reference,
then

1 1 2 2 3 3

1 2 3

........a x a x a x
x

a a a

+ + +
=

+ +

and
1 1 2 2 3 3

1 2 3

........

...

a y a y a y
y

a a a

+ + +
=

+ + +
where a1, a2, a3........ etc., are the areas into which the whole figure is divided x1, x2, x3 ..... etc.,

are the respective co-ordinates of the areas a1, a2, a3....... on X-X axis with respect to same axis of
reference.

y1, y2, y3....... etc., are the respective co-ordinates of the areas a1, a2, a3....... on Y-Y axis with
respect to same axis of the reference.

NOTE. While using the above formula, x1, x2, x3 ..... or y1, y2, y3 or x and y must be measured from the
same axis of  reference (or point of reference) and on the same side of it. However, if the figure is on both sides
of the axis of reference, then the distances in one direction are taken as positive and those in the opposite
directions must be taken as negative.

9.8. Centre of Gravity of Symmetrical Sections
Sometimes, the given section, whose centre of gravity is required to be found out, is symmetrical

about X-X axis or Y-Y axis. In such cases, the procedure for calculating the centre of gravity of the

body is very much simplified; as we have only to calculate either x  or y . This is due to the reason

that the centre of gravity of the body will lie on the axis of symmetry.

EXAMPLE 9.1. Find the centre of gravity of a 100 mm × 150 mm × 30 mm T-section.

SOLUTION. As the section is symmetrical about Y-Y axis, bisecting the web, therefore its
centre of gravity will lie on this axis. Split up the section into two rectangles ABCH and DEFG as
shown in Fig. 9.10.

Let bottom of the web FE be the axis of reference.

(i) Rectangle  ABCH

  a1 = 100 × 30 = 3000 mm2

and   1
30

150 – 135mm
2

y
⎛ ⎞= =⎜ ⎟
⎝ ⎠

(ii) Rectangle  DEFG

  a2 = 120 × 30 = 3600 mm2

and   2
120

60 mm
2

y = =

We know that distance between centre of gravity of the section and bottom of the flange FE,

  
1 1 2 2

1 2

(3000 135) (3600 60)
mm

3000 3600

a y a y
y

a a

+ × + ×= =
+ +

  = 94.1 mm       Ans.

Fig. 9.10
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EXAMPLE 9.2. Find the centre of gravity of a channel section 100 mm × 50 mm × 15 mm.

SOLUTION.  As the section is symmetrical about X-X axis, therefore its centre of gravity will lie on
this axis. Now split up the whole section into three rectangles ABFJ, EGKJ and CDHK as shown in
Fig. 9.11.

Let the face AC be the axis of reference.

(i) Rectangle  ABFJ
  a1 = 50 × 15 = 750 mm2

and   1
50

25 mm
2

x = =

(ii) Rectangle  EGKJ
 a2 = (100 – 30) × 15 = 1050 mm2

and  2
15

7.5 mm
2

x = =

(iii) Rectangle  CDHK
 a3 = 50 × 15 = 750 mm2

and  3
50

25 mm
2

x = =

We know that distance between the centre of gravity of the section and left face of the section AC,

           
1 1 2 2 3 3

1 2 3

a x a x a x
x

a a a

+ +
=

+ +

               
(750 25) (1050 7.5) (750 25)

17.8 mm
750 1050 750

× + × + ×= =
+ +

    Ans.

EXAMPLE 9.3. An I-section has the following dimensions in mm units :
   Bottom flange  = 300 × 100

   Top flange   = 150 × 50

   Web   = 300 × 50
Determine mathematically the position of centre of gravity of the section.

SOLUTION. As the section is symmetrical about Y-Y axis, bisecting the web, therefore its centre of
gravity will lie on this axis. Now split up the section into three
rectangles as shown in Fig. 9.12.

Let bottom of the bottom flange be the axis of reference.
(i) Bottom flange

 a1 = 300 × 100 = 30 000 mm2

and  1
100

50mm
2

y = =

(ii) Web
 a2 = 300 × 50 = 15 000 mm2

and  2
300

100 250 mm
2

y = + =

Fig. 9.11

Fig. 9.12
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(iii) Top flange
                                 a3 = 150 × 50 = 7500 mm2

               and             3
50

100 300 425 mm
2

y = + + =

We know that distance between centre of gravity of the section and bottom of the flange,

                                
1 1 2 2 3 3

1 2 3

a y a y a y
y

a a a

+ +
=

+ +

        
(30 000 50) (15 000 250) (7500 425)

30 000 15 000 7500

× + × + ×
=

+ +
 = 160.7 mm       Ans.

9.9. Centre of Gravity of Unsymmetrical Sections
Sometimes, the given section, whose centre of gravity is required to be found out, is not sym-

metrical either about X-X axis or Y-Y axis. In such cases, we have to find out both the values of x
and y

EXAMPLE 9.4. Find the centroid of an unequal angle section 100 mm × 80 mm × 20 mm.

SOLUTION. As the section is not symmetrical about any axis, therefore we have to find out the
values of x and y for the angle section. Split up the section into two rectangles as shown in
Fig. 9.13.

Let left face of the vertical section and bottom face of the horizontal section be axes of
reference.

(i) Rectangle 1

                                 a1 = 100 × 20 = 2000 mm2

                                1
20

10 mm
2

x = =

           and                1
100

50 mm
2

y = =

(ii) Rectangle 2

                                a2 = (80 – 20) × 20 = 1200 mm2

                                2
60

20 50 mm
2

x = + = .

and                 2
20

10 mm
2

y = =

We know that distance between centre of gravity of the section and left face,

                                 1 1 2 2

1 2

(2000 10) (1200 50)

2000 1200

a x a x
x

a a

+ × + ×
= =

+ +
= 25 mm       Ans.

Similarly, distance between centre of gravity of the section and bottom face,

                                 1 1 2 2

1 2

(2000 50) (1200 10)

2000 1200

a y a y
y

a a

+ × + ×
= =

+ +
 = 35 mm       Ans.

Fig. 9.13
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EXAMPLE 9.5. A uniform lamina shown in Fig. 9.14 consists of a rectangle, a circle and a
triangle.

Fig. 9.14

Determine the centre of gravity of the lamina. All dimensions are in mm.

SOLUTION.  As the section is not symmetrical about any axis, therefore we have to find out the
values of both x  and y for the lamina.

Let left edge of circular portion and bottom face rectangular portion be the axes of reference.
(i) Rectangular portion

a1 = 100 × 50 = 5000 mm2

1
100

25 75 mm
2

x = + =

and 1
50

25 mm
2

y = =

(ii) Semicircular portion

2 2 2
2 (25) 982 mm

2 2
a r

π π= × = =

2
4 4 25

25 – 25 – 14.4 mm
3 3

r
x

×= = =
π π

and 2
50

25 mm
2

y = =
(iii) Triangular  portion

2
3

50 50
1250 mm

2
a

×= =

 x3 = 25 + 50 + 25 = 100 mm

and 3
50

50 66.7 mm
3

y = + =

We know that distance between centre of gravity of the section and left edge of the circular
portion,

                         
1 1 2 2 3 3

1 2 3

a x a x a x
x

a a a

+ +
=

+ +
(5000 75) (982 14.4) (1250 100)

5000 982 1250

× + × + ×
=

+ +

 = 71.1 mm       Ans.



170 � Strength of Materials

Similarly, distance between centre of gravity of the section and bottom face of the rectangular
portion,

       
1 1 2 2 3 3

1 2 3

a y a y a y
y

a a a

+ +
=

+ +  
(5000 25) (982 25) (1250 66.7)

mm
5000 982 1250

× + × + ×=
+ +

                                       = 32.2 mm       Ans.

EXAMPLE 9.6.  A plane lamina of 220 mm radius is shown in figure given below

Fig. 9.15

Find the centre of gravity of lamina from the point O.

SOLUTION.  As the lamina is symmetrical about y-y axis, bisecting the lamina, therefore its centre
of gravity lies on this axis. Let O be the reference point. From the geometry of the lamina. We find
that semi-vertical angle of the lamina

α = 30° rad
6

π=

We know that distance between the reference point O and centre of gravity of the lamina,

2 sin 2 220 sin 30 440 0.5

3 3 3
6 6

r
y

α × °
= = × = ×

π πα ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 = 140 mm       Ans.

EXERCISE 9.1

1. Find the centre of gravity of a T-section with flange 150 mm × 10 mm and web also 150
mm × 10 mm. [Ans. 115 mm for bottom of the web]

2. Find the centre of gravity of an inverted T-section with flange 60 mm × 10 mm and web
50 mm × 10 mm [Ans. 18.6 mm from bottom of the flange]

3. A channel section 300 mm × 10 mm is 20 mm thick. Find the centre of gravity of the section
from the back of the web. [Ans. 27.4 mm]

4. Find the centre of gravity of an T-section with top flange 100 mm × 20 mm, web
200 mm × 30 mm and bottom flange 300 mm × 40 mm.

[Ans. 79 mm from bottom of lower flange]

5. Find the position of the centre of gravity of an unequal angle section 10 cm × 16 cm
× 2cm. [Ans. 5.67 cm and 2.67 cm]
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6. A figure consists of a rectangle having one of its sides twice the other, with an equilateral
triangle described on the larger side. Show that centre of gravity of the section lies on the line
joining the rectangle and triangle.

7. A plane lamina of radius 100 mm as shown in fig 9.16 given below:

Fig. 9.16

Find the centre of gravity of lamina from the point O. [Ans. 65 mm]

9.10. Centre of Gravity of Solid Bodies
The centre of gravity of solid bodies (such as hemispheres, cylinders, right circular solid cones

etc.) is found out in the same way as that of plane figures. The only difference, between the plane
figures and solid bodies, is that in the case of solid bodies, we calculate volumes instead of areas. The
volumes of few solid bodies are given below :

1. Volume of cylinder = π × r2 × h

2. Volume of hemisphere 32

3
r

π= ×

3. Volume of right circular solid cone 2

3
r h

π= × ×

where r = Radius of the body, and
h = Height of the body.

NOTE. Sometimes the densities of the two solids are different. In such a case, we calculate the weights

instead of volumes and the centre of gravity of the body is found out as usual.

EXAMPLE 9.7. A solid body formed by joining the base of a right circular cone of height H
to the equal base of a right circular cylinder of height h.  Calculate the distance of the centre of
mass of the solid from its plane face, when H = 120 mm and h = 30 mm.

SOLUTION.  As the body is symmetrical about the vertical axis, therefore its centre of gravity will
lie on this axis as shown in Fig. 9.17. Let r be the radius of the cylinder base in cm. Now let base of
the cylinder be the axis of reference.

(i) Cylinder
v1  = π × r2 × 30 = 30 π r2 mm3

and 1
30

15 mm
2

y = =

(ii) Right circular cone
2 2 3

2 120 mm
3 3

v r h r
π π= × × = × ×

= 40 πr2 mm3

and 2
120

30 60 mm
4

y = + = Fig. 9.17
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We know that distance between centre of gravity of the section and base of the cylinder,

2 2
1 1 2 2

2 2
1 2

(30 15) (40 60) 2850
mm

7030 40

v y v y r r
y

v v r r

+ π × + π ×= = =
+ π + π

= 40.7 mm       Ans.

EXAMPLE 9.8. A body consists of a right circular solid cone of height 40 mm and radius
30 mm placed on a solid hemisphere of radius 30 mm of the same material. Find the position of
centre of gravity of the body.

SOLUTION. As the body is symmetrical about Y-Y axis, therefore its centre of gravity will lie on
this axis as shown in Fig. 9.18. Let bottom of the hemisphere (D) be the point of reference.

(i) Hemisphere

3 3 3
1

2 2
(30) mm

3 3
v r

π π= × =

= 18 000 π mm3

and 1
3 5 5 30

18.75 mm
8 8 8

×
= − = = =

r r
y r

(ii) Right circular cone

2 2 3
2 (30) 40 mm

3 3
v r h

π π= × × = × ×

= 12 000 π mm3

and 2
40

30 40 mm
4

y = + =
We know that distance between centre of gravity of the body and bottom of hemisphere D,

1 1 2 2

1 2

(18 000 18.75) (12 000 40)
mm

18 000 12 000

v y v y
y

v v

+ π × + π ×= =
+ π + π

= 27.3 mm       Ans.

EXAMPLE 9.9. A body consisting of a cone and hemisphere of radius r fixed on the same
base rests on a table, the hemisphere being in contact with the table. Find the greatest height of
the cone, so that the combined body may stand upright.

SOLUTION.  As the body is symmetrical about Y-Y axis, therefore its centre of gravity will lie on
this axis as shown in Fig. 9.19. Now consider two parts of the body viz., hemisphere and cone. Let
bottom of the hemisphere (D) be the axis of reference.

(i) Hemisphere

3
1

2

3
v r

π= ×

and 1
5

8

r
y =

(ii) Cone
2

2 3
v r h

π= × ×

and 2 4

h
y r= +

Fig. 9.18

Fig. 9.19
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We know that distance between centre of gravity of the body and bottom of hemisphere D,

3 2

1 1 2 2

3 21 2

2 5
3 8 3 4

2
3 3

π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞× × + × × +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠+
= =

π π+ ⎛ ⎞ ⎛ ⎞× + × ×⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

r h
r r h r

v y v y
y

v v
r r h

Now for stable equilibrium, we know that the centre of gravity of the body should preferably be
below the common face AB or maximum may coincide with it. Therefore substituting y  equal to r in
the above equation,

                                         

3 2

3 2

2 5
3 8 3 4

2
3

π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞× × + × × +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
=

π π⎛ ⎞ ⎛ ⎞× + × ×⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠3

r h
r r h r

r
r r h

or
4 32

3 3
r r h

π π⎛ ⎞ ⎛ ⎞× + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
4 3 2 25

12 3 12
r r h r h

π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × + × × + × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Dividing both sides by π r2,

2 2 2 2 22 5 3
or

3 3 12 3 12 12 12

r r h r r h h r h+ = + + =

3 r2 = h2 or h = 1.732  r       Ans.

EXAMPLE 9.10.  A right circular cylinder of 12 cm diameter is joined with a hemisphere of
the same diameter face to face. Find the greatest height of the cylinder, so that centre of gravity
of the composite section coincides with the plane of joining the two sections. The density of the
material of hemisphere is twice that the material of cylinder.

SOLUTION.  As the body is symmetrical about the vertical axis, therefore its centre of gravity will
lie on this axis. Now let the vertical axis cut the plane joining the two sections at O as shown in Fig.
9.20. Therefore centre of gravity of the section is at a distance of 60 mm from P i.e., bottom
of the hemisphere.

Let h = Height of the cylinder in mm.
(i) Right circular cylinder

Weight (w1) 2
1 4

d h
π= ρ × × ×

2
1 1(120) 3 600

4
h h

π= ρ × × × = πρ

and 1 60 60 0.5 mm
2

h
y h= + = +

(ii) Hemisphere

Weight (w2) 3 3
2 1

2 2
2 (60)

3 3
r

π π= ρ × × = ρ × × ...(∵ ρ2 = 2 ρ1)

= 288 000 π ρ1

and 2
5 5 60 300

37.5 mm
8 8 8

r
y

×= = = =

Fig. 9.20
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We know that distance between centre of gravity of the combined body from ( ),P y

1 1 2 2

1 2

60
w y w y

w w

+=
+

1 1

1 1

3 600 (60 0.5 ) (288 000 37.5)

3 600 288 000

h h

h

πρ + + πρ ×=
πρ + πρ

2216 000 1800 10 800 000

3 600 288 000

h h

h

+ +=
+

216 000 h + 17 280 000 = 216 000 h + 1 800 h2 + 10 800 000

1 800 h2 = 17 280 000 – 10 800 000 = 6 480 000

6 480 000
3 600 60 mm

1 800
h = = =        Ans.

EXAMPLE 9.11. Find the centre of gravity of a segment of height 30 mm of a sphere of radius
60 mm.

SOLUTION.  Let O be the centre of the given sphere
and ABC is the segment of this sphere as shown in
Fig. 9.21

As the section is symmetrical about X-X axis, therefore
its centre of gravity lies on this axis.

Let O be the reference point.
We know that centre of gravity of the segment of sphere

2 23(2 – ) 3(2 60 – 30)

4(3 – ) 4(3 60 – 30)

r h
x

r h

×= =
×

23 (90)

4 150

×
=

×  = 40.5 mm.       Ans.

EXERCISE  9.2

1. A hemisphere of 60 mm diameter is placed on the top of the cylinder having 60 mm diameter.
Find the common centre of gravity of the body from the base of cylinder, if its height is 100 mm.

[Ans. 60.2 mm]

2. A solid consists of a cylinder and a hemisphere of equal radius fixed base to base. Find the ratio
of the radius to the height of the cylinder, so that the solid has its centre of gravity at the com-
mon face. [Ans. 2 : 1]

Hint. For stable equilibrium,  the centre of the body should be below the common face or
maximum lie on it. So take the centre of gravity of the body at a distance (a) from the bottom of
the hemisphere.

3. A body consisting of a cone and hemisphere of radius (r) on the same base rests on a table, the
hemisphere being in contact with the table. Find the greatest height of the cone, so that the
combined solid may be in stable equilibrium. [Ans. 1.732 r]

4. Find the centre of gravity of a segment of height 77 mm of a sphere of radius 150 mm.

[Ans. 100 mm]

Fig. 9.21
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9.11. Centre of Gravity of Sections with Cut out Holes
The centre of gravity of such a section is found out by considering the main section, first as a

complete one, and then deducting the area of the cut out hole i.e., by taking the area of the cut out hole
as negative. Now substituting a2 (i.e., the area of the cut out hole) as negative, in the general equation
for the centre of gravity, we get

1 1 2 2

1 2

–

–

a x a x
x

a a
= and 1 1 2 2

1 2

–

–

a y a y
y

a a
=

NOTE. In case of circle the section will be symmeterical along the line joining the centres of the bigger and
the cut out circle.

EXAMPLE 9.12.  A square hole is punched out of circular lamina, the digonal of the square
being the radius of the circle as shown in Fig.9.22.  Find the centre of gravity of the remainder,
if r is the radius of the circle.

SOLUTION.  As the section is symmetrical about X-X axis, therefore its centre of gravity will lie on
this axis. Let A be the point of reference.

(i) Main circle
a1 = π r2

and x1 = r
(ii) Cut out square

2
2 0.5

2

r r
a r

×= =

and 2 1.5
2

r
x r r= + =

We know that distance between centre of gravity of the section and A,

2 2
1 1 2 2

2 2
1 2

– ( ) – (0.5 1.5 )

– – 0.5

a x a x r r r r
x

a a r r

π × ×= =
π

3

2

( – 0.75) ( – 0.75)

– 0.5( – 0.5)

r r

r

π π= =
ππ        Ans.

EXAMPLE 9.13. A semicircle of 90 mm radius is cut out from a trapezium as shown in Fig. 9.23

Fig. 9.23

Find the position of the centre of gravity of the figure.

SOLUTION.  As the section is symmetrical about Y-Y axis, therefore its centre of gravity will lie on
this axis. Now consider two portions of the figure viz., trapezium ABCD and semicircle EFH.

Let base of the trapezium AB be the axis of reference.
(i) Trapezium ABCD

           
2

1
200 300

120 30 000 mm
2

a
+= × =

Fig. 9.22
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and 1
120 300 2 200

56 mm
3 300 200

y
⎛ ⎞+ ×= × =⎜ ⎟+⎝ ⎠

(ii) Semicircle

  2 2 2
2

1 1
(90) 4050 mm

2 2
a r= × π = × π × = π

and 2
4 4 90 120

mm
3 3

r
y

×= = =
π π π

We know that distance between centre of gravity of the section and AB,

          1 1 2 2

1 2

120
(30 000 56) 4050

30 000 4050

⎛ ⎞× − π ×⎜ ⎟⎝ ⎠− π= =
− − π

a y a y
y

a a
 mm

= 69.1 mm       Ans.

EXAMPLE 9.14.  A semicircular area is removed from a trapezium as shown in Fig.9.24
(dimensions in mm)

Fig. 9.24

Determine the centroid of the remaining area (shown hatched).

SOLUTION.  As the section in not symmetrical about any axis, therefore we have to find out the
values of x and y for the area. Split up the area into three parts as shown in Fig. 9.25. Let left face and
base of the trapezium be the axes of reference.

(i) Rectangle
a1 = 80 × 30 = 2400 mm2

1
80

40 mm
2

x = =

and 1
30

15 mm
2

y = =

(ii) Triangle

2
2

80 30
1200 mm

2
a

×= =

2
80 2

53.3 mm
3

x
×= =

and 2
30

30 40 mm
3

y = + =

(iii) Semicircle

2 2 2
3 (20) 628.3 mm

2 2
a r

π π= × = =

Fig. 9.25
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3
40

40 60 mm
2

x = + =

and 3
4 4 20

8.5 mm
3 3

r
y

×= = =
π π

We know that distance between centre of gravity of the area and left face of trapezium,

1 1 2 2 3 3

1 2 3

–

–

a x a x a x
x

a a a

+
=

+
(2400 40) (1200 53.3) – (628.3 60)

2400 1200 – 628.3

× + × ×=
+

= 41.1 mm       Ans.

Similarly, distance between centre of gravity of the area and base of the trapezium,

1 1 2 2 3 3

1 2 3

–

–

a y a y a y
y

a a a

+
=

+  
(2400 15) (1200 40) – (628.3 8.5)

2400 1200 – 628.3

× + × ×=
+

= 26.5 mm       Ans.

EXAMPLE 9.15.  A circular sector of angle 60° is cut from the circle of radius r as shown in
Fig. 9.26 :

Fig. 9.26

Determine the centre of gravity of the remainder.

SOLUTION.  As the section is symmetrical about X-X axis, therefore its centre of gravity will lie on
this axis.

Let C be the reference point.
(i) Main circle

a1 = π r2

and x1 = r
(ii) Cut out sector

2 2 2

2
60

360 360 6

r r r
a

π θ π × ° π= = =
° °

and 2
2r

x r= +
π

We know that distance between the centre of gravity of the section and C

2
2

1 1 2 2
2

1 2 2

2
( ) –

6–

–
–

6

r r
r r r

a x a x
x

a a r
r

⎡ ⎤π ⎛ ⎞π × × +⎢ ⎥⎜ ⎟π⎝ ⎠⎣ ⎦= =
ππ

2

2

1 2 1 2
– –

6 6
11 1 –1 –
66

r r
r r r r r

r

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞π + × +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥π π⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦= =
⎛ ⎞π ⎜ ⎟
⎝ ⎠
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6 2 6
– – –

5 6 6 5 6 3

r r r r
r r
⎡ ⎤⎛ ⎞ ⎡ ⎤

= + =⎢ ⎥⎜ ⎟ ⎢ ⎥π π⎝ ⎠ ⎣ ⎦⎣ ⎦

6 5 2
– –

5 6 3 5

r r
r r

⎛ ⎞
= =⎜ ⎟π π⎝ ⎠

       Ans.

EXAMPLE 9.16. A solid consists of a right circular cylinder and a hemisphere with a cone
cut out from the cylinder as shown in Fig. 9.27.

Fig. 9.27
Find the centre of gravity of the body.

SOLUTION.  As the solid is symmetrical about horizontal axis, therefore its centre of gravity lie on
this axis.

Let the left edge of the hemispherical portion (E) be the axis of reference.
(i) Hemisphere ADE

3 3 3
1

2 2
(60) 144 000 mm

3 3
v r

π π= × = × = π

and 1
5 5 60

37.5 mm
8 8

r
x

×= = =

(ii) Right circular cylinder ABCD

v2 = π × r2 × h = π × (60)2 × 150 = 540 000 π mm3

and 2
150

60 135mm
2

x = + =

(iii) Cone BCF

2 2 3
3 (60) 150 180 000 mm

3 3
v r h

π π= × × = × × = π

and 3
3

60 150 172.5 mm
4

x = + × =

We know that distance between centre of gravity of the solid and left edge E of  hemisphere,

1 1 2 2 3 3

1 2 3

–

–

v x v x v x
x

v v v

+
=

+

(144 000 37.5) (540 000 135) – (180 000 172.5)

144 000 540 000 – 180 000

π × + π × π ×=
π + π π

= 93.75 mm       Ans.
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EXAMPLE 9.17.  A frustum of a solid right circular cone has an axial hole of 50 cm diameter
as shown in Fig. 9.28.

Fig. 9.28

Determine the centre of gravity of the body.

SOLUTION.  As the body is symmetrical about vertical axis, there-
fore its centre of geravity lie on this axis. For the sake of simplicity,
let us assume a right circular cone OCD, from which a right circulr
cone OAB is cut off as shown in Fig. 9.29.

Let base of cone CD be the axis of reference.
(i) Right circular cone OCD

2
1 3

v R H
π= × ×

2 34
(1) 4 m

3 3

π π= × × =

and 1
4

1m
4

y = =

(ii) Right circular cone OAB

2
2 3

v r h
π= × ×

2
32

2 m
3 4 6

π π⎛ ⎞= × × =⎜ ⎟⎝ ⎠

and 2
2 5

2 m
4 2

y = + =

(iii) Circular hole

2 2 3
3 (0.5) 2 m

4 4 8
v d h

π π π= × × = × × =

and 2
2

1 m
2

y = =

We know that distance between centre of gravity of the body and the base of the cone,

1 1 2 2 3 3

1 2 3

– –

– –

v y v y v y
y

v v v
=

4 5 4 5 11 1
3 6 2 8 3 12 8

4 4 1 1
3 6 8 3 6 8

π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞× − × − × − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= =

π π π− − − −

19
0.76 m

25
= =        Ans.

Fig. 9.29
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EXAMPLE 9.18.  A solid hemisphere of 20 mm radius supports a solid cone of the same base
and 60 mm height as shown in Fig. 9.30. Locate the centre of gravity of the composite section.

Fig. 9.30
If the upper portion of the cone is removed by a certain section, the centre of gravity lowers

down by 5 mm. Find the depth of the section plane (h) below the apex.
SOLUTION.  As the body is symmetrical about Y-Y axis, therefore its centre of gravity will lie on

this axis.
Let apex of the cone (O) be the axis of reference.

Centre of gravity of the composite section
(i) Right circular cone

 
2 2 3

1 (20) 60 25 133 mm
3 3

v r h
π π= × × = × =

and 1
3

60 45 mm
4

y = × =

(ii) Hemisphere

2 3 3
2

2 2
(20) 16 755 mm

3 3
v r

π π= × = × =

and  2
3 20

60 67.5 mm
8

y
×= + =

We know that distance between centre of gravity of the body and apex of the cone,

                                        1 1 2 2

1 2

(25 133 45) (16 755 67.5)

25 133 16 755

v y v y
y

v v

+ × + ×
= =

+ +
mm

   
2 261 950

41 888
= = 54 mm   Ans.

Depth of the section plane below the apex
We know that the radius of the cut out cone,

3

h
r = ...

20 60

r h⎛ ⎞=⎜ ⎟
⎝ ⎠
ä

∴ Volume of the cut out cone,

2
2 2 3

3 0.1164 mm
3 3 3

h
v r h h h

π π ⎛ ⎞= × × = × =⎜ ⎟
⎝ ⎠
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and distance between centre of gravity of the cut out cone and its apex,

3
3

0.75
4

h
y h= =

We also know that distance between the centre of gravity of the body and apex of the cone (i.e. 54
+ 5 = 59 mm),

1 1 2 2 3 3

1 2 2

–

–

v y v y v y
y

v v v

+
=

+

∴
3

3

(25 133 45) (16 755 67.5) – 0.1164 0.75
59

25 133 16 755 – 0.1164

h h

h

× + × ×=
+

4

3

2 261 950 – 0.0873

41 888 – 0.1164

h

h
=

2 471 400 – 6.868 h3 = 2 261 950 – 0.0873 h4

0.0873 h4 – 6.868 h3 = – 209 450

Dividing both sides by 0.0873,

h4 – 78.67 h3 = –2 399 200 ...(i)

We shall solve this equation by trial and error. First of all, let us substitute h = 10 mm in the left
hand side of equation (i). We find

(10)4 – 78.67 (10)3 = – 68 670

We find that answer obtained does not tally with the value of right hand side of equation (i), and
is much less than that. Now let us substitute h = 20 mm in the left hand side of equation (i),

    (20)4 – 78.67 (20)3 = – 469 360

We again find that the answer obtained does not tally with the right hand side of equation (i), But
it is closer to the value of right hand side than the first case (i.e. when we substituted h = 10 mm.) Or
in other words, the value obtained is still less than the right hand side of equation (i). But the differ-
ence has reduced. Now let us substitute h = 30 mm in the left hand side of equation (i).

    (30)4 – 78.67 (30)3 = 1 314 100
We again find the answer obtained does not tally with the right hand side of equation (i), But it is

more close to the right hand side than the previous case i.e. when we substituted h = 20 mm. Now let
us substitute h = 40 mm in the left hand side of the equation (i).

   (40)4 – 78.67 (40)3 = 2474900
Now we find that the answer obtained does not tally with the right hand side of equation (i). But

its value is more than the right hand side of equation (i), In the previous cases, the value of the answer
obtained was less. Thus we find that the value of (h) is less than 40 mm.

A little consideration will show, that as the value of the answer is slightly more than the right
hand side of equation (i). (as compared to the previous answers), the value of (h) is slightly less than
40 mm. Now let us substitude h = 39 mm in the left hand side of the equation (i).

    (39)4 – 78.67 (39)3 = – 2 153 200
Now we find that the answer obtained is less than the right hand side of equation (i). Thus the

value of (h) is more than 39 mm. Or in other words it is within 39 and 40 mm. This is due to the reason
that when we substitude h = 39 mm, the answer is less and when we substitute h = 40 mm, answer is
more than the right hand side of equation (i), Now let us substitute h = 39.5 mm in the left hand side
of the equation (i).

(39.5)4 – 78.67 (39.5)3 = – 2 414 000
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Now we find that the answer obtained is more than the right hand side of equation (i). Thus the
value of (h) is less than 39.5 mm. Now let us substitute the h = 39.4 mm in the left hand side of
equation, (i).

(39.4)4 – 78.67 (39.4)3 = – 2 401 900
We find that is answer is very close to the right hand side of the equation and there is no need of

further calculations. Thus the value of h = 39.4 mm       Ans.

EXERCISE  9.3

1. A circular hole of 50 mm diameter is cut out from a circular disc of 100 mm diameter as shown
in Fig. 9.31. Find the centre of gravity of the section from A. [Ans.  41.7 mm]

Fig. 9.31 Fig. 9.32

2. Find the centre of gravity of a semicircular section having outer and inner diameters of 200 mm
and 160 mm respectively as shown in Fig. 9.32. [Ans. 57.5 mm from the base]

3. A circular sector of angle 45° is cut from the circle of radius 220 mm Determine the centre of
gravity of the remainder from the centre of the sector. [Ans. 200 mm]

4. A hemisphere of diameter 80 mm is cut out from a right circular cylinder of diameter 80 mm
and height 160 mm as shown in Fig. 9.33. Find the centre of gravity of the body from the
base AB. [Ans. 77.2 mm]

Fig. 9.33 Fig. 9.34

5. A right circular cone of 30 mm diameter and 60 mm height is cut from a cylinder of 50 mm
diameter at 120 mm height as shown in Fig. 9.34. Find the position of the centre of gravity of the
body from its base. [Ans. 60.7 mm]

QUESTIONS

1. Define the terms ‘centre of gravity’.
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2. Distinguish between centre of gravity and centroid.

3. How many centres of gravity a body has?

4. Describe the various methods of finding out the centre of gravity of a body.

5. How would you find out the centre of gravity of a section, with a cut out hole?

OBJECTIVE TYPE QUESTIONS

1. The centre of gravity of an equilateral triangle with each side (a) is ...... from any of the three
sides.

(a)
3

2

a
(b)

2

3

a
(c)

2 3

a
(d)

3 2

a

2. The centre of gravity of hemisphere lies at a distance of ......form its base measured along the
vertical radius.

(a)
3

8

r
(b)

3

8r (c)
8

3

r
(d)

8

3r

3. The centre of gravity of a right circular cone of diameter (d) and height (h) lies at a distance of
...... from the base measured along the vertical radius.

(a)
2

h
(b)

3

h
(c)

4

h
(d)

6

h

4. A circular hole of radius (r) is cut out from a circular disc of radius (2r) in such a way that the
diagonal of the hole is the radius of the disc. The centre of gravity of the section lies at

(a) Centre of a disc (b  Centre of the hole

(c) Somewhere in the disc (d) Somewhere in the hole

ANSWERS

1. (c) 2. (a) 3. (c) 4. (c)
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10.1. Introduction
We have already discussed in Art. 3.2 that

the moment of a force (P) about a point, is the
product of the force and perpendicular distance
(x) between the point and the line of action of
the force (i.e. P.x). This moment is also called
first moment of force. If this moment is again
multiplied by the perpendicular distance (x)
between the point and the line of action of the
force i.e. P.x (x) = Px2, then this quantity is called
moment of the moment of a force or second
moment of force or moment of inertia (briefly
written as M.I.).

Sometimes, instead of force, area or mass
of a figure or body is taken into consideration.
Then the second moment is known as second

10C h a p t e r

Note :
Important Results related to this
chapter are given at the end of this
book See Appendix Table 2
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moment of area or second moment of mass. But all such second moments are broadly termed as
moment of inertia. In this chapter, we shall discuss the moment of inertia of plane areas only.

10.2. Moment of Inertia of a Plane Area
Consider a plane area, whose moment of inertia is required to be found out. Split up the whole

area into a number of small elements.
Let  a1, a2, a3, ... =  Areas of small elements, and

r1, r2, r3, ... =  Corresponding distances of the elements from the line about
     which the moment of inertia is required to be found out.

Now the moment of inertia of the area,

2 2 2
1 1 2 2 3 3 ...I a r a r a r= + + +

= ∑ a r2

10.3. Units of Moment of Inertia
As a matter of fact the units of moment of inertia of a plane area depend upon the units of

the area and the length. e.g.,
1. If area is in m2 and the length is also in m, the moment of inertia is expressed in m4.
2. If area in mm2 and the length is also in mm, then moment of inertia is expressed in mm4.

10.4. Methods for Moment of Inertia
The moment of inertia of a plane area (or a body) may be found out by any one of the following

two methods :
1. By Routh’s rule        2. By Integration.
NOTE : The Routh’s Rule is used for finding the moment of inertia of a plane area or a body of uniform

thickness.

10.5. Moment of Inertia by Routh’s Rule
The Routh’s Rule states, if a body is symmetrical about three mutually perpendicular axes*,

then the moment of inertia, about any one axis passing through its centre of gravity is given by:

(or )

3

A M S
I

×= ... (For a Square or Rectangular Lamina)

(or )

4

A M S
I

×= ... (For a Circular or Elliptical Lamina)

(or )

5

A M S
I

×= ... (For a Spherical Body)

where  A = Area of the plane area

 M = Mass of the body, and

                               S = Sum of the squares of the two semi-axis, other than the axis, about
                                               which the moment of inertia is required to be found out.

NOTE : This method has only academic importance and is rarely used in the field of science and
technology these days. The reason for the same is that it is equally convenient to use the method of integration
for the moment of inertia of a body.

* i.e., X-X axis, Y-Y axis and Z-Z axis.
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* This may also be obtained by Routh’s rule as discussed below :

3
=XX

AS
I ...(for rectangular section)

where area, A = b × d and sum of the square of semi axes Y-Y and Z-Z,
2 2

0
2 4

⎛ ⎞= + =⎜ ⎟⎝ ⎠

d d
S

∴

2

3( )
4

3 3 12

× ×
= = =XX

d
b dAS bd

I

Fig. 10.2.  Rectangular
section.

10.6. Moment of Inertia by Integration
The moment of inertia of an area may also be found

out by the method of integration as discussed below:
Consider a plane figure, whose moment of inertia is

required to be found out about X-X  axis and Y-Y axis as
shown in Fig 10.1. Let us divide the whole area into a no.
of strips. Consider one of these strips.

Let   dA = Area of the strip

     x = Distance of the centre of gravity of the
strip on X-X  axis and

     y = Distance of the centre of gravity of the
strip on Y-Y axis.

We know that the moment of inertia of the strip about
Y-Y axis

= dA . x2

Now the moment of inertia of the whole area may be found out by integrating  above
equation. i.e.,

IYY = ∑ dA . x2

Similarly   IXX = ∑ dA . y2

In the following pages, we shall discuss the applications of this method for finding out the
moment of inertia of various cross-sections.

10.7. Moment of Inertia of a Rectangular Section
Consider a rectangular section ABCD as shown in Fig. 10.2

whose moment of inertia is required to be found out.
Let b = Width of the section and

d = Depth of the section.

Now consider a strip PQ of thickness dy parallel to X-X axis
and at a distance y from it as shown in the figure

∴ Area of the strip
= b.dy

We know that moment of inertia of the strip about X-X axis,

= Area × y2 = (b. dy) y2 = b. y2. dy

Now  *moment of inertia of the whole section may be found

out by integrating the above equation for the whole length of the

lamina i.e. from – to ,
2 2

d d+

Fig. 10.1.  Moment of inertia by
integration.
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2 2
2 2

– –
2 2

. . .

d d

xx
d d

I b y dy b y dy

+ +

= =∫ ∫

       

3 3 3 32

2

( / 2) (– / 2)
–

3 3 3 12

d

d

y d d bd
b b

+

−

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

Similarly,
3

12YY
db

I =

NOTE.  Cube is to be taken of the side, which is at right angles to the line of reference.

EXAMPLE 10.1.   Find the moment of inertia of a rectangular section 30 mm wide and 40
mm deep about X-X axis and Y-Y axis.

SOLUTION.  Given: Width of the section (b) = 30 mm and depth of the section (d) = 40 mm.
We know that moment of inertia of the section about an axis passing through its centre of

gravity and parallel to X-X axis,
3 3

3 430 (40)
160 10 mm

12 12XX
bd

I
×= = = ×        Ans.

Similarly
3 3

3 440 (30)
90 10 mm

12 12YY
db

I
×= = = ×        Ans.

10.8. Moment of Inertia of a Hollow Rectangular Section
Consider a hollow rectangular section, in which ABCD is the main section and EFGH is the

cut out section as shown in Fig 10.3
Let b = Breadth of the outer rectangle,

d = Depth of the outer rectangle and
b1, d1 = Corresponding values for the

cut out rectangle.
We know that the moment of inertia, of the outer rectangle

ABCD about X-X axis
3

12

bd= ...(i)

and moment of inertia of the cut out rectangle EFGH
about X-X axis 3

1 1

12

b d
= ...(ii)

∴ M.I. of the hollow rectangular section about X-X axis,
IXX = M.I. of rectangle ABCD – M.I. of rectangle EFGH

33
1 1–

12 12

b dbd=

Similarly,                     
33

1 1–
12 12yy

d bdb
I =

NOTE : This relation holds good only if the centre of gravity of the main section as well as that of the
cut out section coincide with each other.

EXAMPLE 10.2. Find the moment of inertia of a hollow rectangular section about its
centre of gravity if the external dimensions are breadth 60 mm, depth 80 mm and internal
dimensions are breadth 30 mm and depth 40 mm respectively.

Fig. 10.3.  Hollow rectangular
section.
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Fig. 10.5. Circular section.

Fig. 10.4. Theorem of
perpendicular axis.

SOLUTION.  Given: External breadth (b) = 60 mm; External depth (d) = 80 mm ; Internal
breadth (b1) = 30 mm and internal depth (d1) = 40 mm.

We know that moment of inertia of hollow rectangular section about an axis passing through
its centre of gravity and parallel to X-X axis,

33 3 3
3 41 1 60 (80) 30 (40)

– – 2400 10 mm
12 12 12 12XX

b dbd
I = = = ×        Ans.

Similarly,
33 3 3

3 41 1 80 (60) 40 (30)
– – 1350 10 mm

12 12 12 12YY
d bdb

I = = = ×        Ans.

10.9. Theorem of Perpendicular Axis
It states, If IXX and IYY be the moments of inertia of a plane section about two perpendicular

axis meeting at O, the moment of inertia IZZ about the axis Z-Z, perpendicular to the plane and
passing through the intersection of X-X and Y-Y is given by:

IZZ  = IXX + IYY

Proof :
Consider a small lamina (P) of area da having co-ordinates

as x and y along OX and OY two mutually perpendicular axes on
a plane section as shown in Fig. 10.4.

Now consider a plane OZ perpendicular to OX and OY.
Let (r) be the distance of the lamina (P) from Z-Z axis such that
OP = r.

From the geometry of the figure, we find that
r2 = x2 + y2

We know that the moment of inertia of the lamina P about X-X axis,
IXX = da. y2 ...[∵ I = Area × (Distance)2]

Similarly, IYY = da. x2

and IZZ = da. r2 = da (x2 + y2) ...(∵ r2 = x2 + y2)

= da. x2 + da. y2 = IYY + IXX

10.10. Moment of Inertia of a Circular Section
Consider a circle ABCD of radius (r) with centre O and X-X'

and Y-Y' be two axes of reference through O as shown in Fig. 10.5.

Now consider an elementary ring of radius x and thickness
dx. Therefore area of the ring,

da = 2 π x. dx

and moment of inertia of ring, about X-X axis or Y-Y axis

= Area × (Distance)2

= 2 π x. dx × x2

= 2 π x3. dx

Now moment of inertia of the whole section, about the central
axis, can be found out by integrating the above equation for the
whole radius of the circle i.e., from 0 to r.

∴ 3 3

0 0

2 . 2 .
r r

ZZI x dx x dx= π = π∫ ∫
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4
4 4

0

2 ( ) ( )
4 2 32

r

ZZ
x

I r d
⎡ ⎤ π π

= π = =⎢ ⎥
⎣ ⎦

... substituting
2

d
r

⎛ ⎞=⎜ ⎟
⎝ ⎠

We know from the Theorem of Perpendicular Axis that
IXX + IYY = IZZ

∴ *
4 41

( ) ( )
2 2 32 64
ZZ

XX YY
I

I I d d
π π= = = × =

EXAMPLE 10.3. Find the moment of inertia of a circular section of 50 mm diameter
about an axis passing through its centre.

SOLUTION.  Given: Diameter (d) = 50 mm

We know that moment of inertia of the circular section about an axis passing through its
centre,

4 4 3 4( ) (50) 307 10 mm
64 64XXI d
π π= = × = ×        Ans.

10.11.  Moment of Inertia of a Hollow Circular Section
Consider a hollow circular section as shown in Fig.10.6,

whose moment of inertia is required to be found out.

Let D = Diameter of the main circle, and

d = Diameter of the cut out circle.

We know that the moment of inertia of the main circle
about X-X axis

4( )
64

D
π=

and moment of inertia of the cut-out circle about X-X axis

4( )
64

d
π=

∴ Moment of inertia of the hollow circular section about X-X axis,

IXX = Moment of inertia of main circle – Moment of inertia of cut out circle,

4 4 4 4( ) – ( ) ( – )
64 64 64

D d D d
π π π= =

Similarly,
4 4( – )

64YYI D d
π=

NOTE : This relation holds good only if the centre of the main circular section as well as that of the cut
out circular section coincide with each other.

* This may also be obtained by Routh’s rule as discussed below

4XX
AS

I = (for circular section)

where area, 2

4
A d

π= ×  and sum of the square of semi axis Y-Y and Z-Z,
2 2

0
2 4

d d
S ⎛ ⎞= + =⎜ ⎟

⎝ ⎠

∴

2
2

44 4 ( )
4 4 64XX

d
d

AS
I d

π⎡ ⎤× ×⎢ ⎥ π⎣ ⎦= = =

Fig. 10.6. Hollow circular
section.
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Fig. 10.7. Theorem of parallel
axis.

EXAMPLE 10.4. A hollow circular section has an external diameter of 80 mm and
internal diameter of 60 mm. Find its moment of inertia about the horizontal axis passing through
its centre.

SOLUTION.  Given : External diameter (D) = 80 mm and internal diameter (d) = 60 mm.
We know that moment of inertia of the hollow circular section about the horizontal axis

passing through its centre,

4 4 4 4 3 4( – ) [(80) – (60) ] 1374 10 mm
64 64XXI D d
π π= = = ×        Ans.

10.12. Theorem of Parallel Axis
It states, If the moment of inertia of a plane area about an axis through its centre of gravity is

denoted by IG, then moment of inertia of the area about any other axis AB, parallel to the first, and
at a distance h from the centre of gravity is given by:

IAB = IG + ah2

where IAB = Moment of inertia of the area about an axis AB,

lG  = Moment of Inertia of the area about its centre of gravity

a  = Area of the section, and

h = Distance between centre of gravity of the section and axis AB.

Proof

Consider a strip of a circle, whose moment of inertia is
required to be found out about a line AB as shown in Fig. 10.7.

Let δa = Area of the strip

y =  Distance of the strip from the
       centre of gravity the section and

h =  Distance between centre of
       gravity of the section and the
      axis AB.

We know that moment of inertia of the whole section about
an axis passing through the centre of gravity of the section

= δa. y2

and moment of inertia of the whole section about an axis passing through its centre of gravity,

IG = ∑ δa. y2

∴    Moment of inertia of the section about the axis AB,

IAB = ∑ δa (h + y)2 = ∑ δa (h2 + y2 + 2 h y)

= (∑ h2. δa) + (∑ y2. δa) + (∑ 2 h y . δa)

= a h2 +   IG + 0

It may be noted that ∑ h2 . δa = a h2 and ∑ y2 . δa = IG [as per equation (i) above] and ∑ δa.y
is the algebraic sum of moments of all the areas, about an axis through centre of gravity of the
section and is equal to .a y , where y  is the distance between the section and the axis passing
through the centre of gravity, which obviously is zero.
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10.13.  Moment of Inertia of a triangular Section
Consider a triangular section ABC whose moment of inertia

is required to be found out.

Let b = Base of the triangular section and
h = Height of the triangular section.

Now consider a small strip PQ of thickness dx at a distance
of x from the vertex A as shown in Fig. 10.8. From the geometry of
the figure, we find that the two triangles APQ and ABC are similar.
Therefore

.
    or     

PQ x BC x bx
PQ

BC h h h
= = = (∵ BC = base = b)

We know that area of the strip PQ

.
bx

d x
h

=
and moment of inertia of the strip about the base BC

= Area × (Distance)2 2 2( – ) ( – )
bx bx

dx h x h x dx
h h

= =

Now moment of inertia of the whole triangular section may be found out by integrating the
above equation for the whole height of the triangle i.e., from 0 to h.

2

0
( – )

h

BC
b x

I h x dx
h

= ∫

2 2

0
( – 2 )

hb
x h x h x dx

h
= +∫

2 3 2

0
( – 2 )

hb
x h x hx dx

h
= +∫

2 2 4 3 3

0

2
–

2 4 3 12

h
b x h x hx b h

h

⎡ ⎤
= + =⎢ ⎥

⎣ ⎦

We know that distance between centre of gravity of the triangular section and base BC,

3

h
d =

∴        Moment of inertia of the triangular section about an axis through its centre of gravity and
parallel to X-X axis,

IG = IBC – ad2 ...(∵ IXX = IG + a h2)
23 3

–
12 2 3 36

bh bh h bh⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

NOTES : 1. The moment of inertia of section about an axis through its vertex and parallel to the base

23 3 3
2 2 9

36 2 3 36 4G
b h b h h b h b h

I a d ⎛ ⎞ ⎛ ⎞= + = + = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2. This relation holds good for any type of triangle.

Fig. 10.8. Triangular section.
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Fig. 10.10. Semicircular section
ABC.

EXAMPLE 10.5. An isosceles triangular section ABC has base width 80 mm and height
60 mm. Determine the moment of inertia of the section about the centre of gravity of the section
and the base BC.

SOLUTION.  Given : Base width (b) = 80 mm and height (h) = 60 mm.
Moment of inertia about the centre of gravity of the section

We know that moment of inertia of triangular section about its centre of gravity,

        
3 3

3 480 (60)
480 10 mm

36 36G
b h

I
×= = = ×

Moment of inertia about the base BC
We also know that moment of inertia of triangular section about the base BC,

        
3 3

3 480 (60)
1440 10 mm

12 12BC
b h

I
×= = = ×

EXAMPLE 10.6. A hollow triangular section shown in Fig. 10.9 is symmetrical about its
vertical axis.

Fig. 10.9

Find the moment of inertia of the section about the base BC.

SOLUTION.  Given : Base width of main triangle (B) = 180 mm; Base width of cut out triangle
(b) = 120 mm; Height of main triangle (H) = 100 mm and height of cut out triangle (h) = 60 mm.

We know that moment of inertia of the triangular, section about the base BC,

       
3 3 3 3

4180 (100) 120 (60)
– – mm

12 12 12 12BC
BH bh

I
× ×= =

       = (15 × 106) – (2.16 × 106) = 12.84 × 106 mm4       Ans.

10.14. Moment of Inertia of a Semicircular Section
Consider a semicircular section ABC whose moment of

inertia is required to be found out as shown in Fig. 10.10.
Let        r = Radius of the semicircle.

We know that moment of inertia of the semicircular
section about the base AC is equal to half the moment of inertia
of the circular section about AC. Therefore moment of inertia
of the semicircular section ABC about the base AC,

4 41
( ) 0.393

2 64ACI d r
π= × × =

We also know that area of semicircular section,

2
21

2 2

r
a r

π
= × π
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and distance between centre of gravity of the section and the base AC,
4

3

r
h =

π
∴      Moment of inertia of the section through its centre of gravity and parallel to x-x axis,

22
2 4 4

– ( ) –
8 2 3G AC

r r
I I ah r

⎡ ⎤⎛ ⎞π π⎡ ⎤ ⎢ ⎥= = × ⎜ ⎟⎢ ⎥ π⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

4 4 48
( ) – ( ) 0.11

8 9
r r r

⎡ ⎤π⎡ ⎤= × × =⎢ ⎥⎢ ⎥ π⎣ ⎦ ⎣ ⎦
NOTE. The moment of inertia about y-y axis will be the same as that about the base AC i.e.,

0.393 r4.

EXAMPLE 10.7.       Determine the moment of inertia of a semicircular section of 100 mm
diameter about its centre of gravity and parallel to X-X and Y-Y axes.

SOLUTION.  Given: Diameter of the section (d) = 100 mm or radius (r) = 50 mm
Moment of inertia of the section about its centre of gravity and parallel to X-X axis

We know that moment of inertia of the semicircular section about its centre of gravity and
parallel to X-X axis,

IXX = 0.11 r4 = 0.11 × (50)4 = 687.5 × 103 mm4       Ans.
Moment of inertia of the section about its centre of gravity and parallel to Y-Y axis.

We also know that moment of inertia of the semicircular section about its centre of gravity
and parallel to Y-Y axis.

IYY = 0.393 r4 = 0.393 × (50)4 = 2456 × 103 mm4       Ans.

EXAMPLE 10.8.   A hollow semicircular section has its outer and inner diameter of
200 mm and 120 mm respectively as shown in Fig. 10.11.

Fig. 10.11

What is its moment of inertia about the base AB ?

SOLUTION.  Given: Outer diameter (D) = 200 mm or Outer Radius (R) = 100 mm and inner
diameter (d) = 120 mm or inner radius (r) = 60 mm.

We know that moment of inertia of the hollow semicircular section about the base AB,

IAB = 0.393 (R4 – r4) = 0.393 [(100)4 – (60)4] = 34.21 × 106 mm4       Ans.

EXERCISE 10.1

1. Find the moment of inertia of a rectangular section 60 mm wide and 40 mm deep about
its centre of gravity. [Ans. IXX = 320 × 103 mm4 ; IYY  = 720 × 103 mm4]

2. Find the moment of inertia of a hollow rectangular section about its centre of gravity, if
the external dimensions are 40 mm deep and 30 mm wide and internal dimensions are 25
mm deep and 15 mm wide. [Ans. IXX = 140 470 mm4 : IYY = 82 970 mm4]
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3. Find the moment of inertia of a circular section of 20 mm diameter through its centre of
gravity. [Ans. 7854 mm4]

4. Calculate the moment of inertia of a hollow circular section of external and internal
diameters 100 mm and 80 mm respectively about an axis passing through its centroid.

[Ans. 2.898 × 106 mm4]
5. Find the moment of inertia of a triangular section having 50 mm base and 60 mm height

about an axis through its centre of gravity and base.
[Ans. 300 × 103 mm4: 900 × 103 mm4]

6. Find the moment of inertia of a semicircular section of 30 mm radius about its centre of
gravity and parallel to X-X and Y-Y axes. [Ans. 89 100 mm4 : 381 330 mm4]

10.15.  Moment of Inertia of a Composite Section
The moment of inertia of a composite section may be found out by the following steps :
1. First of all, split up the given section into plane areas (i.e., rectangular, triangular, circular

etc., and find the centre of gravity of the section).
2. Find the moments of inertia of these areas about their respective centres of gravity.
3. Now transfer these moment of inertia about the required axis (AB) by the Theorem of

Parallel Axis, i.e.,
IAB = IG + ah2

where IG = Moment of inertia of a section about its centre of gravity and parallel to the axis.
a = Area of the section,
h = Distance between the required axis and centre of gravity of the section.

4. The moments of inertia of the given section may now be obtained by the algebraic sum of
the moment of inertia about the required axis.

EXAMPLE 10.9. Figure 10.12 shows an area ABCDEF.

Fig. 10.12

Compute the moment of inertia of the above area about axis K-K.

SOLUTION.  As the moment of inertia is required to be found out about the axis K-K, therefore
there is no need of finding out the centre of gravity of the area.

Fig. 10.13

Let us split up the area into two rectangles 1 and 2 as shown in Fig. 10.13.
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We know that moment of inertia of section (1) about its centre of gravity and parallel to axis K-K,

        
3

3 4
1

120 (40)
640 10 mm

12GI
×= = ×

and distance between centre of gravity of section (1) and axis K-K,

       1
40

100 120 mm
2

h = + =

∴       Moment of inertia of section (1) about axis K-K

       2 3 2
1 1 1 (640 10 ) [(120 40) (120) ]GI a h= + = × + × × = 69.76 × 106 mm4

Similarly, moment of inertia of section (2) about its centre of gravity and parallel to axis K-K,

     
3

6 4
2

40 (240)
46.08 10 mm

12GI
×= = ×

and distance between centre of gravity of section (2) and axis K-K,

        2
240

100 220 mm
2

h = + =

∴      Moment of inertia of section (2) about the axis K-K,

       2 6 2
2 2 2 (46.08 10 ) [(240 40) (220) ]GI a h= + = × + × × = 510.72 × 106 mm4

Now moment of inertia of the whole area about axis K-K,

        IKK = (69.76 × 106) + (510.72 × 106) = 580.48 × 106 mm4       Ans.

EXAMPLE 10.10. Find the moment of inertia of a T-section with flange as 150 mm × 50 mm
and web as 150 mm × 50 mm about X-X and Y-Y axes through the centre of gravity of the section.

SOLUTION.  The given T-section is shown in Fig. 10.14.
First of all, let us find out centre of gravity of the section.

As the section is symmetrical about Y-Y axis, therefore its centre
of gravity will lie on this axis. Split up the whole section into two
rectangles viz., 1 and 2 as shown in figure. Let bottom of the web
be the axis of reference.

(i) Rectangle (1)

 a1 = 150 × 50 = 7500 mm2

and 1
50

150 175 mm
2

y = + =

(ii) Rectangle (2)
 a2 = 150 × 50 = 7500 mm2

and  2
150

75 mm
2

y = =

We know that distance between centre of gravity of the section and bottom of the web,

1 1 2 2

1 2

(7500 175) (7500 75)
125 mm

7500 7500

a y a y
y

a a

+ × + ×= = =
+ +

Moment of inertia about X-X axis

We also know that M.I. of rectangle (1) about an axis through its centre of gravity and parallel
to X-X axis.

3
6 4

1
150 (50)

1.5625 10 mm
12GI = = ×

and distance between centre of gravity of rectangle (1) and X-X axis,
h1 = 175 – 125 = 50 mm

Fig. 10.14
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∴     Moment of inertia of rectangle (1) about X-X axis
2 6 2 6 4

1 1 1 (1.5625 10 ) [7500 (50) ] 20.3125 10 mmGI a h+ = × + × = ×
Similarly, moment of inertia of rectangle (2) about an axis through its centre of gravity and

parallel to X-X axis,
3

6 4
2

50 (150)
14.0625 10 mm

12GI = = ×

and distance between centre of gravity of rectangle (2) and X-X axis,
h2 = 125 – 75 = 50 mm

∴     Moment of inertia of rectangle (2) about X-X axis
2 6 2 6 4

2 2 2 (14.0625 10 ) [7500 (50) ] 32.8125 10 mmGI a h= + = × + × = ×
Now moment of inertia of the whole section about X-X axis,

IXX = (20.3125 × 106) + (32.8125 × 106) = 53.125 × 106 mm4       Ans.

Moment of inertia about Y-Y axis
We know that M.I. of rectangle (1) about Y-Y axis

3
6 450 (150)

14.0625 10 mm
12

= = ×

and moment of inertia of rectangle (2) about Y-Y axis,
3

6 4150 (50)
1.5625 10 mm

12
= = ×

Now moment of inertia of the whole section about Y-Y axis,
IYY = (14.0625 × 106) + (1.5625 × 106) = 15.625 × 106 mm4       Ans.

EXAMPLE 10.11. An I-section is made up of three rectangles as shown in Fig. 10.15.
Find the moment of inertia of the section about the horizontal axis passing through the centre of
gravity of the section.

SOLUTION.  First of all, let us find out centre of gravity of the section. As the section is symmetrical
about Y-Y axis, therefore its centre of gravity will lie on this axis.
Split up the whole section into three rectangles 1, 2 and 3 as shown
in Fig. 10.15. Let bottom face of the bottom flange be the axis of
reference.

(i) Rectangle 1
a1 = 60 × 20 = 1200 mm

and 1
20

20 100 130 mm
2

y = + + =

(ii) Rectangle 2
a2 = 100 × 20 = 2000 mm2

and 2
100

20 70 mm
2

y = + =

(iii) Rectangle 3
a3 = 100 × 20 = 2000 mm2

and 3
20

10 mm
2

y = =

We know that the distance between centre of gravity of the section and bottom face,

1 1 2 2 3 3

1 2 3

(1200 130) (2000 70) (2000 10)

1200 2000 2000

a y a y a y
y

a a a

+ + × + × + ×= =
+ + + +  mm

= 60.8 mm

Fig. 10.15
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We know that moment of inertia of rectangle (1) about an axis through its centre of gravity
and parallel to X-X axis,

 
3

3 4
1

0 (20)
40 10 mm

12GI
6 ×= = ×

and distance between centre of gravity of rectangle (1) and X-X axis,
 h1 = 130 – 60.8 = 69.2 mm

∴   Moment of inertia of rectangle (1) about X-X axis,
2 3 2 3 4

1 1 1 (40 10 ) [1200 (69.2) ] 5786 10 mmGI a h= + = × + × = ×

Similarly, moment of inertia of rectangle (2) about an axis through its centre of gravity and
parallel to X-X axis,

3
3 4

2
20 (100)

1666.7 10 mm
12GI

×= = ×
and distance between centre of gravity of rectangle (2) and X-X axis,

 h2 = 70 – 60.8 = 9.2 mm

∴     Moment of inertia of rectangle (2) about X-X axis,

                     2 3 2 3 4
2 2 2 (1666.7 10 ) [2000 (9.2) ] 1836 10 mmGI a h= + = × + × = ×

Now moment of inertia of rectangle (3) about an axis through its centre of gravity and parallel
to X-X axis,

3
3 4

3
100 (20)

66.7 10 mm
12GI
×= = ×

and distance between centre of gravity of rectangle (3) and X-X axis,

 h3 = 60.8 – 10 = 50.8 mm

∴     Moment of inertia of rectangle (3) about X-X axis,

                      = 2 3 2
3 3 3 (66.7 10 ) [2000 (50.8) ]GI a h+ = × + × = 5228 × 103 mm4

Now moment of inertia of the whole section about X-X axis,

IXX = (5786 × 103) + (1836 × 103) + (5228 × 103) = 12 850 × 103 mm4       Ans.

EXAMPLE 10.12. Find the moment of inertia about the centroidal X-X and Y-Y axes of
the angle section shown in Fig. 10.16.

SOLUTION.  First of all, let us find the centre of gravity of the section. As the section is not
symmetrical about any section, therefore we have to find out the values of x and y  for the angle
section.  Split up the section into two rectangles (1) and (2) as shown in Fig. 10.16.
Moment of inertia about centroidal X-X axis

Let bottom face of the angle section be the axis of reference.
Rectangle (1)

 a1 = 100 × 20 = 2000 mm2

and  1
100

50 mm
2

y = =

Rectangle (2)
 a2 = (80 – 20) × 20 = 1200 mm2

and 2
20

10 mm
2

y = =
Fig. 10.16
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We know that distance between the centre of gravity of the section and bottom face,

1 1 2 2

1 2

(2000 50) (1200 10)
35 mm

2000 1200

a y a y
y

a a

+ × + ×= = =
+ +

We know that moment of inertia of rectangle (1) about an axis through its centre of gravity
and parallel to X-X axis,

3
6 4

1
20 (100)

1.667 10 mm
12GI

×= = ×

and distance of centre of gravity of rectangle (1) from X-X axis,

h1 = 50 – 35 = 15 mm

∴ Moment of inertia of rectangle (1) about X-X axis

                                   2 6 2
1 1 (1.667 10 ) [2000 (15) ]GI a h= + = × + ×  = 2.117 × 106 mm4

Similarly, moment of inertia of rectangle (2) about an axis through its centre of gravity and
parallel to X-X axis,

3
6 4

2
60 (20)

0.04 10 mm
12GI

×= ×

and distance of centre of gravity of rectangle (2) from X-X axis,

 h2 = 35 – 10 = 25 mm

∴    Moment of inertia of rectangle (2) about X-X axis

                                   2 6 2
2 2 (0.04 10 ) [1200 (25) ]GI a h= + = × + ×  = 0.79 × 106 mm4

Now moment of inertia of the whole section about X-X axis,

IXX = (2.117 × 106) + (0.79 × 106) = 2.907 × 106 mm4       Ans.
Moment of inertia about centroidal Y-Y axis

Let left face of the angle section be the axis of reference.

Rectangle (1)

a1 = 2000 mm2 ...(As before)

and 1
20

10 mm
2

x = =

Rectangle (2)

a2 = 1200 mm2 ...(As before)

and 2
60

20 50 mm
2

x = + =

We know that distance between the centre of gravity of the section and left face,

1 1 2 2

1 2

(2000 10) (1200 50)
25 mm

2000 1200

a x a x
x

a a

+ × + ×= = =
+ +

We know that moment of inertia of rectangle (1) about an axis through its centre of gravity
and parallel to Y-Y axis,

3
6 4

1
100 (20)

0.067 10 mm
12GI
×= = ×

and distance of centre of gravity of rectangle (1) from Y-Y axis,

h1 = 25 – 10 = 15 mm

∴ Moment of inertia of rectangle (1) about Y-Y axis

                     2 6 2
1 1 1 (0.067 10 ) [2000 (15) ]GI a h= + = × + ×  = 0.517 × 106 mm4
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Similarly, moment of inertia of rectangle (2) about an axis through its centre of gravity and
parallel to Y-Y axis,

 
3

6 4
2

20 (60)
0.36 10 mm

12GI
×= = ×

and distance of centre of gravity of rectangle (2) from Y-Y axis,
  h2 = 50 – 25 = 25 mm,

∴     Moment of inertia of rectangle (2) about Y-Y axis

 2 6 2 6 4
2 2 2 0.36 10 [1200 (25) ] 1.11 10 mmGI a h= + = × + × = ×

Now moment of inertia of the whole section about Y-Y axis,
 IYY = (0.517 × 106) + (1.11 × 106) = 1.627 × 106 mm4       Ans.

EXAMPLE 10.13. Figure 10.17 shows the cross-section of a cast iron beam.

Fig. 10.17

Determine the moments of inertia of the section about horizontal and vertical axes passing
through the centroid of the section.

SOLUTION.  As the section is symmetrical about its horizontal and vertical axes, therefore
centre of gravity of the section will lie at the centre of the rectangle. A little consideration will show
that when the two semicircles are placed together, it will form a circular hole with 50 mm radius or
100 mm diameter.
Moment of inertia of the section about horizontal axis passing through the centroid of  the section.

We know that moment of inertia of the rectangular section about its horizontal axis passing
through its centre of gravity,

3 3
6 4120 (150)

33.75 10 mm
12 12

b d ×= = = ×

and moment of inertia of the circular section about a horizontal axis passing through its centre of
gravity,

4 4 6 4( ) (50) 4.91 10 mm
4 4

r
π π= = = ×

∴     Moment of inertia of the whole section about horizontal axis passing through the centroid
of the section,

 IXX = (33.75 × 106) – (4.91 × 106) = 28.84 × 106 mm4       Ans.
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Moment of inertia of the section about vertical axis passing through the centroid of the section
We know that moment of inertia of the rectangular section about the vertical axis passing

through its centre of gravity,
3 3

6 4
1

150 (120)
21.6 10 mm

12 12G
db

I
×= = = × ...(i)

and area of one semicircular section with 50 mm radius,
2 2

2(50)
3927 mm

2 2

r
a

π π= = =

We also know that moment of inertia of a semicircular section about a vertical axis passing
through its centre of gravity,

IG2 = 0.11 r4 = 0.11 × (50)4 = 687.5 × 103 mm4

and distance between centre of gravity of the semicircular section and its base

                                   
4 4 50

21.2 mm
3 3

r ×= = =
π π

∴     Distance between centre of gravity of the semicircular section and centre of gravity of
the whole section,

h2 = 60 – 21.2 = 38.8 mm
and moment of inertia of one semicircular section about centre of gravity of the whole section,

                                   2 3 2 6 4
2 2 2 (687.5 10 ) [3927 (38.8) ] 6.6 10 mmGI a h= + = × + × = ×

∴     Moment of inertia of both the semicircular sections about centre of gravity of the whole
section,

= 2 × (6.6 × 106) = 13.2 × 106 mm4 ...(ii)
and moment of inertia of the whole section about a vertical axis passing through the centroid of the
section,

= (21.6 × 106) – (13.2 × 106) = 8.4 × 106 mm4       Ans.
EXAMPLE 10.14.  Find the moment of inertia of a hollow section shown in Fig. 10.18.

about an axis passing through its centre of gravity or parallel X-X axis.
SOLUTION.  As the section is symmentrical about Y-Y axis,

therefore centre of a gravity of the section will lie on this axis.
Let y  be the distance between centre of gravity of the section
from the bottom face.

(i) Rectangle
a1 = 300 × 200 = 60 000 mm2

and 1
300

150 mm
2

y = =

(ii) Circular hole
2 2

2 (150) 17 670 mm
4

a
π= × =

and  y2 = 300 – 100 = 200 mm
We know that distance between the centre of gravity of the section and its bottom face,

 
1 1 2 2

1 2

– (60000 150) – (17670 200)

– 60000 – 17670

a y a y
y

a a

× ×= =  = 129.1 mm

∴ Moment of inertia of rectangular section about an axis through its centre of gravity and parallel
to X-X axis,

3
6 4

1
200 (300)

450 10 mm
12GI

×= = ×

Fig. 10.18
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and distance of centre of gravity of rectangular section and X-X axis,
h1 = 150 – 129.1 = 20.9 mm

∴     Moment of inertia of rectangle about X-X axis

                     2 6 2 6 4
1 (450 10 ) [(300 200) (20.9)] 476.21 10 mmGI ah= + = × + × × = ×

Similarly, moment of inertia of circular section about an axis through its centre of gravity and
parallel to X-X axis,

4 6 4
2 (150) 24.85 10 mm

64GI
π= × = ×

and distance between centre of gravity of the circular section and X-X axis,
h2 = 200 – 129.1 = 70.9 mm

∴ Moment of inertia of the circular section about X-X axis,
                                     = IG2 + ah2 = (24.85 × 106) + [(17 670) × (70.9)2] = 113.67 × 106 mm4

Now moment of inertia of the whole section about X-X axis
= (476.21 × 106) – (113.67 × 106) = 362.54 × 106 mm4       Ans.

EXAMPLE 10.15. A rectangular hole is made in a triangular section as shown in Fig.
10.19.

Fig. 10.19

Determine the moment of inertia of the section about X-X axis passing through its centre of
gravity and the base BC.

SOLUTION.  As the section is symmetrical about Y-Y axis, therefore centre of gravity of the
section will lie on this axis. Let y  be the distance between the centre of gravity of the section and
the base BC.

(i) Triangular section

2
1

100 90
4500 mm

2
a

×= =

and 1
90

30 mm
3

y = =

(ii) Rectangular hole

a2 = 30 × 20 = 600 mm2

and 2
30

30 45 mm
2

y = + =

We know that distance between the centre of gravity of the section and base BC of the triangle,

1 1 2 2

1 2

– (4500 30) – (600 45)
27.7 mm

– 4500 – 600

a y a y
y

a a

× ×= = =
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Moment of inertia of the section about X-X axis.
We also know that moment of inertia of the triangular section through its centre of gravity and

parallel to X-X axis,

3 3
3 4

1
100 (90)

2025 10 mm
36 36G

b d
I

×= = = ×

and distance between the centre of gravity of the section and X-X axis,

 h1 = 30 – 27.7 = 2.3 mm

∴    Moment of inertia of the triangular section about X-X axis

                          2 3 2
1 2 1 2025 10 [4500 (2.3) ]GI a h= + = × + ×  = 2048.8 × 103 mm4

Similarly moment of inertia of the rectangular hole through its centre of gravity and parallel
to the X-X axis

3 3
3 4

2
20 (30)

45 10 mm
12 12G

b d
I

×= = = ×

and distance between the centre of gravity of the section and X-X axis
h2 = 45 – 27.7 = 17.3 mm

∴ Moment of inertia of rectangular section about X-X axis

     2 3 2
2 2 2 (45 10 ) [600 (17.3) ]GI a h= + = × + × = 224.6 × 103 mm4

Now moment of inertia of the whole section about X-X axis.

Ixx = (2048.8 × 103) – (224.6 × 103) = 1824.2 × 103 mm4       Ans.

Moment of inertia of the section about the base BC

We know that moment of inertia of the triangular section about the base BC
3 3

3 4
1

100 (90)
6075 10 mm

12 12G
b d

I
×= = = ×

Similarly moment of inertia of the rectangular hole through its centre of gravity and parallel
to X-X axis,

3 3
3 4

2
20 (30)

45 10 mm
12 12G

b d
I

×= = = ×

and distance between the centre of gravity of the section about the base BC,

2
30

30 45 mm
2

h = + =

∴ Moment of inertia of rectangular section about the base BC,

2 3 2 3 4
2 2 2 (45 10 ) [600 (45) ] 1260 10 mmGI a h= + = × + × = ×

Now moment of inertia of the whole section about the base BC,

IBC = (6075 × 103) – (1260 × 103) = 4815 × 103 mm4       Ans.

10.16. Moment of Inertia of a Built-up Section
A built-up section consists of a number of sections such as rectangular sections, channel

sections, I-sections etc., A built-up section is generally made by symmetrically placing and then
fixing these section by welding or riveting. It will be interesting to know that a built-up section
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behaves as one unit. The moment of inertia of such a section is found out by the following steps.
1. Find out the moment of inertia of the various sections about their respective centres of

gravity as usual.

2. Now transfer these moments of inertia about the required axis (say X-X axis or Y-Y axis)
by the Theorem of Parallel Axis.

NOTE. In most of the standard sections, their moments of inertia of about their respective centres of
gravity  is generally given. However, if it is not given then we have to calculate it before transferring it to the
required axis.

EXAMPLE 10.16. A compound beam is made by welding two steel plates 160 mm × 12
mm one on each flange of an ISLB 300 section as shown in Fig 10.20.

Fig. 10.20

Find the moment of inertia the beam section about an axis passing through its centre of
gravity and parallel to X-X axis. Take moment of inertia of the ISLB 300 section about X-X axis
as 73.329 × 106 mm4.

SOLUTION.  Given: Size of two steel plates = 160 mm × 12 mm and moment of inertia of  ISLB
300 section about X-X axis = 73.329

From the geometry of the compound section, we find that it is symmetrical about both the  X-
X and Y-Y axes. Therefore centre of gravity of the section will lie at G i.e. centre of gravity of the
beam section.

We know that moment of inertia of one steel plate section about an axis passing through
its centre of gravity and parallel to X-X axis.

3
6 4160 (12)

0.023 10 mm
12GI
×= = ×

and distance between the centre of gravity of the plate section and X-X axis,

12
150 156 mm

2
h = + =

∴    Moment of inertia of one plate section about X-X axis,

 = IG + a h2 = (0.023 × 106) + [(160 × 12) × (156)2] = 46.748 × 106 mm4
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and moment of inertia of the compound beam section about X-X axis,

IXX = Moment of inertia of ISLB section

+ Moment of inertia of two plate sections.

 = (73.329 × 106) + 2 (46.748 × 106) = 166.825 × 106 mm4     Ans.

EXAMPLE 10.17. A compound section is built-up by welding two plates 200 mm × 15
mm on two steel beams ISJB 200 placed symmetrically side by side as shown in Fig. 10.21.

Fig. 10.21

What is the moment of inertia of the compound section about an axis passing through its
centre of gravity and parallel to X-X axis ? Take IXX for the ISJB section as 7.807 × 106 mm4.

SOLUTION.  Given: Size of two plates = 200 mm × 15 mm and moment of inertia of ISJB 200
section about X-X axis = 7.807 × 106 mm4.

From the geometry of the compound section, we find that it is symmetrical about both the
X-X and  Y-Y axis. Therefore centre of gravity of the section will lie at G i.e., centre of gravity of
the beam sections.

We know that moment of inertia of one plate section about an axis passing through  its centre
of gravity and parallel to X-X axis,

  
3

6 4200 (15)
0.056 10 mm

12GI
×= = ×

and distance between the centre of gravity of the plate section and X-X axis,

15
100 107.5 mm

2
h = + =

∴   Moment of inertia of the plate section about x-x axis

= IG + a h2 = (0.056 × 106) + (200 × 15) × (107.5)2 = 34.725 × 106 mm4

and moment of inertia of the compound section about x-x axis,

                               IXX = Moment of inertia of two ISJB sections

           + Moment of inertia of two plate sections

 = [2 × (7.807 × 106) + 2 × (34.725 × 106)] = 85.064 × 106 mm4       Ans.
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EXAMPLE 10.18. A built up section is made by needing too stable and two channel
sections as shown in Fig. 10.22.

Fig. 10.22

Determine moment of inertia of a built up section about X-X axis passing through centre of
gravity of the section.

SOLUTION. As the section is symmetrical about X-X axis and Y-Y axis therefore centre of
gravity of the section will coincide with the geometrical centre of section.

We know that the moment of inertia of one top or bottom plate about an axis through its
centre os gravity and parallel to X-X axis,

3
4

1
90 (10)

7500 mm
12

×= =GI

and distance between centre of gravity of the plates from X-X axis,

h1 = 65 – 5 = 60 mm

∴ Moment of inertia of top and bottom plates about X-X axis,

                   = IG1 + a h2 = 2 [7500 + (90 × 10) × (60)2] mm4

(because of two plates)

= 6.5 × 106 mm4

Now moment of inertia of part (1) of one channel section about an
axis through its centre of gravity and parallel to X-X axis,

3
4

2
30 (10)

2500 mm
12GI

×= =

and distance of centre of gravity of this part from X-X axis,

h2 = 55 – 5 = 50 mm

∴ Moment of inertia of part (1) about X-X axis,

= IG2 + a h2 = 4 [2500 + (30 × 10) × (50)2 mm4 ...(because of four plates)

= 3.0 × 106 mm4

Similarly moment of inertia of part (2) of the channel about an axis through its centre of
gravity and  parallel to X-X axis,

3
6 4

3
10 (90)

2 0.6 10 mm
12

⎡ ⎤×
= = ×⎢ ⎥

⎣ ⎦
GI ...(because of two plates)

Fig. 10.23
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Now moment of inertia of the whole built-up section about an axis through its centre of
gravity and parallel to X-X axis,

IXX = (6.5 × 106) + (3.0 × 106) + (0.6 × 106) = 10.1 × 106 mm4       Ans.

EXERCISE 10.2

1. Find the moment of inertia of a T-section having flange and web both 120 mm × 30 mm
about X-X axis passing through the centre of gravity of the section.

[Ans. 14 715 × 103 mm4]

2. Calculate the moment of inertia of an I-section having equal flanges 30 mm × 10 mm and
web also 30 mm × 10 mm about an axis passing through its centre of gravity and parallel
to X-X and Y-Y axes. [Ans. 267.5 × 103 mm4; 47 × 103 mm4]

3. Find the moment of inertia of the lamina with a circular hole of 30 mm diameter  about
the axis AB as shown in Fig. 10.24. [Ans. 638.3 × 103 mm4]

Fig. 10.24 Fig. 10.25

4. A circular hole of diameter R is punched out from a circular plate of radius R shown in
Fig. 10.25. Find the moment of inertia about both the centroidal axes.

4 415 29
;

64 192

⎡ ⎤π π
= =⎢ ⎥

⎣ ⎦
XX YY

R R
I I

5. The cross-section of a beam is shown in Fig. 10.26. Find the moment of inertia of the
section about the horizontal centroidal axis. [Ans. 1.354 × 106 mm4]

Fig. 10.26 Fig. 10.27

6. A built-up section consists of an I-section and two plates as shown in Fig 10.27. Find
values of IXX and IYY of the section. Take values of IXX as 3.762 × 106 mm4 and IYY as
73.329 × 106 mm6 respectively for the I-section.

[Ans. IXX = 17.095 × 106 mm4 ; IYY = 169.46 × 106 mm4]

Ans.
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QUESTIONS

1. How would you find out the moment of inertia of a plane area ?

2. What is Routh’s rule for finding out the moment of inertia of an area ? Explain where it
is used and why ?

3. Derive an equation for moment of inertia of the following sections about centroidal axis:

(a) a rectangular section,

(b) a hollow rectangular section,

(c) a circular section, and

(d) a hollow circular section.

4. State and prove the theorem of perpendicular axis applied to moment of inertia.

5. Prove the parallel axis theorem in the determination of moment of inertia of areas with
the help of a neat sketch.

6. Describe the method of finding out the moment of inertia of a composite section.

OBJECTIVE TYPE QUESTIONS

1. If the area of a section is in mm2 and the distance of the centre of area from a lines is in
mm, then units of the moment of inertia of the section about the line is expressed in

(a) mm2 (b) mm3 (c) mm4 (d) mm5

2. Theorem of perpendicular axis is used in obtaining the moment of inertia of a

(a) triangular lamina (b) square lamina

(c) circular lamina (d) semicircular lamina

3. The moment of inertia of a circular section of diameter (d) is given by the relation

(a) 
4( )

16
d

π
(b) 

4( )
32

d
π

(c) 
4( )

64
d

π
(d) 

4( )
96

d
π

4. The moment of inertia of a triangular section of base (b) and height (h) about an axis
through its c.g. and parallel to the base is given by the relation.

(a) 
3

12

bh
(b) 

3

24

bh
(c)

3

36

bh
(d) 

3

48

bh

5. The moment of inertia of a triangular section of base (b) and height (h) about an axis
passing through its vertex and parallel to the base is ... as that passing through its C.G.
and parallel to the base.

(a) twelve times (b) nine times

(c) six times (d) four times

ANSWERS

1. (c) 2. (b) 3. (c) 4. (c) 5. (b)
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17. Structures with One End Hinged (or Pin-
jointed) and the Other Freely Supported
on Rollers and Carrying Inclined Loads.

18. Miscellaneous Structures.

Analysis of

Perfect Frames

(Analytical Method)

11.1. Introduction
A frame may be defined as a structure,

made up of several bars, riveted or welded
together. these are made up of angle irons or
channel sections, and are called members of the
frame or framed structure. though these members
are welded or riveted together, at their joints, yet
for calculation purposes, the joints are assumed
to be hinged or pin-jointed the determination of
force in a frame is an important problem in
engineering- science, which can be solved by the
application of the principles of either statics or
graphics. in this chapter, we shall be using the
principles of statics for determining the forces in
frames.

11C h a p t e r
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11.2. Types of Frames
Though there are many types of frames, yet from the analysis point of view, the frames may be

classified into the following two  groups:

1. Perfect frame.    2. Imperfect frame.

11.3. Perfect Frame
A perfect frame is that, which is made up of members just suf-

ficient to keep it in equilibrium, when loaded, without any change in
its shape.

The simplest perfect frame is a triangle, which contains three
members and three joints as shown in Fig. 11.1. It will be intersting to
know that if such a structure is loaded, its shape will not be distorted.
Thus, for three jointed frame, there should be three members to prevent
any distortion. It will be further noticed that if we want to increase a
joint, to a triangular frame, we require two members as shown by dot-
ted lines in Fig. 11.1. Thus we see that for every additional joint, to a
triangular frame, two members are required.

The no. of members, in a perfect frame, may also be expressed by
the relation :

n = (2j – 3)
n = No. of members, and
j = No. of joints.

11.4. Imperfect Frame
An imperfect frame is that which does not satisfy the equation :

n = (2j – 3)

Or in other words, it is a frame in which the no. of members are more or less than (2j – 3). The
imperfect frames may be further classified into the following two types :

1. Deficient frame. 2. Redundant frame.

11.5. Deficient Frame
A deficient frame is an imperfect frame, in which the no. of members are less than (2j – 3).

11.6. Redundant Frame
A redundant frame is an imperfect frame, in which the no. of members are more than (2j – 3).

In this chapter, we shall discuss only perfect frames.

11.7. Stress
When a body is acted upon by a force, the internal force which is transmitted through the body is

known as stress. Following two types of stress are important from the subject point of view :
1. Tensile stress. 2. Compressive stress.

11.8. Tensile Stress

Fig. 11.2

Fig. 11.1. Perfect
Frame.
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Sometimes, a body is pulled outwards by two equal and opposite forces and the body tends to
extend, as shown in Fig 11.2. (a). The stress induced is called tensile stress and corresponding force
is called tensile force.

11.9. Compressive Stress
Sometimes, a body is pushed inwards by two equal and opposite forces and the body tends to

shorten its length as shown in Fig. 11.2 (b). The stress induced is called compressive stress and the
corresponding force is called compressive force.

11.10. Assumptions for Forces in the Members of a Perfect Frame
Following assumptions are made, while finding out the forces in the members of a perfect

frame:
1. All the members are pin-jointed.

2. The frame is loaded only at the joints.

3. The frame is a perfect one.

4. The weight of the members, unless stated otherwise, is regarded as negligible in
comparison with the other external forces or loads acting on the truss.

The forces in the members of a perfect frame may be found out either by analytical method
or graphical method. But in this chapter, we shall discuss the analytical method only.

11.11. Analytical Methods for the Forces
The following two analytical methods for finding out the forces, in the members of a perfect

frame, are important from the subject point of view :

1.  Method of joints. 2.  Method of sections.

11.12.  Method of Joints

Fig. 11.3
In this method, each and every joint is treated as a free body in equilibrium as shown in Fig.

11.3 (a), (b), (c) and (d). The unknown forces are then determined by equilibrium equations viz.,
Σ V = 0 and  Σ H = 0. i.e., Sum of all the vertical forces and horizontal forces is equated to zero.

Notes: 1. The members of the frame may be named either by Bow’s methods or by the joints at their
ends.

  2. While selecting the joint, for calculation work, care should be taken that at any instant, the
joint should not contain more than two members, in which the forces are unknown.
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11.13. Method of Sections (or Method of Moments)
This method is particularly convenient, when the forces in a few members of a frame are

required to be found out. In this method, a section line is passed through the member or members, in
which the forces are required to be found out as shown in Fig. 11.4 (a). A part of the structure, on any
one side of the section line, is then treated as a free body in equilibrium under the action of external
forces as shown in Fig. 11.4 (b) and (c).

 

Fig. 11.4
The unknown forces are then found out by the application of equilibrium or the principles

of statics i.e., Σ Μ = 0.

NOTES: 1. To start with, we have shown section line 1-1 cutting the members AB and BC. Now in order to find
out the forces in the member AC, section line 2-2 may be drawn.

2. While drawing a section line, care should always be taken not to cut more than three members, in
which the forces are unknown.

11.14. Force Table
Finally, the results are tabulated showing the members, magnitudes of forces and their

nature. Sometimes, tensile force is represented with a + ve sign and compressive force with a
– ve sign.

NOTE:  The force table is generally prepared, when force in all the members of a truss are required to be

found out.

EXAMPLE 11.1. The truss ABC shown in Fig. 11.5 has a span of 5 metres. It is carrying
a load of 10 kN at its apex.

Fig. 11.5

Find the forces in the members AB, AC and BC.
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SOLUTION.  From the geometry of the truss, we find that the load of 10 kN is acting at a distance
1.25 m from the left hand support i.e., B and 3.75 m from C. Taking moments about B and equating
the same,

RC × 5 = 10 × 1.25 = 12.5

∴
12.5

2.5 kN
5CR = =

and  RB = 10 – 2.5 = 7.5 kN

The example may be solved by the method of joints or by the method of sections. But we shall
solve it by both the methods.

Methods of Joints
First of all consider joint B. Let the *directions of the forces PAB and PBC (or PBA and PCB) be

assumed as shown in Fig 11.6 (a).

Fig. 11.6
Resolving the forces vertically and equating the same,

               PAB sin 60° = 7.5

or                           
7.5 7.5

sin 60 0.866ABP = =
°  8.66 kN= (Compression)

and now resolving the forces horizontally and equating the same,

              PBC = PAB cos 60° = 8.66 × 0.5 = 4.33 kN (Tension)

Now consider the joint C. Let the *directions of the forces PAC and PBC (or PCA and PCB) be

* The idea, of assuming the direction of the force PAB to be downwards, is that the vertical component of
the force PBC is zero. Therefore in order to bring the joint B in equilibrium, the direction of the force PAB must

be downwards, or in other words, the direction of the force PAB should be opposite to that of the reaction RB. If,

however the direction of the force PAB is assumed to be upwards, then resolving the forces vertically and equating
the same,
                                              PAB sin 60°  =  –7.5 (Minus sign due to same direction of RB and PAB.)

∴
7.5 7.5

8.66
sin 60 0.866

− −
= = = −

°ABP kN

Minus sign means that the direction assumed is wrong. It should have been downwards instead of
upwards. Similarly, the idea of assuming the direction of the force PBC to be towards right is that the horizontal

component of the reaction RB is zero. Therefore in order to bring the joint B in equilibrium, the direction of the

force PAB must be towards right (because the direction of the horizontal component of the force PAB is towards

left).
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assumed as shown in Fig. 11.6 (b). Resolving the forces vertically and equating the same,

PAC sin 30° = 2.5

∴
2.5 2.5

5.0 kN
sin 30 0.5ACP = = =

°  (Compression)

and now resolving the forces horizontally and equating the same,

PBC = PAC cos 30° = 5.0 × 0.866 = 4.33 kN (Tension).

...(As already obtained)

Method of Sections

Fig. 11.7
First of all, pass section (1-1) cutting the truss into two parts (one part shown by firm lines and

the other by dotted lines) through the members AB and BC of the truss as shown in Fig 11.7 (a). Now
consider equilibrium of the left part of the truss (because it is smaller than the right part). Let the
directions of the forces PAB and PAC be assumed as shown in Fig 11.7 (a).

Taking** moments of the forces acting in the left part of the truss only about the joint C and
equating the same,

PAB × 5 sin 60° = 7.5 × 5

∴ 7.5 5 7.5
8.66 kN

5 sin 60 0.866ABP
×= = =

°
 (Compression)

and now taking moments of the forces acting in the left part of the truss only about the joint A and
equating the same,

PBC × 1.25 tan 60° = 7.5 × 1.25

∴ 7.5 1.25 7.5
4.33 kN

1.25 tan 60 1.732BCP
×= = =

°
 (Tension)

* For details, please refer to the foot note on last page.

** The moment of the force PAB about the joint C may be obtained in any one of the following two ways :

1. The vertical distance between the member AB and the joint C (i.e., AC in this case) is equal to
5 sin 60° m. Therefore moment about C is equal to PAB × 5 sin 60° kN-m.

2. Resolve the force PAB vertically and horizontally at B. The moment of horizontal component about
C will be zero. The moment of vertical component (which is equal to PAB × sin 60°) is equal to
PAB × sin 60° × 5 = PAB × 5 sin 60° kN-m.
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Now pass section (2-2) cutting the truss into two parts through the members AC and BC. Now
consider the equilibrium of the right part of the truss (because it is smaller than the left part). Let the
†direction of the forces PAC and PBC be assumed as shown in Fig 11.7 (b).

Taking moments of the force acting in the right part of the truss only about the joint B and
equating the same,

PAC × 5 sin 30° = 2.5 × 5

∴  
2.5 2.5

5 kN
sin 30 0.5ACP = = =

°
 (Compression)

and now taking moments of the forces acting in the right part of the truss only about the joint A and
equating the same,

                         PBC × 3.75 tan 30° = 2.5 × 3.75

∴  2.5 3.75 2.5
4.33 kN

3.75 tan 30 0.577BCP
×= = =

°
 (Tension)

...(As already obtained)

Now tabulate the results as given below :

S.No. Member Magnitude of force in kN Nature of force

1 AB 8.66 Compression
2 BC 4.33 Tension
3 AC 5.0 Compression

EXAMPLE 11.2. Fig 11.8 shows a Warren girder consisting of seven members each of 3 m
length freely supported at its end points.

Fig. 11.8

The girder is loaded at B and C as shown. Find the forces in all the members of the girder,
indicating whether the force is compressive or tensile.

SOLUTION.  Taking moments about A and equating the same,

        RD × 6 = (2 × 1.5) + (4 × 4.5) = 21

∴               
21

3.5 kN
6DR = =

and                RA = (2 + 4) – 3.5 = 2.5 kN

† For details, please refer to the foot note on last page.
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The example may be solved by the method of joints or method of sections. But we shall solve
it by both the methods.

Method of Joints

Fig. 11.9

First of all, consider the joint A. Let the directions of PAB and PAE be assumed as shown in Fig.
13.9 (a) Resolving the forces vertically and equating the same,

PAB sin 60° = 2.5

∴ 2.5 2.5
2.887 kN

sin 60 0.866ABP = = =
°

 (Compression)

and now resolving the forces horizontally and equating the same,

PAE = PAB cos 60° = 2.887 × 0.5 = 1.444 kN (Tension)

Now consider the joint D. Let the directions of the forces PCD and PED be assumed as shown in
Fig. 11.9 (b).

Resolving the forces vertically and equating the same,

PCD × sin 60° = 3.5

∴
3.5 3.5

4.042 kN
sin 60 0.866CDP = = =

°
 (Compression)

and now resolving the forces horizontally and equating the same,

PDE = PCD cos 60° = 4.042 × 0.5 = 2.021 kN (Tension)

Fig. 11.10

Now consider the joint B. We have already found that force in member AB i.e., PAB is 2.887 kN

(Compression). Let the direction of the forces PBC and PBE be assumed as shown in Fig.13.10 (a).
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Resolve the forces vertically and equating the same,

PBE sin 60° = PAB sin 60° – 2.0 = 2.887 × 0.866 – 2.0 = 0.5 kN

∴ 0.5 0.5
0.577 kN

sin 60 0.866BEP = = =
°

  (Tension)

and now resolving the forces horizontally and equating the same,
PBC = 2.887 cos 60° + 0.577 cos 60° kN

= (2.887 × 0.5) + (0.577 × 0.5) kN = 1.732 kN (Compression)
Now consider joint C. We have already found out that the forces in the members BC and CD

(i.e. PBC and PCD) are 1.732 kN (Compression) and 4.042 kN (Compression) respectively. Let the
directions of PCE be assumed as shown in Fig. 11.10 (b). Resolving the forces vertically and equating
the same,

PCE sin 60° = 4 – PCD sin 60° = 4 – (4.042 × 0.866) = 0.5

∴
0.5 0.5

0.577 kN (Compression)
sin 60 0.866CEP = = =

°

Method of sections

First of all, pass section (1-1) cutting the truss through the members AB and AE. Now consider
equilibrium of the left part of the truss. Let the directions of the forces PAB and PAE be assumed as
shown in Fig. 11.11 (a).

(a) Section (1-1) (b) Section (2-2)
Fig. 11.11

Taking moments of the forces acting in the left part of the truss only, about the joint E and
equating the same,

PAB × 3 sin 60° = 2.5 × 3
2.5 2.5

2.887 kN (Compression)
sin 60 0.866ABP = = =

°
Now pass section (2-2) cutting the truss through the members BC, BE and AE. Now consider

equilibrium of the left of the truss. Let the directions of the forces PBC and PBE be assumed as shown
in Fig. 11.11 (b). Taking moments of the forces acting in left part of the truss only, about the joint E
and equating the same,

PBC × 3 sin 60° = (2.5 × 3) – (2 × 1.5) = 4.5

∴
4.5 4.5

1.732 kN (Compression)
3 sin 60 3 0.866BCP = = =

° ×
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and now taking moments of the forces acting in the left part of the truss only about the joint A and
equating the same,

PBE × 3 sin 60° = (PBC × 3 sin 60°) – (2 × 1.5) = (1.732 × 3 × 0.866) – 3.0 = 1.5

1.5 1.5
0.577 kN (Tension)

3 sin 60 3 0.866BEP = = =
° ×

Now pass section (3-3) cutting the truss through the members BC, CE and ED. Now consider
the equilibrium of the right part of the truss. Let the directions of the forces PCE and PDE be assumed
as shown in Fig. 11.12 (a) Taking moments of the forces in the right part of the truss only, about the
joint D and equating the same,

PCE × 3 sin 60° = (4 × 1.5) – (PBC × 3 sin 60°)

=  6.0 – (1.732 × 3 × 0.866) = 1.5

∴ 1.5 1.5
0.577 kN

3 sin 60 3 0.866CEP = = =
° ×

 (Compression)

and now taking moments of the forces in the right part of the truss only about the joint C and equating
the same,

PDE × 3 sin 60° = 3.5 × 1.5 = 5.25

∴ 5.25 5.25
2.021 kN

3 sin 60 3 0.866DEP = = =
° ×

 (Tension)

(a) Section (3–3) (b) Section (4–4)

Fig. 11.12

Now pass section (4-4) cutting the truss through the members CD and DE. Let the directions of
the forces PCD be assumed as shown in Fig 11.12 (b). Taking moments of the forces acting in the right
part of the truss only about the joint E and equating the same,

 PCD × 3 sin 60° = 3.5 × 3

3.5 3.5
4.042 kN

sin 60 0.866CDP = = =
°  (Compression)
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Now tabulate the results as given below :

S.No. Member Magnitude of force in kN Nature of force

1 AB 2.887 Compression

2 AE 1.444 Tension

3 CD 4.042 Compression

4 DE 2.021 Tension

5 BE 0.577 Tension

6 BC 1.732 Compression

7 CE 0.577 Compression

EXAMPLE 11.3.  A plane is loaded and supported as shown in Fig 11.13.

Fig. 11.13

Determine the nature and magnitude of the forces in the members 1,2 and 3.

SOLUTION.  Taking moments about A and equating the same,

V B × 4 a = 1500 × a

∴
1500

375 N
4BV = =

and VA = 1500 – 375 = 1125 N

From the geometry of the figure, we find that

2.25
tan 0.75

3

a

a
θ = =

and 3
sin 0.6

5
θ = =  and 

4
cos 0.8

5
θ = =

The example may be solved by any method. But we shall solve it by the method of sections, as
one section line can cut the members 1, 2 and 3 in which the forces are required to be found out. Now
let us pass section (1-1) cutting the truss into two parts as shown in Fig 11.14.
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Now consider the equilibrium of the right part of the truss. Let the directions of P1, P2 and P3
be assumed as shown in Fig. 11.14.

Fig. 11.14

Taking moments about joint M and equating the same,
P1 × 2a sin θ = 375 × 2a

∴ 1
375 375

625 N
sin 0.6

P = = =
θ

 (Compression)

Similarly, taking moments about joint A and equating the same,

P2 × 2a = 375 × 4a = 1500a

∴ 2
1500

750 N
2

a
P

a
= =  (Tension)

and now taking moments about the joint L, and equating the same,

3
3

375 2 750
2

a
P a a× = × =

∴ 3
750

500 N
1.5

P = =  (Tension)

EXAMPLE 11.4. An inclined truss shown in Fig 11.15 is loaded as shown.

Fig. 11.15

Determine the nature and magnitude of the forces in the members BC, GC and GF of the truss.

SOLUTION.  From the geometry of the figure, we find that the load 8 kN at B is acting at a
distance of 1.5 m from the joint A. Taking moments about A and equating the same,

RE × 6 = (8 × 1.5) + (6 × 2) + (12 × 4) = 72

∴ 72
12 kN

6ER = =
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RA = (8 + 6 + 12) – 12 = 14 kN
The example may be solved by any method. But we shall solve it by the method of sections, as

one section line can cut the members BC, GC, and GF in which the forces are required to be found
out. Now let us pass section (1-1) cutting the truss into two parts as shown in Fig. 11.16

Fig. 11.16

Now consider equilibrium of the left part of the truss. Let the directions of the force PBC, PGC and
PGF be assumed as shown in Fig 11.16. Taking moments about the joint G and equating the same,

PBC × 2 sin 30° = (14 × 2) – (8 × 0.5) = 24

∴ 24 24
24kN

2sin 30 2 0.5BCP = = =
° ×

 (Compression)

Similarly, taking moments about the joint B and equating the same,
PGC × 1 cos 30° = (14 × 1.5) + (6 × 0.5) = 24 kN

24 24
27.7 kN

cos 30 0.866GCP = = =
°

 (Compression)

and now taking moments about the joint C and equating the same,

PGF × 3 tan 30° = (14 × 3) – (6 × 1) = 36

∴ 36 12
20.8 kN

3 tan 30 0.5774GFP = = =
°

 (Tension)

EXAMPLE 11.5. A framed of 6 m span is carrying a central load of 10 kN as shown in
Fig. 11.17.

Fig. 11.17

Find by any method, the magnitude and nature of forces in all members of the structure and
tabulate the results.
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SOLUTION.  Since the structure is symmetrical in geometry and loading, therefore reaction at A,

RA = RB = 5 kN
From the geometry of the structure, shown in Fig. 11.18 (a). we find that

3
tan 1.0

3
θ = = or θ = 45°

6
tan 2.0

3
α = = or α = 63.4°

The example may be solved either by the method of joints or method of sections. But we shall
solve it by the method of joints only.

First of all, consider the joint A. Let the directions of the forces PAC and PAD be assumed as
shown in Fig 11.18 (a). Resolving the forces horizontally and equating the same,

PAC cos 63.4° = PAD cos 45°

∴
cos 45 0.707

1.58
cos 63.4 0.4477
AD AD

AC AD
P P

P P
° ×= = =

°

and now resolving the forces vertically and equating the same,

PAC sin 63.4° = 5 + PAD sin 45°

1.58 PAD × 0.8941 = 5 + PAD × 0.707 ...(∵ PAC = 1.58 PAD)

∴ 0.7056 PAD = 5

5
7.08 kN (Tension)

0.7056ADP = =

PAC = 1.58 × PAD = 1.58 × 7.08 = 11.19 kN (Compression)

Now consider the joint D. Let the directions of the forces PCD and PBD be assumed as shown in
Fig. 11.18 (b). Resolving the forces vertically and equating the same,

Fig. 11.18

                                      PCD  = PAD sin 45° + PBD sin 45° = 2 PAD sin 45°     ...( )BD ADP P=ä

= 2 × 7.08 × 0.707 = 10.0 kN (Tension)
Now tabulate these results as given below :

S.No. Member Magnitude of force in kN Nature of force

1 AD, DB   7.08 Tension

2 AC, CB 11.19 Compression

3 CD 10.0 Tension
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Fig. 11.19

Fig. 11.22

EXERCISE 11.1

1. A truss of span 10 meters is loaded as shown in Fig. 11.19. Find the forces in all the members
of the truss.

Ans. AC = 6.92 kN (Compression)

AE = 3.46 kN (Tension)

BD = 10.0 kN (Compression)

BE = 8.66 kN (Tension)

CD = 7.0 kN (Compression)

ED = 5.2 kN (Compression)

CE = 5.2 kN (Tension)

2. A king post truss of 8 m span is loaded as shown in Fig 11.20. Find the forces in each member
of the truss and tabulate the results.

Ans. AB, DE  =6.0 kN (Compression)

AF, EH  = 5.2 kN (Tension)

FG, GH = 5.2 kN (Tension)

BF, DH  = 0

BG, DG = 2.0 kN (Compression)

BC, CD = 4.0 kN (Compression)

CG = 2.0 kN (Tension)

3. A plane truss of 6 m span is subjected to a point load of 30 kN as shown in the figure 11.21.
Find graphically, or otherwise, the forces in all the members of the truss and tabulate the
results.

Ans. 1-3 = 28.3 kN (Compression)
1-5 = 20.0 kN (Tension)
2-4 = 12.0 kN (Compression)
2-6 = 6.7 kN (Tension)
1-5 = 20.0 kN (Tension)
3-5 = 30.0 kN (Tension)
3-6 = 18.8 kN (Compression)
4-6 = 13.3 kN (Tension)
3-4 = 7.5 kN (Compression)

4. A 9 m span truss is loaded as shown in Fig 11.22. Find the forces in the members BC, CH and
HG of the truss.

Ans. BC = 7.5 kN (Compression)

CH = 1.0 kN (Compression)

GH = 7.5 kN (Tension)

Fig. 11.21

Fig. 11.20
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5. The roof truss shown in Fig. 11.23 is supported at A and B and carries vertical loads at each of
the upper chord points.

Fig. 11.23

Using the method of sections, determine the forces in the members CE and FG of truss,
stating whether they are in tension or compression.

[Ans. 38.5 kN (Compression); 24.2 kN (Tension)]

11.15. Cantilever Trusses
A truss, which is connected to a wall or a column at one end, and free at the other is known as

a cantilever truss. In the previous examples, the determination of support reactions was absolutely
essential to start the work. But in the case of cantilever trusses, determination of support reaction is
not essential, as we can start the calculation work from the free end of the cantilever.

EXAMPLE 11.6. A cantilever truss of 3 m span is loaded as shown in Fig 11.24.

Fig. 11.24

Find the forces in the various members of the framed truss, and tabulate the results.

SOLUTION.  The example may be solved either by the method of joints or method of sections.
But we shall solve it by both the methods one by one.

Method of joints
First of all, consider the joint A, Let the directions of the forces PAB and PAD be assumed as

shown Fig 11.25 (a).
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Resolving the forces vertically and equating the same,

PAB sin 60° = 10

∴
10 10

11.5 kN (Tension)
sin 60 0.866ABP = = =

°

and now resolving the forces horizontally and equating the same,

PAD = PAB cos 60° = 11.5 × 0.5 = 5.75 kN (Compression)

Fig. 11.25

Now consider the joint B. Let the directions of PBD and PBC be assumed as shown in Fig
11.25 (b). We have already found out that the force in member AB is 11.5 kN (Tension) as shown
in the figure 11.25 (b). Resolving the forces vertically and equating the same,

PBD sin 60° = PAB sin 60° = 11.5 sin 60°

∴ PBD = PAB = 11.5 kN (Compression)

and now resolving the forces horizontally and equating the same,

PBC  = PAB cos 60° + PBD cos 60°

= (11.5 × 0.5) + (11.5 × 0.5) = 11.5 kN (Tension)

Method of sections
First of all, pass section (1-1) cutting the truss through the members AB and AD. Now consider

the equilibrium of the right part of the truss. Let the directions of the forces PAB and PAD be assumed
as shown in Fig 11.26 (a).

Fig. 11.26
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Taking moments of the forces acting on right part of the truss only, about the joint D and
equating the same,

PAB × 3 sin 60° = 10 × 3

∴  
10 10

11.5 kN (Tension)
sin 60 0.866ABP = = =

°
and now taking moments of the forces in the right part of the truss only about the joint B and equating
the same,

PAD × 3 sin 60° = 10 × 1.5 = 15

∴  
15 15

5.75 kN (Compression)
3 sin 60 3 0.866ADP = = =

° ×
Now pass section (2-2) cutting the truss through the members BC, BD and AD. Now consider

the equilibrium of the right part of the truss. Let the directions of the forces PBC and PBD be assumed
as shown in Fig. 11.26 (b)

Taking moments of the forces acting on the right part of the truss only, about the joint D and
equating the same,

PBC × 3 sin 60° = 10 × 3

∴
10 10

11.5 kN (Tension)
sin 60 0.866BCP = = =

°
and now taking moments of the forces in the right part of the truss only, about the joint C and equating
the same,

 PBD × 1.5 sin 60° = (10 × 3) – PAD × 3 sin 60° = 30 – (5.75 × 3 × 0.866) = 15

 
15 15

11.5 kN (Compression)
1.5 sin 60 1.5 0.866BDP = = =

° ×
Now tabulate the results as given below :

S.No. Members Magnitude of force in kN Nature of force

1 AB 11.5 Tension

2 AD   5.75 Compression

3 BD 11.5 Compression

4 BC 11.5 Tension

EXAMPLE 11.7. A cantilever truss is loaded as shown in Fig 11.27.

Fig. 11.27

Find the value W, which would produce the force of magnitude 15 kN in the member AB.
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SOLUTION.  The example may be solved either by the method of joints or method of sections.
But we shall solve it by the method of section only as we have to find out the force in member AB
only.

First of all, let us find out the force in the member AB
of the truss in terms of W. Now pass section (1-1) cutting the
truss through the members AB, BE and ED as shown in Fig.
11.28.

Now consider the equilibrium of the right part of the
truss. Let the direction PAB be assumed as shown in Fig 11.28.
Taking moments of the forces in the right part of the truss
only, about the joint E and equating the same,

PAB × 2 = (W × 1.5) + (W × 4.5) = 6 W

6
3

2AB
W

P W= =

Thus the value of W, which would produce the force of 15 kN in the member AB

15 5 kN
3

W

W
= × =        Ans.

EXAMPLE 11.8. Figure 11.29 shows a cantilever truss having a span of 4.5 meters. It is
hinged at two joints to a wall and is loaded as shown.

 

Fig. 11.29

Find the forces in all the member of the truss.

SOLUTION.  The example may be solved either by the method of joints or method of sections.
But we shall solve it by the method of joints as we have to find out forces in all members of the truss.

Force in all the members of the truss

Fig. 11.30

First of all, consider the joint D. Let the directions of PCD and PDE be assumed as shown in Fig.
11.30 (a).

Fig. 11.28
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From the geometry of the figure, we find that

1.5
tan 0.3333

4.5
CDE∠ = = or ∠CDE = 18.4°

Resolving the forces vertically at D

PCD sin ∠CDE = 500 or PCD sin 18.4° = 500

∴
500 500

1584 N (Tension)
sin 18.4 0.3156CDP = = =

°
and now resolving the forces horizontally at D

PDE = PCD cos  ∠CDE = 1584 cos 18.4°

∴ PDE = 1584 × 0.9488 = 1503 N (Compression)

Now consider the joint E. A little consideration will show that the value of the force PFE
will be equal to the force PED i.e., 1503 N (Compression). Since the vertical components of the
forces PFE and PED are zero, therefore the value of the force PCE will also be zero.

Fig. 11.31

Now consider the joint C. Let the directions of PBC and PFC be assumed as shown in Fig.
11.31 (a). From the geometry of the figure, we find that the members CD, BC and FC make angle of
18.4° with the horizontal. Resolving the forces horizontally and equating the same,

PBC cos 18.4° = 1584 cos 18.4° + PFC cos 18.4°

or PBC = 1584 + PFC ...(i)

and now resolving the forces vertically and equating the same,

1000 + 1584 sin 18.4° = PFC sin 18.4° + PBC sin 18.4°

1000 + (1584 × 0.3156) = (PFC × 0.3156) + (PBC × 0.3156)

1000 + (1581 × 0.3156) = 0.3156 PFC + (1584 + PFC) × 0.3156

...(∵ PBC = 1584 + PFC)

1000 + (1581 × 0.3156) = 0.3156 PFC + (1584 × 0.3156) + 0.3156 PFC

∴
1000

1584 N (Compression)
0.6312FCP = =

Substituting the value of PFC in equation (i)

PBC = 1584 + 1584 = 3168 N (Tension)

Now consider the joint F. Let the directions of the forces PGF and PFB be assumed as shown in
Fig 11.31 (b). Resolving the forces horizontally,

PGF = 1584 + 1584 cos 18.4° = 1584 + (1584 × 0.9488) N

= 1584 + 1503 = 3087 N (Compression)
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and now resolving the forces vertically and equating the same,
PBF = 1584 sin 18.4° = 1584 × 0.3156 = 500 N (Tension)

Now consider the joint B. Let the direction of PBG and PAB be assumed as shown in Fig 11.32.

Fig. 11.32

From the geometry of the figure, we find that

                        
1.5

tan 1.5
1

GBF∠ = =  or ∠GBF = 56.3°

Resolving the forces horizontally at B and equating the same,

                      PAB cos 18.4º  = PBG sin 56.3° + 3168 cos 18.4°

                      PAB × 0.9488 = PBG × 0.832 + 3168 × 0.9488

∴                                    0.9488 PAB = 0.832 PBG + 3000 ....(ii)

Dividing the above equation by 3,

                      0.3156 PAB = 0.2773 PBG + 1000 ....(iii)

and now resolving the forces vertically at B and equating the same,

PAB sin 18.4° + PBG cos 56.3° = 1000 + 500 + 3168 sin 18.4°

= 1500 + (3168 × 0.3156)

PAB × 0.3156 + PBG × 0.5548 = 1500 + 1000

0.3156 PAB + 0.5548 PBG = 2500 ...(iv)

Substracting equation (iii) from equation (iv),

                                   0.8321 PBG = 1500

          or        
1500

1801 N (Compression)
0.8321BGP = =

Substituting the value of PBG in equation (iii)

0.3156 PAB = (0.2773 × 1801) + 1000

0.3156 PAB = 500 + 1000 = 500

1500
4753 N (Tension)

0.3156ABP = =
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Now tabulate the results as given below :

S.No. Member Magnitude of force in kN Nature of force

1 AB 4753 Tension

2 BC 3168 Tension

3 CD 1584 Tension

4 DE 1503 Compression

5 CE       0 —

6 FE 1503 Compression

7 FC 1584 Compression

8 BF   500 Tension

9 GF 3087 Compression

10 BG 1801 Compression

EXAMPLE 11.9. A truss shown in Fig 11.33 is carrying a point load of 5 kN at E.

Fig. 11.33

Find graphically, or otherwise, the force in the members CE, CD and BD of the truss.

SOLUTION.  The example may be solved either by the method of joints or method of sections.
But we shall solve it by the method of sections, as one section line can cut the members CE, CD and
BD in which the forces are required to be found out. Now let us pass section (1-1) cutting truss into
two parts as shown in Fig. 11.34.

Fig. 11.34

Now consider equilibrium of the right parts of the truss. Let the directions of the force PCE PCD
and PBD be assumed as shown in Fig. 11.34. Taking moments about the joint D and equating the same,

                            PCE × 2 = 5 × 4 = 20

∴
20

10 kN (Tension)
2CEP = =
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Similarly, taking moments about the joint B and equating the same,

PCD × 4 = (5 × 8) – (PCE × 2) = 40 – (10 × 2) = 20

∴
20

5kN (Compession)
4CDP = =

and now taking moments about the joint C and equating the same,

PBD × 2 = 5 × 4 = 20

∴
20

10 kN (Tension)
2BDP = =

EXAMPLE 11.10.  A pin-joined cantilever frame is hinged to a vertical wall at A and E and
is loaded as shown in Fig 11.35.

Fig. 11.35

Determine the forces in the members CD, CG and FG.

SOLUTION.  First of all, extend the lines through the joints B, C and D as E, F and G meeting
at O. Through G, draw GP perpendicular to CD. Similarly, through C, draw CQ perpendicular to FG.

Now extend the line of action of the member CG, and through O, draw a perpendicular to this
line meeting at R as shown in Fig. 11.36.

Fig. 11.36
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Fig. 11.37

We know that in similar triangles OPG and OAE,

AO AP

AE PG
= or

8
4

4 2

AO = =

∴ AO = 4 × 4 = 16 m
and DO = 16 – 10 = 6 m

Now in triangle CGP, we find that

2
tan 1

2
GCP∠ = = or 45GCP∠ = °

∴ ∠COR = 90° – 45° = 45°

and OR = OC cos 45° = 10 × 0.707 m = 7.07 m

From the geometry of the triangle OPG, we find that

2
tan 0.25

8
GOP∠ = =             or   ∠GOP = 14°

Similarly, in triangle OCQ, we find that

CQ = CO sin 14° = 10 × 0.2425 = 2.425 m

Now pass section (1-1) cutting the frame through the members CD, CG and FG. Let the direc-
tions of the forces PCD, PCG and PFG be assumed as shown in Fig. 11.36. Taking moments of the
forces acting on right part of the frame only, about the joint G and equating the same,

PCD × 2 = 2 × 2    or PCD = 2 kN (Tension)       Ans.
Similarly, taking moments of the forces acting in the right part of the truss only about the

imaginary joint O and equating the same,

PCG × 7.07 = 2 × 6

or
12

1.7 kN (Tension)
7.07CGP = =        Ans.

and now taking moments of the forces acting in the right part of the truss only about the joint C and
equating the same,

PFG × 2.425 = 2 × 4 = 8

∴
8

3.3kN
2.425FGP = =  (Compression)

EXERCISE 11.2

1. Determine the forces in the various members of a pin-joined frame as shown in Fig. 11.37.
Tabulate the result stating whether they are in tension or compression.

Ans. CD = 2.5 kN (Compression)

BC = 2.0 kN (Tension)

AB = 2.0 kN (Tension)

BD = 1.5 kN (Compression)

AD = 1.25 kN (Tension)

ED = 3.75 kN (Compression)
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2. A cantilever truss of 4 m span is carrying two point loads of 1.5 kN each as shown in Fig. 11.38

Find the stresses in the members BC and BD of the truss.
Ans.  2.52 kN (Tension) ; zero

Fig. 11.38 Fig. 11.39

3. A cantilever truss carries two vertical load as shown in the Fig. 11.39. Find the magnitude and
nature of strees in the members 2, 9, 5 and 10 of the truss.

Ans. P2 = 6.0 kN (Tension)

P9 = 2.9 kN (Compression)

P5 = 3.46 kN (Compression)

P10 = 0

4. A cantilever truss is subjected to two point loads of 3 kN each at B and C as shown in
Fig 11.40. Find by any method the forces in the members AB. BE and ED of the truss.

Ans. AB = 8.6 kN (Tension)

BE = 2.0 kN (Tension)

ED = 2.0 kN (Compression)

11.16. Structures With One End Hinged (or Pin-jointed) and
the Other Freely Supported on Rollers and Carrying
Horizontal Loads

Sometimes, a structure is hinged or pin-jointed at one end, and freely supported on rollers at
the other end. If such a truss carries vertical loads only, it does not present any special features. Such
a structure may be solved just as a simply supported structure.

But, if such a structure carries horizontal loads (with or without vertical loads) the support
reaction at the roller supported end will be normal to the support; where the support reaction at the
hinged end will consist of :

1. Vertical reaction, which may be found out, by substracting the vertical support reaction at
the roller supported end from the total vertical load.

2. Horizontal reaction, which may be found out, by algebraically adding all the horizontal
loads.

After finding out the reactions, the forces in members of the frame may be found out as usual.

Fig. 11.40
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EXAMPLE. 11.11. Figure 11.41 shows a framed of 4 m span and 1.5 m height subjected to
two point loads at B and D.

Fig. 11.41

Find graphically, or otherwise, the forces in all the members of the structure.

SOLUTION.  Since the structure is supported on rollers at the right hand support (C), therefore
the reaction at this support will be vertical (because of horizontal support). The reaction at the left
hand support (A) will be the resultant of vertical and horizontal forces and inclined with the vertical.

Taking moments about A and equating the same,

VC × 4 = (8 × 1.5) + (12 × 2) = 36

36
9 kN ( )

4CV = = ↑

VA = 12 – 9 = 3 kN ( ↑ )      and        HA = 8 kN (←)

From the geometry of the figure, we find that

1.5
tan 0.75

2
θ = = or θ = 36.9°

Similarly sin θ = sin 36.9° = 0.6    and cos θ = cos 36.9° = 0.8

The example may be solved either by the method of joints or method of sections. But we shall
solve it by the method of joints as we have to find forces in all the members of the structure.

Fig. 11.42

First of all, consider joint A. Let directions of the forces PAB and PAD be assumed as shown in
Fig. 11.42 (a). We have already found that a horizontal force of 8 kN is acting at A as shown in
Fig. 11.42 (a).
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Resolving the forces vertically and equating the same,

PAB sin 36.9° = 3

∴
3 3

5.0 kN (Compression)
sin 36.9 0.6ABP = = =

°
and now resolving the forces horizontally and equating the same,

PAD = 8 + PAB cos 36.9° = 8 + (5 × 0.8) = 12.0 kN (Tension)

Now consider the joint C. Let the directions of the forces PBC and PCD be assumed as shown
in Fig. 11.42 (b).

Resolving the forces vertically and equating the same,

PBC sin 36.9° = 9

9 9
15 kN (Compression)

sin 36.9 0.6BCP = = =
°

and now resolving the forces horizontally and equating the same,
PCD = PBC cos 36.9° = 15 × 0.8 = 12.0 kN (Tension)

Now consider the joint D. A little consideration will show that the value of the force PBD will
be equal to the load 12 kN (Tension) as shown in Fig 11.42. (c). This will happen as the vertical
components of the forces PAD and PCD will be zero.

Now tabulate the results as given below :

S.No. Member Magnitude of force in kN Nature of force

1 AB   5.0 Compression

2 AD 12.0 Tension

3 BC 15.0 Compression

4 CD 12.0 Tension

5 BD 12.0 Tension

EXAMPLE 11.12. 2 A truss of 8 metres span, is loaded as shown in Fig. 11.43.

Fig. 11.43

Find the forces in the members CD, FD and FE of the truss.
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SOLUTION.  Since the truss is supported on rollers at the right hand support (E), therefore the
reaction at this support will be vertical (because of horizontal support). The reaction at the left hand
support (A) will be the resultant of vertical and horizontal forces and inclined with vertical.

Taking moments about A and equating same,

VE × 8 = (2 W × 2) + (W × 2) = 6 W

∴
6

0.75 ( )
8E
W

V W= = ↑

and *VA = 2 W – 0.75 W = 1.25 W ( ↑ )        and        HA = W (←)

The example may be solved either by the method of joints or method of sections. But we shall
solve it by the method of sections, as one section line can cut the members CD, FD and FE in which
the forces are required to be found out. Now let us pass section (1-1) cutting the truss into two parts
as shown in Fig. 11.44.

Fig. 11.44

Now consider equilibrium of the right part of the truss. Let the directions of the forces PCD,
PFD and PFE be assumed as shown in Fig. 11.44. Taking moments about the joint F and equating the
same,

PCD × 4 sin 45° = (0.75 W × 4) – (W × 2) = W

∴ 0.354 (Compression)
4 sin 45 4 0.707CD

W W
P W= = =

° ×

Similarly, taking moments about the joint E and equating the same,

PFD × 4 cos 45° = W × 2 = 2 W

∴
2 2

0.707 (Tension)
4cos 45 4 0.707FD

W W
P W= = =

° ×
and now taking moments about the joint D and equating the same,

PFE × 2 = 0.75 W × 2 = 1.5 W

∴
1.5

0.75 (Tension)
2FE
W

P W= =

* There is no need of finding out the vertical and horizontal reaction at A, as we are not considering this
part of the truss.
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EXAMPLE 11.13.  Figure 11.45 shows a pin-jointed frame carrying a vertical load at B and
a horizontal load at D

Fig. 11.45

Find the forces in the members DF, HE and DH of the frame.

SOLUTION.  Since the frame is supported on rollers at the right hand support (E), therefore the
reaction at this support will be vertical (because of horizontal support). The reaction at the left hand
support (A) will be the resultant of vertical and horizontal forces and inclined with the vertical.

Taking moments about the joint* A and equating the same,

RE × 8 = (3 × 2) + (4 × 4.5) = 24

∴
24

3kN
8ER = =

From the geometry of the figure, we find that

3
tan 0.75

4
θ = = or θ = 36.9°

4.5
tan 2.25

2
α = = or α = 66°

The example may be solved either by the method of joints or method
of sections. But we shall solve it by the method of joints, as we can resolve
the force in the members at joint E in which the force are required to be
found out. Now consider the point E. Let the directions of the forces PDE and
PHE be assumed as shown in Fig. 11.46.

Resolving the forces horizontally and equating the same,
PDE cos 66° = PHE cos 36.9° = PHE × 0.8

∴
0.8 0.8

1.97
cos 66 0.4062
HE HE

DE HE
P P

P P
× ×= = =

°
and now resolving the forces vertically and equating the same,

PDE sin 66° = PHE sin 36.9° +3

1.97 PHE × 0.9137 = (PHE × 0.6) + 3

1.2 PHE = 3

or
3

2.5 kN (Tension)
1.2HEP = =

and PDE = 1.97 PHE = 1.97 × 2.5 = 4.93 (Compression)

Fig. 11.46

* There are no need of finding out the vertical and horizontal reaction at A, as we are not considering this
part of the truss.
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Now consider the joint H. We have already found out that PHE = 2.5 kN (Tension). It will be
interesting to know that the force PDH will be zero, as there is no other member at joint H to balance
the component of this forces (if any) at right angle to the member GHE.

11.17. Structures With One End Hinged (or Pin-Jointed) and the
other Freely Supported on Rollers and Carrying Inclined
Loads

We have already discussed in the last article that if a structure is hinged at one end, freely
supported on rollers at the other, and carries horizontal loads (with or without vertical loads), the
support reaction at the roller- supported end will be normal to the support. The same principle is used
for structures carrying inclined loads also. In such a case, the support reaction at the hinged end will
be the resultant of :

1. Vertical reaction, which may be found out by subtracting the vertical component of the
support reaction at the roller supported end from the total vertical loads.

2. Horizontal reaction, which may be found out algebraically by adding all the horizontal
loads.

EXAMPLE 11.14.   Figure 11.47 represents a north-light roof truss with wind loads acting on it.

Fig. 11.47

Find graphically, or otherwise, the forces in all the members of the truss Give your results in
a tabulated form.

SOLUTION.  Since the truss is supported on rollers at P, therefore the reaction at this end will be
vertical (because of horizontal support). Moreover, it is hinged at Q, therefore the reaction at this end
will be the resultant of horizontal and vertical forces and inclined with the vertical.

Taking moments about Q and equating the same,
VP × 6.92 = (20 × 3) + (10 × 6) = 120

∴
120

17.3kN
6.92PV = =

We know that total wind loads on the truss
= 10 + 20 + 10 = 40 kN

∴ Horizontal component of wind load,
HQ = 40 cos 60° = 40 × 0.5 = 20 kN (→)

and vertical component of the wind load
= 40 sin 60° = 40 × 0.866 = 34.6 kN ( ↓ )

∴ Vertical reaction at Q,

VQ = 34.6 – 17.3 = 17.3 kN ( ↑ )
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The example may be solved either by the method of joints or method of sections. But we shall
solve it by the method of joints, as we have to find out the forces in all the members of the truss.

First of all, consider the joint P. Let the directions of the forces PPR and PPT be assumed as
shown in Fig 11.48(a). We know that a horizontal force of 20 kN is acting at Q as shown in
Fig. 11.48 (b).

 

Fig. 11.48

Resolving the forces vertically and equating the same,

PPR sin 60° = 17.3

∴   
17.3 17.3

20 kN (Compression)
sin 60 0.866PRP = = =

°

and now resolving the forces horizontally and equating the same,

 PPT = PPR cos 60° = 20 × 0.5 = 10 kN (Tension)

Now consider the joint Q. Let the directions of the forces PSQ and PQT be assumed as shown in
Fig. 11.48 (b). We know that a horizontal force of 20 kN is acting at Q as shown in Fig 11.48 (b).

Resolving the forces vertically and equating the same,

 PSQ sin 30° = 17.3 – 10 cos 30° = 17.3 – (10 × 0.866) = 8.64

∴   
8.64 8.64

17.3 kN (Compression)
sin 30 0.5SQP = = =

°

and now resolving the forces horizontally and equating the same,

PQT = PSQ cos 30° + 20 – 10 sin 30°

= (17.3 × 0.866) + 20 – (10 × 0.5) = 30 kN (Tension)

Fig. 11.49

Now consider the joint S. We have already found out that PSQ = 17.3 kN (Compression). A
little consideration will show that the value of the force PTS will be equal to the force 20 kN
(Compression). Similarly, the value of the force PRS will be equal to PSQ i.e., 17.3 kN (Compression)
as shown in Fig. 11.49 (a).
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Now consider the joint T. Let the directions of the force PRT be assumed as shown in
Fig. 11.49 (b). We have already found out that PST = 20 kN (Compression).

Resolving the forces vertically and equating the same,

PRT sin 60° = PST sin 60° = 20 sin 60°

or PRT = 20 kN (Tension)

Now tabulate the results as given below:

S.No. Member Magnitude of force in kN Nature of force

1 PR 20.0 Compression

2 PT 10.0 Tension

3 SQ 17.3 Compression

4 QT 30.0 Tension

5 ST 20.0 Compression

6 RS 17.3 Compression

7 RT 20.0 Tension

EXAMPLE 11.15. A truss of 12 m span is loaded as shown in Fig 11.50.

Fig. 11.50

Determine the force in the members BD, CE and CD of the truss.

SOLUTION.  Since the truss is supported on rollers on the left end (A), therefore the reaction at
this end will be vertical (because of horizontal support). Moreover, it is hinged at the right hand
support (G), therefore the reaction at this end will be the resultant of horizontal and vertical forces
and will be inclined with the vertical.

Taking * moments about G and equating the same,

VA × 12 =  (10 × 4) (20 × 4 cos 30°) + (10 × 8 cos 30°)

= 40 + (80 × 0.866) + (80 × 0.866) = 178.6

∴
178.6

14.9kN
12AV = =

The example may be solved either by the method of joints or method of sections. But we shall
solve it by the method of sections, as one section line can cut the members BD, CE and CD in which
forces are required to be found out.

* There is no need of finding out the vertical and horizontal reaction at G, as we are not considering this
part of the truss.
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Now let us pass section (1-1) cutting the truss into two parts as shown in Fig 13.51.

Fig. 11.51

Now consider equilibrium of the left part of the truss. Let the directions of the forces PBD, PCE
and PCD be assumed as shown in Fig 11.51. Taking moments about the joint C and equating the same,

PBD × 2 = 14.9 × 4 = 59.6

∴
59.6

29.8 kN (Compression)
2BDP = =

Similarly taking moments about the joint D and equating the same,

PCE × 6 tan 30° = 14.9 × 6 = 89.4

∴
89.4 89.4

25.8kN (Tension)
6 tan 30 6 0.5774CEP = = =

° ×

Now for finding out PCD, we shall take moments about the A (where the other two members
meet). Since there is no force in the lift of the truss (other than the reaction VA, which will have zero
moment about A), therefore the value of PCD will be zero.

NOTE:  The force PCD may also be found out as discussed below :
At joint B, the force in member BC is zero, as there is no other member to balance the force (if any) in the

member BC. Now at joint C, since the force in member BC is zero, therefore the force in member CD is also
equal to zero.

EXAMPLE 11.16.  A truss hinged at A and supported on rollers at D, is loaded as shown in
Fig. 11.52.

Fig. 11.52

Find the forces in the members BC, FC, FE of the truss.
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SOLUTION.  Since the truss is supported on rollers at the right end D, therefore the reaction at
this support will be normal to the support i.e., inclined at 45° with the horizontal. The reaction at A
will be the resultant of horizontal and vertical forces. It will be interesting to know that as the reaction
at D is inclined at 45° with the horizontal, therefore horizontal component (RDH) and vertical compo-
nent (RDV) of this reaction will be equal. Mathematically RDH = RDV.

Taking moments about A and equating the same,

(RDV × 9) – (RDH × 4) = (5 × 3) + (2 × 6)

5 RDH = 27 [∵ RDH = RDV]

27
5.4 kN ( )

5DHR = = ←

and RDV = 5.4 kN ( ↑ )
The example may be solved either by the method of joints or method of sections. But we shall

solve it by the method of sections, as one section line can cut the members BC, FE and FC and in
which forces are required to be found out.

Now let us pass section (1-1) cutting the truss into two parts as shown in Fig. 11.53.

Fig. 11.53

Now consider equilibrium of right part of the truss. Let the directions of the forces PBC and
PFE be assumed as shown in Fig 11.53. Taking moments about the joint F and equating the same,

                           PBC × 4  = (5.4 × 6) – (2 × 3) = 26.4

    ∴
26.4

6.6 kN (Compression)
4BCP = =

Similarly, taking moments about the joint C and equating the same,

PFE × 4 = (5.4 × 4) – (5.4 × 3) = 5.4

∴
5.4

1.35kN (Compression)
4FEP = =

and now taking moments about the joint B and equating the same,

PFC × 2.4 = (PFE × 4) – (2 × 3) + (5.4 × 6) – (5.4 × 4)

= (1.35 × 4) – 6 + 32.4 – 21.6 = 10.2

∴
10.2

4.25 kN (Tension)
2.4FCP = =
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11.18. Miscellaneous Structures
In the previous articles we have been analysing the regular frames subjected to vertical, hori-

zontal and inclined loads. We have been solving such examples by the methods of joints and sections.
But sometimes we come across irregular structures.

Such structures may be analysed in the same way as that for regular structures. The casual look
at such a structure, gives us a feeling that it is complicated problem. But a patient and thoughtful
procedure helps us in solving such problems. The following examples will illustrate this point.

EXAMPLE 11.17. Figure 11.54 shows a  bridge truss of 130 m span subjected to two points
loads.

Fig. 11.54

Determine the forces in the members 1, 2 and 3 of the bridge truss by any suitable method.

SOLUTION.  The whole structure may be considered to consist of two cantilever trusses
supporting an intermediate truss. As a matter of fact, the two point loads acting at the intermediate
truss are transferred to the ends of the cantilever trusses.

Since the two cantilever trusses are symmetrical and the point loads on the intermediate truss
are also symmetrical, therefore each cantilever truss is subjected to a point load as shown in
Fig. 11.55 (a).

Fig. 11.55

Let VB = Vertical reaction at the support B.

Taking moments about the support A and equating the same,
VB × 30 = W × 50 = 50 W
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50 5
( )

30 3B
W W

V = = ↑

and
5 2

– ( )
3 3A
W W

V W= = ↓

First of all, pass section (X-X) cutting the truss into two parts and consider the equilibrium of
the left part of the truss as shown in Fig. 11.55 (b). Now let the directions of the forces P1, P2 and P3
be assumed as shown in Fig 11.55 (b). First of all, let us consider the joint B. A little consideration
will show that the magnitude of the force P4 will be equal  to the reaction VB i.e., 5W/3 (Compres-
sion). This will happen as the vertical components of the horizontal members at B will be zero.

Now resolving the forces vertically and equating the same,

2
2

cos 45
3

W
P × ° =

   or         2
2 1 2

3 cos 45 3 0.707

W W
P = × =

° ×  = 0.943 W  (Tension)

Taking moments of the forces acting on the left part of the truss only about the joint E and
equating the same,

1
2 40

10 20
3 3

W W
P × = × =

∴ 1
40 1 4

(Tension)
3 10 3

= × =
W W

P        Ans.

and now taking moments of the forces acting on the left part of the truss only about the joint F and
equating the same,

3
2

10 30 20
3

W
P W× = × =

∴ 3
20

2 (Compression)
10

= =
W

P W        Ans.

EXAMPLE 11.18.  A pin-jointed frame shown in Fig 11.56 is hinged at A and loaded at D. A
horizontal chain is attached to C and pulled so that AD is horizontal.

Fig. 11.56

Determine the pull in the chain and also the force in each member. Tabulate the results.

SOLUTION.  The example may be solved either by the method of joints or method of sections.
But we shall solve it by the method of joints, as we have to find the force in each member.
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Pull in the chain

Let             P = Pull in the chain.

Taking moments about the joint A and equating the same,
    P × 0.9 = 2 cos 45° × 1.2 = 2 × 0.707 × 1.2 = 1.7

∴   1.7
1.889 kN

0.9
P = =        Ans.

Force in each member
We know that horizontal reaction at A,
                                HA = 1.889 – (2 cos 45°) = 1.889 – (2 × 0.707) = 0.475 kN (→)
and vertical reaction at A,
                                 VA = 2 sin 45° = 2 × 0.707 = 1.414 kN (↑)

Fig. 11.57

First of all, consider the joint A. Let the directions of the forces PAB and PAD be assumed as
shown in Fig 11.57 (a). We have already found out that zthe horizontal and vertical reactions at A are
0.475 kN and 1.414 kN repectively as shown in the figure.

Resolving the forces vertically and equating the same,

                                 PAB sin 30° = 1.414

                                            
1.414 1.414

2.828 kN (Compression)
sin 30 0.5ABP = = =

°
and now resolving the forces horizontally and equating the same,

                                              PAD = PAB cos 30° – 0.475 = (2.828 × 0.866) – 0.475

                                                   = 1.974 kN (Tension)

Now consider the joint D. Let the directions of the forces PBD and PCD be assumed as shown in Fig
13.57 (b). We have already found out that PAD = 1.974 kN (Tension) as shown in the figure.

Resolving the forces horizontally and equating the same,

                                 PBD cos 60° = 1.974 – 2 cos 45° = 1.974 – (2 × 0.707) = 0.56 kN

∴  
0.56 0.56

1.12 kN (Compression)
cos 60 0.5BDP = = =

°
and now resolving the forces vertically and equating the same,
                                             PCD = PBD sin 60° + 2 sin 45°

                                                    = (1.12 × 0.866) + (2 × 0.707) = 2.384  kN (Tension)

Now consider the triangle BCD. From B, draw BE perpendicular to CD. Let the direction of
PBC be assumed as shown in Fig 11.57 (c).
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From the geometry of this triangle, we find that

BD = AD sin 30° = 1.2 × 0.5 = 0.6 m

and BE = BD sin 30° = 0.6 × 0.5 = 0.3 m

∴ DE = BD cos 30° = 0.6 × 0.866 = 0.52 m

and CE = DC – DE = 0.9 – 0.52 = 0.38 m

∴ 0.3
tan 0.7895

0.38

BE
BCE

CE
∠ = = =

or ∠BCE = 38.3°

Resolving the forces horizontally at C and equating the same,

PBC sin 38.3° = 1.889

∴
1.889 1.889

3.049 kN (Compression)
sin 38.3 0.6196BCP = = =

°
Now tabulate the results as given below :

S.No. Member Magnitude of force in kN Nature of force

1 AB 2.828 Compression

2 AD 1.974 Tension

3 BD 1.12 Compression

4 CD 2.384 Tension

5 BC 3.049 Compression

EXAMPLE 11.19. The truss shown in the Fig. 11.58 is made up of three equilateral tri-
angles loaded at each of the lower panel pains.

Fig. 11.58

It is supported at the wall on the right hand side and by a cable on the left as shown. Deter-
mine (a) the tension in the cable (b) the reaction at the wall and (c) the nature and magnitude of
the force in each bar.

SOLUTION.  The example may be solved either by the method of joints or method of sections.
But we shall solve it by the method of joints, as we have to find out the forces in all the members of
the truss.
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(a) Tension in the cable

Let T = Tension in the cable and
a = Length of each side of the equilateral triangle.

Taking moments about the joint 5 and equating the same,

(T cos 60°) × 2a = (1 × 1.5 a) + (1 × 0.5 a)

(T × 0.5) 2a = 2a

∴ T = 2 kN       Ans.
(b) Nature and magnitude of the force in each bar

Fig. 11.59

First of all consider the joint 1. We have already found out that tension in the cable is 2 kN as
shown in the figure. Let the directions of P1–2 and P1–4 be assumed as shown in Fig. 11.59 (a).
Resolving the forces vertically and equating the same,

P1–2 sin 60° = 2 sin 30°

∴ 1– 2
2sin 30 2 0.5

1.154 kN (Tension)
sin 60 0.866

P
° ×= = =

°
and now resolving the forces horizontally and equating the same,

P1–4 = 2 cos 30° + 1.154 cos 60° kN

= (2 × 0.866) + (1.154 × 0.5) = 2.309 kN (Compression)

Now consider the joint 2. We have already found out that the force in member 1-2 (i.e. P1–2) is
1.54 kN (Tension). Let the directions of the forces P2–4 and P2–3 be assumed as shown in Fig 11.59
(b). Resolving the forces vertically and equating the same,

P2–4 sin 60° = 1 – 1.154 sin 60° = 1 – (1.154 × 0.866) = 0

∴ P2–4 = 0

and now resolving the forces horizontally and equating the same,

P2–3 = 1.154 cos 60° = 1.154 × 0.5 = 0.577 kN (Tension)

Now consider the joint 4. A little consideration will show that the force P3–4 will be zero. This

will happen as the force P2–4 is zero and the vertical components of the forces P1–4 and P4–5 are also
zero. Moreover, the force P4–5 will be equal to the force P1–4 i.e., 2.309 kN (Compression). This will

happen as the forces P2–4 and P2–5 (being zero) will have their vertical components as zero.
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Now consider the joint 3. Let the direction of the force P3–5 be assumed as shown in Fig. 11.60
(b). We have already found out that the force P2–3 is 0.577 kN (Tension) and force P3–4 is zero.

Fig. 11.60

Resolving the forces vertically and equating the same,

P3–5 cos 30° = 1

∴ 3–5
1 1

1.154 kN (Tension)
cos 30 0.866

P = = =
°

Now tabulate the results as given below :

S.No. Member Magnitude of force in kN Nature of force

1 1-2 (AE) 1.154 Tension
2 1-4 (BE) 2.309 Compression
3 2-4 (EF) 0 —
4 2-3 (FD) 0.577 Tension
5 3-4 (FG) 0 —
6 4-5 (BG) 2.309 Compression
7 3-5 (GD) 1.154 Tension

(C) Reaction at the wall
We know that the reaction at the wall will be the resultant of the forces P4–5 (i.e., 2.309 kN

Compression) and P3–5 (i.e., 1.154 kN Tension). This can be easily found out by the parallelogram
law of forces i.e.,

2 2(1.154) (2.309) 2 1.154 2.309 cos120R = + + × × °

1.332 5.331 5.329(– 0.5) 2kN= + + =        Ans.

EXAMPLE 11.20.  A frame ABCD is hinged at A and supported on rollers at D as shown
in Fig. 11.61.

Fig. 11.61

Determine the forces in the member AB, CD and EF,.
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SOLUTION.  The example may be solved either by the method of joints or method of sections.
But we shall solve it by the method of sections, as we have to determine forces in three members of
the frame only.

First of all pass section (1-1) cutting the truss
through the members AB, EF and CD as shown in Fig
11.62. Now consider equilibrium of the upper por-
tion of the frame. Let the directions of the forces PAB
and PCD be assumed as shown in Fig 11.62. Now con-
sider the joint F. We know that horizontal compo-
nent of 15 kN load is zero. Therefore force in mem-
ber EF is also zero.       Ans.

Now taking moments of the forces acting on
the upper portion of the frame about the joint A and
equating the same,

PCD × 3 = 15 × 2 = 30

or
30

10 kN
3CDP = =        Ans.

and now taking moments of the forces about the joint D and equating the same,
PAB × 3 = 15 × 1 = 15

or
15

5kN
3ABP = =        Ans.

EXAMPLE 11.21. A framed structure of 6 m span is carrying point loads as shown in
Fig 11.63.

Fig. 11.63

Find by any method the forces in the members AC, BD and FG of the structure.

SOLUTION.  First of all, from D draw DK perpendicular to AB as shown in Fig 11.63. From the
geometry of the figure, we find that

      AD = AB cos 30° = 6 × 0.866 = 5.196 m

and       DK = AD sin 30° = 5.196 × 0.5 = 2.598 m

Similarly       AK = AD cos 30° = 5.196 × 0.866 = 4.5 m

 ∴    
2.598

tan 0.7423
3.5

DK

EK
α = = = or α = 36.6°

Fig. 11.62
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and      
2.598

tan 1.0392
2.5

DK

FK
β = = = or β = 46.1°

Taking moments about B and equating the same,

                 RA × 6 = (P × 5) + (2 P × 4) + (P × 2) + (2 P × 1) = 17 P

∴    17
2.83 .

6A
P

R P= =

Let the directions of the various forces be assumed as shown in Fig 11.64. Now resolving the
forces vertically at E and equating the same,

Fig. 11.64

PED sin 36.6° = P

 ∴   1.68 (Tension)
sin 36.6 0.5960ED

P P
P P= = =

°

and now resolving the forces vertically at F and equating the same,

               PFD sin 46.1° = 2 P

∴                                          
2 2

2.78 (Tension)
sin 46.1 0.7206FD

P P
P P= = =

°

Similarly, resolving the forces vertically at G and equating the same,

        PCG sin 46.1° = P

∴                                          1.39 (Tension) 
sin 46.1 0.7206CG

P P
P P= = =

°

and now resolving the forces vertically at H and equating the same,

PCH sin 36.6° = 2 P

∴
2 2

3.36 (Tension)
sin 36.6 0.5960CH

P P
P P= = =

°
From the geometry of the figure, we also find that

∠EDB = ∠ACH = 180° – (36.6° + 60°) = 83.4°
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and ∠FDB = ∠ACG = 180° – (46.1° + 60°) = 73.9°

Now at D, resolving the forces along BD and equating the same,

PBD = PED cos 83.4° + PFD cos 73.9°

....(The component of force PAD about BD is zero)

= (1.68 P × 0.1146) + (2.78 P × 0.2773)

= 0.963 P (Compression)       Ans.

and at C resolving the forces along AC and equating the same,

PAC = PCH cos 83.4° + PCG cos 73.9°

....(The component of force PBC about AC is zero)

= (3.36 P × 0.1146) + (1.39 P × 0.2773)

= 0.772 P (Compression)       Ans.

Taking moments about B and equating the same,

RA × 6 = (P × 5) + (2 P × 4) + (P × 2) + (2 P × 1) = 17 P

17
2.83

6A
P

R P= =

Fig. 11.65

Now pass section (1-1) cutting the truss into two parts as shown in Fig 11.65. Let us extend the
line AC and through D draw DL perpendicular to AC. From the geometry of the figure, we find that

DL =AD sin 30°   = 5.196 × 0.5  = 2.598 m

            Taking moments of the forces in the left part of the truss about D and equating the same,

2.83 P × 4.5 =(0.772 P × 2.598) + (P × 3.5)

+ (2 P × 2.5) + (PFG × 2.598)

12.74 P =10.5 P + (PFG × 2.598)

  ∴ 2.598 PIG = 12.74 P – 10.5 P  = 2.24 P

          or  PFG = 
2.24

2.598

P
= 0.862 P (Tension)       Ans.
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EXERCISE 11.3

1. A truss shown in Fig. 11.66 is subjected to two points loads at B and F.  Find the forces in all the
members of the truss and tabulate the results.

Ans. AB = 1.0 kN (Compression)

AF = 1.5 kN (Tension)

AE  = 3.0 kN (Compression)

EF = 0

BF = 1.25 kN (Tension)

BC = 2.25 kN (Compression)

DF = 3.75 kN (Tension)

CD = 2.25 kN (Compression)

CF = 0

2. A cantilever braced truss supported on rollers at E and hinged at A is loaded as shown in
Fig 11.67. Determine graphically or otherwise, the forces in the members of the truss, also
determine the reactions at A and E.

Ans. BC = 7.1 kN (Compression)

CD = 5.0 kN (Tension)

AB = 5.0 kN (Compression)

BD = 5.0 kN (Tension)

AD = 14.1 kN (Tension)

ED = 15.0 kN (Compression)

RE = 15 kN

RE = 18 kN

NOTE: Since the truss is freely supported on rollers at E, therefore the reaction at this support
will be horizontal (because of vertical support).

3. A truss of 5 m span and 2.5 m height is subjected to wind load as shown in Fig. 11.68. Find by
any method the magnitude of forces in all the members of the truss. Also state their nature.

Ans. AB = 10.0 kN (Compression)

AF = 28.28 kN (Tension)

DE = 20.0 kN (Compression)

EF = 14.14 kN (Tension)

BF = 20.0 kN (Compression)

BC = 10.0 kN (Compression)

CF = 14.11 kN (Tension)

CD = 20.0 kN (Compression)

DF = 0

Fig. 11.67

Fig. 11.68

Fig. 11.66
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4. A truss 15 m long is subjected to a point load of 10 kN as shown in Fig. 11.69. Find the forces
in the members 1, 2 and 3 of the truss.

Ans. 1 = 40 kN (Compression)

2 = 10 kN (Compression)

3 = 10 kN (Compression)

Hint. Pass vertical sections cutting the members 1, 2 and 3 and take moments about the
joint containing 100 kN load. Each time, all the members (except 1, 2 and 3) pass
through the joint about which moments are taken.

QUESTIONS

1. What is a ‘frame’ ? Discuss its classification.

2. State clearly the difference between a perfect frame and an imperfect frame.
3. How would you distinguish between a deficient frame and a redundant frame ?
4. What are the assumptions made, while finding out the forces in the various members of a

framed structure ?
5. Name the methods, which are employed, for finding out the forces in a frame.
6. What is the difference between a simply supported frame and a cantilever frame ?

Discuss the method of finding out reactions in both the cases.

OBJECTIVE TYPE QUESTIONS

1. A framed structure is perfect, if the number of members are .....(2j – 3), where j is the
number of joints.

(a) less than (b) equal to (c) greater than (d) either (a) or (c)

2. A framed structure is imperfect, if the number of members are .....(2j – 3), where j is the
number of joints.

(a) less than (b) equal to (c) greater than (d) either (a) or (c)

3. A redundant frame is also called ......frame

(a) perfect (b) imperfect (c) deficient (d) none of these

4. A framed structure of a triangular shape is

(a) perfect (b) imperfect (c) deficient (d) redundant

5. In a cantilever truss, it is very essential to find out the reactions before analyzing it.

(a) agree (b) disagree

ANSWERS

1.  (b) 2.  (d) 3.  (b) 4.  (a) 5.  (b)

Fig. 11.69
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12.1. Introduction
In the previous chapter, we have discussed

the analytical methods for determining the forces
in perfect frames. We have seen that the method
of joints involves a long process, whereas the
method of sections is a tedious one. Moreover,
there is a possibility of committing some
mathematical mistake, while finding out the
forces in the various members of truss. The
graphical method, for determining the forces in
the members of a perfect frame, is a simple and
comparatively fool-proof method. The graphical
solution of a frame is done in the following steps:

1. Construction of space diagram,
2. Construction of vector diagram and
3. Preparation of the table.

12C h a p t e r
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12.2. Construction of Space Diagram

 

It means the construction of a diagram of the given frame to a suitable linear scale, alongwith
the loads it carries. The magnitude of support reactions is also found out and shown in the space
diagram. Now name the various members and forces according to Bow’s notations as shown in
Fig. 12.1 (a).

In the space diagram of the truss ABC shown in Fig. 12.1 (a), the members AB, BC and CA are
represented by SR (or RS), SQ (or QS) and PS (or SP) respectively. Similarly, load at C and reactions
at A and B are represented by PQ, RP and QR respectively.

NOTE: The reactions are generally found out by analytical method as discussed in the last
chapter.

12.3. Construction of Vector Diagram
After drawing the space diagram and naming the various members of the frame according to

Bow’s notations, as discussed in the last article, the next step is the construction of vector diagram. It
is done in the following steps :

1. Select a suitable point p and draw pq parallel to PQ (i.e., vertically downwards) and equal
to the load W at C to some suitable scale.

2. Now cut off qr parallel to QR (i.e., vertically upwards) equal to the reaction RB to the
scale.

3. Similarly, cut off rp parallel to RP (i.e., vertically upwards) equal to the reaction RA to the
scale. Thus we see that in the space diagram, we started from P and returned to P after
going for P-Q-R-P (i.e., considering the loads and reactions only).

4. Now through p draw a line ps parallel to PS and throgh r draw rs parallel to RS, meeting the
first line at s as shown in Fig. 12.1 (b). Thus psrp is the vector diagram for the joint (A).

5. Similarly, draw the vector diagram qrsq for the joint (B) and pqsp is the vector diagram
for the joint (C) as shown in Fig. 12.1 (b).

NOTES: 1. While drawing the vector diagram, for a joint, care should be taken that the joint under consideration
does not contain more than two members whose forces are unknown. if the joint, under consideration
contains more than two such members whose forces are unknown, then some other joint which does
not contain more than two unknown force members, should be considered for drawing the vector
diagram.

2. If at any stage (which normally does not arise in a perfect frame) the work of drawing the vector
diagram is held up at some joint, it will be then necessary to determine the force at such a
 joint by some other method i.e., method of sections or method of joints.

Fig. 12.1
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12.4. Force Table
After drawing the vector diagram, the next step is to measure the various sides of the vector

diagram and tabulate the forces in the members of the frame. For the preparation of the table, we
require :

1. Magnitude of forces, and 2. Nature of forces.

12.5. Magnitude of Force
Measure all the sides of the vector diagram, whose lengths will give the forces in the

corresponding members of the frame to the scale e.g., the length ps of the vector diagram will give the
force in the member PS of the frame to the scale. Similarly, the length sr will give the force in the
member SR to the scale and so on as shown in Fig. 12.2. (b).

If any two points in the vector diagram coincide in the each other, then force in the member
represented by the two letters will be zero.

Fig. 12.2

12.6. Nature of Force
The nature of forces in the various members of a frame is determined by the following steps:

1. In the space diagram, go round a joint in a clockwise direction and note the order of the
two letters by which the members are named e.g., in Fig. 12.2 (a) the members at joint (A)
are RP, PS and SR. Similarly, the members at joint (B) are QR, RS and SQ. And the members
at joint (C) are PQ, QS and SP.

2. Now consider a joint of the space diagram and note the order of the letters of all the
members (as stated above). Move on the vector diagram in the order of the letters noted
on the space diagram.

3. Make the arrows on the members of the space diagram, near the joint, under consideration,
which should show the direction of movement on the vector diagram. Put another arrow in
the opposite direction on the other end of the member, so as to indicate the equilibrium of
the method under the action of the internal stress.

4. Similarly, go round all the joints and put arrows.

5. Since these arrows indicates the direction of the internal forces only, thus the direction of
the actual force in the member will be in opposite direction of the arrows, e.g., a member
with arrows pointing outwards i.e., towards the joints [as member PS and SQ of Fig. 12.2
(a)] will be in compression; whereas a member with arrow pointing inwards i.e., away from
the joints [as member SR in Fig. 12.2 (b)] will be in tension.
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EXAMPLE 12.1.      The truss ABC shown in Fig. 12.3 has a span of 5 metres. It is carrying a
load of 10 kN at its apex.

Fig. 12.3

Find the forces in the members AB, AC and BC

SOLUTION*. From the geometry of the truss, we find that the load of 10 kN is acting at a
distance of 1.25 m from the left hand support i.e., B and 3.75 m from C. Taking moments about B and
equating the same,

RC × 5 = 10 × 1.25 = 12.5

∴
12.5

2.5 kN
5CR = =

and RB = 10 – 2.5 = 7.5 kN

†First of all, draw the space diagram for the truss alongwith the load at its apex and the reac-
tion RB and RC as shown in Fig. 12.4 (b). Name the members AB, BC and AC according to Bow’s
notations as PS, RS and SQ respectively. Now draw the vector diagram as shown in Fig. 12.4 (b) and
as discussed below :

Fig. 12.4

1. Select some suitable point p and draw a vertical line pq equal to 10 kN to some suitable
scale to represent the load PQ at joint A.

2. Now cut off qr equal to 2.5 kN to the scale to represent the reaction RC at C. This rp will
represent the reaction RB to the scale.

3. Now draw the vector diagram for the joint B. For doing so, through p draw ps parallel to
PS and through r draw rs parallel to RS meeting the first line at s. Now psrp is the vector
diagram for the joint B, whose directions follow p-s; s-r and r-p.

* We have already solved this example analylically in the last chapter.
† As a matter of fact, this is the advantage of graphical method, that the previous work is checked. If at any

stage some error is noticed, the complete vector diagram should be drawn once again.
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4. Similarly, draw vector diagram for the joint C, whose directions follow q-r; r-s and s-q
shown Fig.12.4 (a) and (b). Now check the vector diagram for the joint A, whose
 directions follow p-q ; q-s and s-p.

Now measuring† the various sides of the vector diagram and keeping due note of the
directions of the arrow heads, the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 AB (PS) 8.7 Compression

2 BC (RS) 4.3 Tension

3 AC (SQ) 5.0 Compression

EXAMPLE 12.2.   A truss of span 10 metres is loaded as shown in Fig. 12.5.

Fig. 12.5

Find the reactions and forces in the members of  the truss.
SOLUTION.  From the geometry of the figure, we find the load 5 kN is acting at a distance of 2.5

metres and the load of 6 kN at a distance 6.25 metres from the left hand support.

Fig. 12.6
Taking moments about the left hand support and equating the same.

RB × 10 = (5 × 2.5) + (6 × 6.25) = 50

∴
50

5 kN
10BR = =

and RA = (5 + 6) – 5 = 6 kN

First of all, draw space diagram for the truss alongwith loads and reactions as shown in Fig.
12.6 (a). Name the various members of the truss and forces according to Bow’s notations.

† Sometimes, there is a slight variation in the results obtained by the analytical method and graphical
method. The values obtained by graphical method are taken to be correct, if they agree upto the first
decimal point with the values obtained by analytical method, e.g., 8.66 (Analytical) = 8.7  (graphical).
Similarly, 4.32 (Analytical) = 4.3 (graphical).
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Now draw vector diagram as shown in Fig. 12.6 (b) and as discussed below :
1. Select some suitable point 1 and draw a vertical line 1-2 equal to 5 kN to some suitable

scale to represent the load 5 kN at C. Similarly, draw 2-3 equal to 6 kN to the scale to
represent the load 6 kN at D.

2. Now cut off 3-4 equal to 5 kN to the scale to represent the reaction RB. Thus 4-1 will
represent the reaction RA to the scale.

3. Now draw vector diagram for the joint A. For doing so through 1, draw 1-5 parallel to AC
and through 4, draw 4-5 parallel to AE meeting the first line at 5. Now 1-5-4-1  is the
vector diagram for joint A, whose directions follow 1-5, 5-4 and 4-1. Similarly, draw
vector diagrams for the joints B, C, D and E as shown in Fig. 12.6 (b).

Now measuring the various sides of the vector diagram, the results are tabulated here :

S. No. Member Magnitude of force in kN Nature of force

1 AC (1-5) 6.9 Compression
2 CD (2-6) 7.0 Compression
3 BD (3-7) 10.0 Compression
4 AE (4-5) 3.5 Tension
5 CE (5-6) 5.2 Tension
6 DE (6-7) 5.2 Compression
7 BE (4-7) 8.7 Tension

EXAMPLE 12.3. A king post truss of 8 m span is loaded as shown in Fig. 12.7.

Fig. 12.7

Find the forces in each member of the truss and tabulate the results.

SOLUTION.  Since the truss is symmetrical in geometry and loading, therefore reaction at the left
hand support,

1 2 2 2 1
4 kN

2A ER R
+ + + += = =

First of all, draw the space diagram and name the members and forces according to Bow’s
notations as shown in Fig. 12.8 (a).

 

Fig. 12.8
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Now draw the vector diagram as shown in Fig. 12.8 (b). Measuring various sides of the vector
diagram, the result are tabulated here :

S. No. Member Magnitude of force in kN Nature of force

1 AB, DE 6.0 Compression

2 AF, EH 5.2 Tension

3 FG, GH 5.2 Tension

4 BF, DH 0 —

5 BG, DG 2.0 Compression

6 BC, CD 4.0 Compression

7 CG 2.0 Tension

EXAMPLE 12.4. A horizontal link AB is divided into three equal parts AC, CD and DB
and above  each, an equilateral triangle is drawn. The apices E, F and G of the triangles on AC,
CD and DB respectively are also jointed.

The figure is then represented by centre lines, a framework simply at its ends A and B.
Vertical loads each equal to W are carried at E and C as shown in Fig. 12.9.

Fig. 12.9

Find the nature and magnitude of  forces in each of the member and write them upon the
members of your diagram or in a table.

SOLUTION. Taking moments about A and equating the same,

1 3
3 1

2 2BR W W W× = × + × =

∴ 3 1

2 3 2B
W

R W= × × =

and
3

( ) –
2 2A

W W
R W W

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

First of all, draw the space diagram for the truss and name the various members according to
Bow’s notations as shown in Fig. 12.10 (a).

Now draw the vector diagram as shown in Fig. 12.10 (b). Measuring the various sides of the
vector diagram the results are tabulated here :



260 � Strength of Materials

Fig. 12.10

    S.No Member Force Nature

1 AE 1.7 W Compression

2 EF 1.2 W Compression
3 FG 0.6 W Compression
4 GB 0.6 W Compression
5 AC 0.9 W Tension
6 CD 0.9 W Tension
7 DB 0.3 W Tension
8 EC 0.6 W Tension
9 FC 0.6 W Tension

10 FD 0.6 W Compression

11 GD 0.6 W Tension

EXAMPLE 12.5. A truss of 32 metres span is loaded as shown in Fig. 12.11.

Fig. 12.11

Find graphically, or otherwise, the magnitude and nature of forces in all the members of the
truss.

SOLUTION.  Taking moments about the left end support and equating the same,
  ∴   R5 × 8 = (1 × 2) + (4 × 4) + (2 × 6) + (3 × 2) = 36

and 5
36

4.5 kN
8

R = =

                                                   R1 = (1 + 4 + 2 + 3) – 4.5 = 5.5 kN
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First of all, draw the space diagram and name all the members and forces according to Bow’s
notations as shown in Fig. 12.12 (a).

Fig. 12.12

Now draw the vector diagram as shown in Fig. 12.12 (b). Measuring the various sides of the
vector diagram, the results are tabulated here :

S. No. Member Magnitude of force in kN Nature of force

1 1-2 (AG) 5.5 Compression

2 2-3 (BI) 7.0 Compression

3 3-4 (CJ) 7.0 Compression

4 4-5 (DL) 4.5 Compression

5 1-6 (FG) 7.8 Tension

6 2-6 (GH) 2.5 Compression

7 6-7 (EH) 5.5 Tension

8 2-7 (HI) 2.1 Tension

9 3-7 (IJ) 4.0 Compression

10 4-7 (JK) 3.5 Tension

11 7-8 (EK) 4.5 Tension

12 4-8 (KL) 4.5 Compression

13 5-8 (EL) 6.4 Tension

EXAMPLE 12.6. Find graphically or otherwise, the magnitude and nature of the forces in
the truss shown in Fig. 12.13.

Fig. 12.13

Also Indicate the results in a tabular form.
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SOLUTION. Taking moments about A and equating the same,

RD × 15 = (3 × 5) + (6 × 12.5) = 90

∴       
90

6 kN
15DR = =

and   RA = (3 + 6) – 6 = 3 kN

First of all, draw the space diagram and name all the members of the truss and forces according
to Bow’s notations as shown in Fig. 12.14 (a).

Fig. 12.14

Now draw vector diagram as shown in Fig. 12.14 (b). Measuring various sides of the vector
diagram, the results are tabulated here :

S. No. Member Magnitude of force in kN Nature of force

1 AG (1-5) 3.5 Compression

2 FG (1-6) 3.2 Compression

3 FE (1-8) 3.2 Compression

4 ED (2-9) 7.0 Compression

5 AB (4-5) 1.7 Tension

6 BG (5-6) 3.0 Tension

7 BF (6-7) 0.5 Tension

8 BC (3-7) 3.0 Tension

9 CF (7-8) 0.5 Tension

10 CE (8-9) 0.5 Compression

11 CD (3-9) 3.5 Tension
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EXAMPLE 12.7. A framed structure of 6 m span is carrying a central point load of 10 kN
as shown in Fig 12.15.

Fig. 12.15

Find by any method the magnitude and nature of forces in all members of the sturcture.

*SOLUTION.  Since the structure is symmetrical in geometry and loading, therefore the reaction
at A,

10
5 kN

2A BR R= = =

First of all, draw the space diagram and name the members and forces according to Bow’s
notations as shown in Fig. 12.16 (a).

Fig. 12.16

Now draw the vector diagarm as shown in Fig. 12.16 (b). Measuring the various sides of the
vector diagram, the results are tabulated here :

S. No. Member Magnitude of force in kN Nature of force

1 AC, CB 11.2 Compression

2 AD, DB 7.1 Tension

3 CD 10.0 Tension

* We have already solved this example analytically in the last chapter.
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EXAMPLE 12.8. Construct a vector diagram for the truss shown in Fig. 12.17.

Fig. 12.17

Determine the forces in all the members of this truss.
SOLUTION.  Since the truss is symmetrical in geometry and loading, therefore the reaction at the

left hand support,

1 2
6

3
2

P
R R P= = =

First of all, draw the space diagram and name the members and forces according to Bow’s
notations as shown in Fig. 12.18 (a).

Fig. 12.18

Now draw the vector (i.e., stress) diagram as shown in Fig. 12.18 (b). Measuring the various
sides of the vector diagram, the results are tabulated here :
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Fig. 12.19

S.No. Member Magnitude of force in terms of P Nature of force (stress)

1 BJ, GS 6.73 Compression

2 JI, IS 6.25 Tension

3 JK, RS 1.00 Compression

4 CK, RF 6.73 Compression

5 KL, QR 1.60 Tension

6 LI, IQ 1.00 Tension

7 LM, PQ 1.50 Compression

8 DM, EP 5.40 Compression

9 MN, OP 1.95 Tension

10 NI, IO 4.75 Tension

11 NO 0 —

EXERCISE 12.1

1. Figure 12.19, shows a warren girder consisting of seven members each of 3 m length freely
supported at its end points. The girder is loaded at B and C as shown. Find the forces in all the
members of the girder, indicating whether the force is compressive or tensile.

Ans. AB = 2.9 kN (Compression)

AE = 1.4 kN (Tension)

CD = 4.0 kN (Compression)

DE = 2.0 kN (Tension)

BE = 0.6 kN (Tension)

BC = 1.7 kN (Compression)

CE = 0.6 kN (Compression)
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2. Figure 12.20 shows a framed structure of 5 m span. The structure carries vertical loads as
shown in the figure. Find the forces in the members of the structure and tabulate the results.

Ans. AB = 1.2 kN (Compression)

BC = 0.6 kN (Compression)

CD = 2.0 kN (Compression)

AC = 0.5 kN (Compression)

AD = 1.0 kN (Tension)

3. A pin-jointed frame is supported at F and E and loaded as shown in Fig. 12.21. Find the forces
in all the members of the frame and state in each case, whether the member is in tension or
compression.

Ans. AF = 16.7 kN (Tension)

FE = 8.0 kN (Tension)

ED = 10.0 kN (Tenison)

AB = 13.3 kN (Compression)

BF = 3.0 kN (Tension)

BC = 13.3 kN (Compression)

FC = 6.7 kN (Tension)

EC = 1.0 kN (Compression)

CD = 8.0 kN (Compression)

4. A pin-jointed truss is subjected to three points loads at A, B and C as shown in Fig. 12.22. Find
by any method, the forces in all the members of the truss.

Ans. AB = 1.25 kN (Tension)

BC = 1.6 kN (Compression)

CD = 2.0 kN (Compression)

AF = 0.75 kN (Compression)

BF = 4.8 kN (Compression)

FE = 0.75 kN (Compression)

BE = 3.0 kN (Tension)

CE = 1.2 kN (Tension)

ED = 1.6 kN (Tension)

12.7. Cantilever Trusses
We have already discussed that a truss which is connected to walls or columns etc., at one end,

and free at the other is known as a cantilever truss. In the previous articles, we have noticed that the
determination of the support reactions was absolutely necessary to draw a vector diagram.

But in the case of cantilever trusses, determination of support is not essential, as we can start
the construction of vector diagram from the free end. In fact this procedure, actually gives us the
reactions at the connected ends of the truss.

Fig. 12.20

Fig. 12.21

Fig. 12.22



Chapter 12 : Analysis of Perfect Frames (Graphical Method) � 267

EXAMPLE 12.9. Figure 12.23 shows a cantilever truss with two vertical loads of 1 kN each.

 

Fig. 12.23

Find the reactions and forces in all the members of the truss.

SOLUTION.  First of all, draw the space diagram and name all the members and forces according
to Bow’s notations as shown in Fig. 12.24 (a).

Fig. 12.24
Now draw the vector diagram, starting from the free joint (3) as shown in Fig. 13.24 (b).

Measuring the various sides of the vector diagram, the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 1-2 (AD) 2.3 Tension

2 2-3 (BF) 0.6 Tension

3 3-4 (CF) 1.15 Compression

4 2-4 (EF) 1.15 Tension

5 4-5 (CE) 1.15 Compression

6 2-5 (DE) 2.3 Compression

Reactions

Upper R1 (ad) = 2.3 kN;

Lower R5 (cd) = 3.05 kN       Ans.
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EXAMPLE 12.10.  Figure 13.25 shows a cantilever truss having a span of 4.5 metres. It is
hinged at two joints to a wall and is loaded as shown.

 

Fig. 12.25

Find the reactions and forces in the members of the truss.

SOLUTION.  First of all, draw the space diagram and name all the members and forces according
to Bow’s notations as shown in Fig. 12.26 (a).

Fig. 12.26

Now draw the vector diagram as shown in Fig. 12.26 (b) starting from the joint D. Measuring
various sides of the vector diagram the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 AB (1-5) 4750 Tension

2 BC (2-7) 3160 Tension

3 CD (3-9) 1580 Tension

4 DE (4-9) 1500 Compression

5 CE (8-9) 0 —

6 EF (4-8) 1500 Compression

7 CF (7-8) 1580 Compression

8 BF (6-7) 500 Tension

9 FG (4-6) 3080 Compression

10 BG (5-6) 1800 Compression

Reaction

Upper RA (1-5) = 4750 kN

Lower RG (4-5) = 4600 kN
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EXAMPLE 12.11. A truss shown in Fig. 12.27 is carrying point load of 5 kN at E.

Fig. 12.27

Find graphically, or otherwise, the forces in all the members of the truss and indicate results
in a tabular form.

SOLUTION.  First of all, draw the space diagram and name all the various members according to
Bow’s notations as shown in Fig. 12.28 (a).

Fig. 12.28

Now draw the vector diagram as shown in Fig. 12.28 (b), starting from the joint E. Measuring
the various sides of the vector diagram, the results are tabulated here :

No. Member Magnitude of force in kN Nature of force

1 CE (1-3) 10 Tension

2 DE (2-3) 11.2 Compression

3 CD (4-3) 5.0 Tension

4 BD (2-4) 10 Compression

5 BC (4-5) 0 —

6 AC (1-5) 11.2 Tension
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EXAMPLE 12.12.  A cantilever truss shown in Fig. 12.29 is carrying a point load of 15 kN .

]

Fig. 12.29

Find the forces in all the members of the truss. All the inclined members are at 45° with the
horizontal.

*SOLUTION.  First of all, draw the space diagram and name all the members and forces
according to Bow’s notations as shown in Fig. 12.30 (a).

Fig. 12.30

Now draw the vector diagram as shown in Fig. 12.30 (b), starting from the joint J, Measuring
the various sides of the vector diagram, the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 GJ (1-7) 10.6 Tension
2 HJ (2-7) 10.6 Compression
3 DG (1-6) 15.0 Tension
4 FG (6-7) 10.6 Compression
5 EH (2-8) 15.0 Compression
6 FH (8-7) 10.6 Tension
7 EF (5-8) 10.6 Compression
8 DF (5-6) 10.6 Tension
9 DA (1-4) 21.2 Tension
10 BD (4-5) 10.6 Tension
11 CE (2-3) 21.2 Compression
12 BE (3-5) 10.6 Compression

*  We have already solved this example analytically in the last chapter.
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EXAMPLE 12.13. A frame is supporting two loads of 5 kN each at D and E as shown in
Fig. 14.31.

Fig. 12.31

Find the forces in the members of the frame and the reactions at A and B.

SOLUTION.  First of all, draw the space diagram for the frame and name the members according
to Bow’s notations as shown in Fig. 12.31 (a).

Fig. 12.32

Now draw the vector diagram for the frame as shown in Fig. 12.32 (b), starting from the joint
E. Measuring the various sides of the vector diagram, the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 EF 11.2 Compression

2 ED 10.0 Tension

3 DF 5.0 Compression

4 CD 10.6 Tension

5 CF 5.6 Tension

6 FA 16.75 Compression

7 AC 17.5 Compression

8 CB 21.2 Tension

Reactions at A = RA (3-4) = 29.2 kN       Ans.

and reaction at B = RB (1-4) = 21.2 kN       Ans.
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Fig. 12.35

EXAMPLE 12.14. A cantilever truss of span 2l is carrying loads as shown in Fig. 14.33.

Fig. 12.33

Determine graphically, or otherwise forces in all the members of the truss.
SOLUTION.  First of all, draw the space diagram, and name all the members according to Bow’s

notations as shown in Fig. 12.34 (a).

Fig. 12.34

Now draw the vector diagram as shown in Fig. 12.34 (b). Measuring the various sides of
the vector diagram, the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 HB 1.2 Tension
2 CH 0.6 Compression
3 GH 1.2 Compression
4 AG 0.6 Tension
5 GF 2.3 Tension
6 DF 2.3 Compression
7 EF 2.3 Compression
8 AE 2.9 Tension

EXERCISE 12.2

1. Determine the forces in the various members of a pin-jointed frame shown in Fig. 12.35.
Tabulate the results stating whether they are in tension or compression.

Ans. AB = 2.0 kN (Tension)

BC = 2.0 kN (Tension)

CD = 2.5 kN (Compression)

DE = 3.75 kN (Compression)

BD = 1.5 kN (Compression)

AD = 1.72 kN (Tension)
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2. Find the forces in all the members of a cantilever truss shown in Fig. 12.36.

Ans. BF = 8.4 kN (Tension)

FC = 6.7 kN (Compression)

EF = 0

AD = 12.6 kN (Tension)

DE = 4.3 kN (Compression)

EC = 6.7 kN (Tension)

3. Find graphically or otherwise the forces in the members 2, 5, 9 and 10 of the truss shown in
Fig 12.37. Also state whether they are in tension or compression.

Ans. 2 = 6.0 kN

5 = 3.55 kN

9 = 2.0 kN

10 = 0

4. Find the forces in the members of the frame given in Fig. 12.38.

Ans. 1-2 = 12.0 kN (Tension)

2-3 = 6.0 kN (Tension)

3-4 = 2.0 kN (Tension)

4-5 = 2.8 kN (Compression)

5-6 = 2.0 kN (Compression)

6-7 = 6.0 kN (Compression)

2-7 = 8.5 kN (Compression)

2-6 = 4.0 kN (Tension)

3-6 = 5.6 kN (Compression)

3-5 = 2.0 kN (Tension)

12.8. Structures with one end hinged (or Pin-jointed) and the  other
freely supported on rollers and carrying horizontal loads

We have already discussed in Art 14.16 that sometimes a structure is hinged or pin-jointed at
one end and freely supported on rollers at the others end. If such a structure carries vertical loads only,
the problem does not present any special features. Such a problem may be solved just as a simply
supported structure.

But, if such a structure carries horizontal loads (with or without vertical loads) the support
reaction at the roller supported end will be normal to the support; whereas the support reaction at the
hinged end will consist of :

1. Vertical reaction, which may be found out by subtracting the vertical support reaction at
the roller supported end from the total vertical load.

2. Horizontal reaction, which may be found out by algebraically adding all the horizontal
loads. After finding out the reactions, the space and vector diagram may be drawn as
usual.

Fig. 12.37

Fig. 12.36

Fig. 12.38
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EXAMPLE 12.15. Figure 14.39 shows a framed structure of 4 m span and 1.5 m height
subjected to two point loads at B and D.

Fig. 12.39

Find graphically, or otherwise, the forces in all the members of the structure.

SOLUTION.  *Since the structure is supported on rollers at the right hand support (C), therefore
the reaction at this support will be vertical (because of horizontal support). The reaction at the left
hand support (A) will be the resultant of vertical and horizontal forces and inclined with the vertical.

Taking moments about A and equating the same,
VC × 4 = (8 × 1.5) + (12 × 2) = 36

∴
36

9 kN( ) and 12 – 9 3 kN( )
4C AV V= = ↑ = = ↑

and HA = 8 kN (←)
First of all, draw the space diagram and name the members and forces according to Bow’s

notations as shown in Fig. 12.40 (a).

Fig. 12.40
Now draw the vector diagram as shown in Fig. 12.40 (b). Measuring the various sides of the

vector diagram the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 AB (1-6) 5.0 Compression
2 BC (2-7) 15.0 Compression
3 AD (4-6) 12.0 Tension
4 BD (6-7) 12.0 Tension
5 DC (3-7) 12.0 Tension

*  We have already solved this example analytically in the last chapter.
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EXAMPLE 12.16. A truss of 8 m span and 4 m height is loaded as shown in Fig. 12.41.

Fig. 12.41

Find the forces in all the members of the truss and mention their nature in each case.

*SOLUTION.  Since the truss is supported on rollers at the right hand support (E), therefore the
reaction at this support will be vertical (because of horizontal support). The reaction at A will be the
resultant of vertical and horizontal forces.

Taking moments about A,
VE × 8 = (2 W × 2) + (W × 2) = 6 W

∴
6

0.75 ( ) and 2 – 0.75 1.25 ( )
8E A
W

V W V W W W= = ↑ = = ↑

and HA = W (←)

First of all, draw the space diagram and name all the members and forces according to Bow’s
notations as shown in Fig. 12.42 (a).

Fig. 12.42

Now draw the vector diagram as shown in Fig. 12.42 (b). Measuring the various sides of the
vector diagram, the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 AB (1-6) 1.77 Compression
2 BC (2-7) 0.35 Compression
3 CD (2-8) 0.35 Compression
4 DE (3-9) 1.06 Compression
5 AF (4-6) 2.25 Tension
6 BF (6-7) 1.41 Compression
7 CF (7-8) 0.5 Tension
8 FD (8-9) 0.71 Tension
9 FE (4-9) 0.75 Tension

* We have already solved this example analytically in the last chapter.
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EXAMPLE 12.17. Figure 12.43 shows a pin-jointed frame carrying vertical loads of 1 kN
each at B and G and horizontal load of 4 kN at D.

Fig. 12.43

Find graphically, or otherwise, force in the various members of the truss. Also prepare a
table stating the nature of forces.

SOLUTION.  Since the frame is supported on rollers at the right hand support (E), therefore the
reaction at this support will be vertical (because of horizontal support). The reaction at the left hand
support (A) will be the resultant of vertical and horizontal forces.

Taking moments about A and equating the same,

VE × 8 = (1 × 2) + (1 × 4) + (4 × 4.5) = 24

∴   
24

3 kN( ) and 3 – 2 1 kN( )
8E AV V= = ↑ = = ↓

and   HA = 4 kN (←)

First of all, draw the space diagram and name all the members and forces according to Bow’s
notations as shown in Fig. 12.44 (a).

Fig. 12.44

Now draw the vector diagram as shown in Fig. 12.44 (b). Measuring the various sides of the
vector diagram, the results are tabulated here :
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S.No. Member Magnitude of force in kN Nature of force

1 AB (1-7) 3.3 Compression

2 BC (2-9) 4.0 Copression

3 CD (2-10) 4.0 Compression

4 DE (3-12) 4.9 Compression

5 EH (4-12) 2.5 Tension

6 HG (4-11) 2.5 Tension

7 GF (5-8) 6.7 Tension

8 FA (5-7) 6.7 Tension

9 BF (7-8) 0 —

10 BG (8-9) 3.3 Tension

11 CG (9-10) 0 —

12 GD (10-11) 7.5 Tension

13 DH (11-12) 0 —

12.9. Structures with one end Hinged (or Pin-jointed) and the Other
Freely Supported on Rollers and Carrying Inclined Loads

We have already discussed in Art 14.8 that if a structure is hinged at one end, freely supported
on rollers at the other and carries inclined loads (with or without vertical loads), the support reaction
at the roller supported end will be normal to the support. The support reaction at the hinged end will
be the resultant of :

1. Vertical reaction, which may be found out by subtracting the vertical component of the
support reaction at the roller supported end from the total vertical load.

2. Horizontal reaction, which may be found out by algebraically adding all the horizontal
loads.

EXAMPLE 12.18.   Figure 12.45 shows a north-light roof truss with wind loads acting on it.

Fig. 12.45

Find graphically, or otherwise, the forces in all the members of the truss. Give your result in
a tabulated form.
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*SOLUTION.  Since the truss is supported on rollers at P, threfore the reaction at this end will be
vertical (because of horizontal support). Moreover, it is hinged at Q, therefore the reaction at this end
will be resultant of horizontal and vertical forces and inclined with the vertical.

Taking moments about Q and equating the same,
VP × 6.92 = (20 × 3) + (10 × 6) = 120

∴ 120
17.3 kN ( ) and [(10 20 10) sin 60 ] – 17.3 17.3 kN ( )

6.92P QV V= = ↑ = + + ° = ↑
and HQ = (10 + 20 + 10) cos 60° = 40 × 0.5 = 20 kN (→)

First of all, draw the space diagram and name the members and forces according to Bow’s
notations as shown in Fig. 12.46 (a).

Fig. 12.46

Now draw the vector diagram as shown in Fig. 12.46 (b). Measuring the various sides of the
vector diagram, the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 PR (1-7) 20.0 Compression
2 RS (2-8) 17.3 Compression
3 SQ (3-9) 17.3 Compression
4 QT (6-9) 30.0 Tension
5 PT (6-7) 10.0 Tension
6 RT (7-8) 20.0 Tension
7 ST (8-9) 20.0 Compression

EXAMPLE 12.19. Figure 12.47 shows a truss pin-jointed at one end, and freely supported
at the other. It carries loads as shown in the figure.

Fig. 12.47

Determine forces in all the members of the truss and state their nature.

* We  have already solved this example analytically in the last chapter.
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SOLUTION.  Since the truss is supported on rollers at the right end, therefore the reaction at this
end will be vertical. Moreover, as the truss is hinged at the left end, therefore the reaction at this end
will be inclined with the vertical.

1. First of all draw the space diagram for the roof truss and name the various forces and
reactions according to Bow’s notations.

2. Compound all the forces together and assume them to act through the centre of gravity of
the forces, i.e., along the line of action of 2 kN force.

3. Produce the line of action of the resultant force (compound together as per item 2) to meet
the line of action of the roller support (which will be vertical due to support on rollers)
at O.

4. Join OA. From O cut off OM equal to the total compound load (i.e., 1 + 2 + 1 = 4 kN)
according to some scale, along the line of action of the resultant load.

5. Complete the parallelogram OLMN with OM as diagonal.
6. Measure OL and ON. The length ON gives the magnitude and direction of the reaction RA.

The length OL gives the magnitude of the reaction RB.
7. By measurement, we find that

R1 = 2.52 kN, R2 = 1.92 kN and θ = 51°       Ans.

Fig. 12.48

Now draw the vector diagram as shown in Fig. 12.48 (b). Measuring the various sides of the
vector diagram, the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 EJ 1.3 Tension
2 JC 2.1 Compression
3 HJ 0 —
4 HE 1.3 Tension
5 HG 2.3 Compression
6 GB 0.9 Compression
7 FG 1.2 Tension
8 FE 0.7 Compression
9 AF 2.0 Compression
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EXAMPLE 12.20. A truss hinged at A and supported on rollers at D is loaded as shown in
Fig. 12.49.

Fig. 12.49

Find by any method the forces in all the members of the truss and mention the nature of forces.

*SOLUTION.  Since the truss is supported on rollers at the right end D, therefore reaction at this
support will be inclined at 45°, with the vertical (because the support is inclined at 45° with the
horizontal). Now find out the reactions as done in example 12.17. We know that horizontal component
of reaction at D.

RDH = RDV = 5.4 kN

and RAH = 5.4 kN    and    RAV = 1.6 kN

First of all, draw the space diagram and name the members and forces according to Bow’s
notations as shown in Fig. 12.50 (a).

Fig. 12.50

Now draw the vector diagram as shown in Fig. 12.50 (b). Measuring the various sides of the
vector diagram, the results are tabulated here :

S.No. Member Magnitude of force in kN Nature of force

1 AB (2-7) 6.6 Compression
2 BC (2-8) 6.6 Compression
3 CD (2-10) 6.75 Compression
4 DE (4-10) 1.35 Compression
5 EF (5-9) 1.35 Compression
6 FA (6-7) 2.0 Tension
7 BF (7-8) 0 —
8 CF (8-9) 4.25 Tension
9 CE (9-10) 2.0 Tension

* We  have already solved this example analytically in the last chapter.
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12.10. Frames with both ends fixed
Sometimes, a frame or a truss is fixed or built-in at its both ends. In such a case, the reactions

at both the supports can not be determined, unless some assumption is made. The assumptions usu-
ally made are :

1. The reactions are parallel to the direction of the loads and
2. In case of inclined loads, the horizontal thrust is equally shared by the two reactions.
Generally, the first assumption is made and the reactions are determined as usual by taking

moments about one of the supports.

EXAMPLE 12.21. Figure 12.51 shows as roof truss with both ends fixed. The truss is
subjected to wind loads normal to the main rafter.

Fig. 12.51

Find the force in various members of the truss.

SOLUTION.  The reactions may be obtained by any one assumption as mentioned. With the help
of first assumption the reactions have been found out as shown in Fig. 12.52 (a).

Equating the anticlockwise moments and the clockwise moments about A,

1
2 2 1 4 8

8 sin 60 9.24 kN
cos 30 cos 30 0.866

R
× ×× ° = + = =

° °

∴ 1
9.24 9.24

1.33 kN
8 sin 60 8 0.866

R = = =
° ×

and R2 = (1 + 2 + 1) – 1.33 = 2.67 kN

First of all, draw the space diagram and name the members according to Bow’s notations as
shown in Fig. 12.52 (a).

Fig. 12.52

Now draw the vector diagram as shown in Fig. 12.52 (b). Measuring the various sides of the
vector diagram, the results are tabulated here :
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S.No. Member Magnitude of force in kN Nature of force

1 BF 2.9 Compression

2 FE 3.3 Tension

3 CG 1.9 Compression

4 FG 2.3 Compression

5 GH 1.15 Tension

6 HD 2.3 Compression

7 HI 0 —

8 ID 2.3 Compression

9 IE 1.33 Tension

12.11. Method of Substitution
Sometimes work of drawing the vector diagram is held up, at a joint which contains more than

two unknown force members and it is no longer possible to proceed any further for the construction
of vector diagram. In such a situation, the forces are determined by some other method. Here we shall
discuss such cases and shall solve such problem by the method of substitution.

EXAMPLE 12.22.  A french roof truss is loaded as shown in Fig. 12.53.

Fig. 12.53

Find the forces in all the members of the truss, indicating whether the member is in tension
or compression.

SOLUTION.  Since the truss and loading is symmetrical, therefore both the reactions will be
equal.

∴ 1 2
100 200 200 200 200 200 200 200 100

N
2

R R
+ + + + + + + += =

= 800 N
First of all, draw the space diagram and name all the members according to Bow’s notations

and also name the joints as shown in Fig. 12.54 (a).
While drawing the vector diagram, it will be seen that the vector diagram can be drawn for

joint Nos. 1, 2 and 3 as usual. Now when we come to joint No. 4, we find that at this joint there are
three members (namely DP, PO and ON) in which the forces are unknown. So we cannot draw the
vector diagram for this joint.

Now, as an alternative attempt, we look to joint No. 5. We again find that there are also three
members (namely NO, OR and RK) in which the forces are unknown. So we can not draw the vector
diagram for this joint also. Thus we find that the work of drawing vector diagram is held up beyond
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joint No. 3. In such cases, we can proceed by the substitution of an imaginary member.
Now, consider (for the time being only) the members OP and PQ as removed and substitute an

imaginary member joining the joints 5 and 6 (as shown by the dotted line) as shown in Fig. 14.54. (a).
Now we find that this substitution reduces the unknown force members at joint 4, from three to two
(i.e., members DI and IN; assuming the letter I in place of P and O) and thus we can draw the vector
diagram for this joint (i.e., No. 4).

Fig. 12.54 (a)

1

2

a

b

c

d

e

k

f

g

h

i

j

q

o

m

w

v n r

ut

s

x, l

Fig. 12.54 (b)

Now after drawing the vector diagram for joint 4, proceed to joint 6 at which there are only two
members (i.e., EQ and QI) in which the forces are unknown. The vector diagram, at this joint will
give the forces in EQ by the side eq of the vector diagram.

After drawing vector diagram at joint 6 and determining the forces in EQ (i.e., eq) replace the
imaginary member by the original members PQ and PO and again draw vector diagram for the joint
No. 6 as shown in Fig. 14.54 (b). This will give the force in the member PO.

Now proceed to joint No. 5 as usual and complete the whole vector diagram as shown in Fig.
14.54 (b). Meausring the various sides of the vector diagram, the results are tabulated here :
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S. No. Member Magnitude of force in kN Nature of force

1 BL, IX 15,720 Compression
2 LM, WX 1,750 Compression
3 CM, HW 14,750 Compression
4 MN, VW 2,000 Tension
5 DP, GT 13,780 Compression
6 NO, UV 3,500 Compression
7 OP, TU 1,875 Tension
8 PQ, ST 1,685 Compression
9 EQ, FS 12,810 Compression
10 KL, KX 14,050 Tension
11 NK, VK 12,060 Tension
12 OR, RU 4,000 Tension
13 QR, RS 5,815 Tension
14 RK 8,080 Tension

EXERCISE 12.3

1. A truss shown in Fig. 14.55 is subjected to two point loads at B and F. Find the forces in all
the members of the truss and tabulate the results.

Ans. AB = 1.0 kN (Compression)
BC = 2.25 kN (Compression)
CD = 2.25 kN (Compression)
DE = 3.0 kN (Compression)
AF = 1.5 kN (Tension)
BF = 1.25 kN (Tension)
CF = 0
DF = 3.75 kN (Tension)
DF = 0

2. A truss is subjected to two point loads at A as shown in Fig. 14.56. Find by any method, the
forces in all the members of the truss.

Ans. AB = 20.0 kN (Compression)
BC = 0
AD = 10.0 kN (Compression)
BD = 14.1 kN (Tension)
BF = 14.1 kN (Compression)
CF = 0
DE = 10.0 kN (Compression)
EF = 10.0 kN (Tension)
DG = 0
GE = 14.1 kN (Tension)
EH = 14.1 kN (Compression)

FH = 10.0 kN (Compression)

GH = 10.0 kN (Tension)

Fig. 12.55

1.5 kN

4 kN

3 m 3 m

4 m

A

B C
D

E
F

Fig. 12.56

20 kN

10 kN

3 m 3 m

3 m

3 m

A B
C

D
E

F

G H
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3. Fig. 14.57 shows a truss pin-joint at one end, and freely supported at the other. It carries
loads as shown in the figure. Determine forces in all the members of the truss and state their nature.

Ans. AB = 2.0 kN (Compression)

BC = 0.9 kN (Compression)

CD = 2.1 kN (Compression)

AF = 0.7 kN (Compression)

BF = 1.2 kN (Tension)

CF = 2.3 kN (Compression)

FE = 1.3 kN (Tension)

CE = 0

ED = 1.3 kN (Tension)

QUESTIONS

1. Discuss the procedure for drawing the vector diagram of a frame.
2. How will you find out (i) magnitude of a force, and (ii) nature of a force from the vector

diagram?
3. What is a cantilever truss? How will you find out its reactions?
4. Explain why it is not essential to obtain the reactions of a cantilever truss before drawing

the vector diagram ?
5. Describe the procedure for drawing the vector diagram of a truss subjected to horizontal

loads.

OBJECTIVE QUESTIONS

1. The space diagram of a framed structure must have all the

(a)  loads (b) reactions (c) both (a) and (b)

2. The Bow’s notations is used only in case of

(a) simply supported structure

(b) cantilever structure

(c) structures with one end hinged and the other supported on rollers.

(d) all of the above.

3. If in a vector diagram, any two points coincide, then the force in the member represented
by the two letters is zero.

(a) True (b) False

4. In a graphical method, for analysing the perfect frames, it is possible to check the previous
work in any subsequent step.

(a) Yes (b) No

ANSWERS

1. (c) 2. (d) 3. (a) 4. (a)

Fig. 12.57

1 kN

2 kN

1 kN

A

B
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D
F E

90° 90° 30°
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length at the Centre.
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One End to w per unit length at the
other End.
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18. Beams Subjected to a Moment.
19. Beams Subjected to Inclined Loads.
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Diagrams for Inclined Beams.

13.1. Introduction
We see that whenever a horizontal beam is

loaded with vertical loads, sometimes, it bends
(i.e., deflects) due to the action of the loads. The
amount with which a beam bends, depends upon
the amount and type of the loads, length of the
beam, elasticity of the beam and type of the beam.
The scientific way of studying the deflection or
any other effect is to draw and analyse the shear
force or bending moment diagrams of a beam. In
general, the beams are classified as under:

1. Cantilever beam,
2. Simply supported beam,

3. Overhanging beam,

4. Rigidly fixed or built-in-beam and
5. Continuous beam.

13C h a p t e r
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NOTE. In this chapter, we shall study the first three types of beams only.

13.2. Types of Loading
A beam may be subjected to either or in combination of the following types of loads:

1. Concentrated or point load,

2. Uniformly distributed load and

3. Uniformly varying load.

13.3. Shear Force
The shear force (briefly written as

S.F.) at the cross-section of a beam may
be defined as the unbalanced vertical
force to the right or left of the section.

13.4. Bending Moment
The bending moment (briefly

written as B.M.) at the cross-section of
a beam may be defined as the algebraic
sum of the moments of the forces, to the right or left of the section.
NOTE. While calculating the shear force or bending moment at a section, the end reactions must also be consid-

ered alongwith other external loads.

13.5. Sign Conventions
We find different sign conventions in different books, regarding shear force and bending moment

at a section. But in this book the following sign conventions will be used, which are widely followed
and internationally recognised.

Fig. 13.1

1. Shear Force.  We know that as the shear force is the unbalanced vertical force, therefore it
tends to slide one portion of the beam, upwards or downwards with respect to the other. The shear
force is said to be positive, at a section, when the left hand portion tends to slide downwards or the
right hand portion tends to slide upwards shown in Fig. 13.1 (a). Or in other words, all the downward
forces to the left of the section cause positive shear and those acting upwards cause negative shear as
shown in Fig. 13.1 (a).

Similarly, the shear force, is said to be negative at a section when the left hand portion tends to
slide upwards or the right hand portion tends to slide downwards as shown in Fig. 13.1 (b). Or in
other words, all the upward forces to the left of the section cause negative shear and those acting
downwards cause positive shear as shown in Fig. 13.1 (b).

2. Bending Moment.  At sections, where the bending moment, is such that it tends to bend the
beam at that point to a curvature having concavity at the top, as shown in Fig. 13.1 (c) is taken as

Shearing force



288 � Strength of Materials

positive. On the other hand, where the bending moment is such that it tends to bend the beam at that
point to a curvature having convexity at the top,
as shown in Fig. 13.1 (d) is taken as negative.
The positive bending moment is often called
sagging moment and negative as hogging
moment.

A little consideration will show that the
bending moment is said to be positive, at a section,
when it is acting in an anticlockwise direction to
the right and negative when acting in a clockwise
direction. On the other hand, the bending moment
is said to be negative when it is acting in a
clockwise direction to the left and positive when
it is acting in an anticlockwise direction.
NOTE. While calculating bending moment or shear force, at a section the beam will be assumed to be weightless.

13.6. Shear Force and Bending Moment Diagrams
The shear force and bending moment can be calculated numerically at any particular section. But

sometimes, we are interested to know the manner, in which these values vary, along the length of the
beam. This can be done by plotting the shear force or the bending moment as ordinate and the position
of the cross as abscissa. These diagrams are very useful, as they give a clear picture of the distribution
of shear force and bending moment all along the beam.
NOTE. While drawing the shear force or bending moment diagrams, all the positive values are plotted above the

base line and negative values below it.

13.7. Relation between Loading, Shear Force and Bending Moment
The following relations between loading, shear force and bending moment at a point or between

any two sections of a beam are important from the subject point of view:
1. If there is a point load at a section on the beam, then the shear force suddenly changes (i.e., the

shear force line is vertical). But the bending moment remains the same.

2. If there is no load between two points, then the shear force does not change (i.e., shear force line
is horizontal). But the bending moment changes linearly (i.e., bending moment line is an in-
clined straight line).

3. If there is a uniformly distributed load between two points, then the shear force changes linearly
(i.e., shear force line is an inclined straight line). But the bending moment changes according to
the parabolic law. (i.e., bending moment line will be a parabola).

4. If there is a uniformly varying load between two points then the shear force changes according
to the parabolic law (i.e., shear force line will be a parabola). But the bending moment changes
according to the cubic law.

13.8. Cantilever with a Point Load at its Free End
Consider a *cantilever AB of length l and carrying a point load W at its free end B as shown in

Fig. 13.2 (a). We know that shear force at any section X, at a distance x from the free end, is equal to
the total unbalanced vertical force. i.e.,

Fx = – W ...(Minus sign due to right downward)

* It is a beam fixed at one end and free at the other.

Bending test of resin concrete
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and bending moment at this section,
Mx = – W . x ...(Minus sign due to hogging)

Fig. 13.2.  Cantilever with a point load

Thus from the equation of shear force, we see that the shear force is constant and is equal to – W
at all sections between B and A. And from the bending moment equation, we see that the bending
moment is zero at B (where x = 0) and increases by a straight line law to – Wl; . at (where x = l). Now
draw the shear force and bending moment diagrams as shown in Fig. 13.2 (b) and 13.2 (c) respectively.

EXAMPLE 13.1.  Draw shear force and bending moment diagrams for a cantilever beam of
span 1.5 m carrying point loads as shown in Fig. 13.3 (a).

SOLUTION.  Given :  Span (l ) = 1.5 m ;  Point load at B (W1) = 1.5 kN and point load at C (W2)
= 2 kN.

Shear force diagram
The shear force diagram is shown in Fig. 13.3 (b) and the values are tabulated here:

FB = – W1 = – 1.5 kN

FC = – (1.5 + W2) = – (1.5 + 2) = – 3.5 kN

FA = – 3.5 kN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.3 (c) and the values are tabulated here:

MB = 0

MC = – [1.5 × 0.5] = – 0.75 kN-m
MA = – [(1.5 × 1.5) + (2 × 1)] = – 4.25 kN-m
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Fig. 13.3

13.9. Cantilever with a Uniformly Distributed Load
Consider a cantilever AB of length l and carrying a uniformly distributed load of w per unit

length, over the entire length of the cantilever as shown in Fig. 13.4 (a).
We know that shear force at any section X, at a distance x from B,

Fx = – w . x ... (Minus sign due to right downwards)
Thus we see that shear force is zero at B (where x = 0) and increases by a straight line law to – wl

at A as shown in Fig. 13.4 (b).

Fig. 13.4.  Cantilever with a uniformly distributed load
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We also know that bending moment at X,

Mx = – wx . 
2

2 2
x wx= − ...(Minus sign due to hogging)

Thus we also see that the bending moment is zero at B (where x = 0) and increases in the form of

a parabolic curve to
2

2
wl−  at B (where x = 1) as shown in Fig. 13.4 (c).

EXAMPLE 13.2.  A cantilever beam AB, 2 m long carries a uniformly distributed load of 1.5
kN/m over a length of 1.6 m from the free end. Draw shear force and bending moment diagrams
for the beam.

SOLUTION.  Given : span (l) = 2 m ;  Uniformly distributed load (w) = 1.5 kN/m and length of the
cantilever CB carrying load (a) = 1.6 m.
Shear force diagram

The shear force diagram is shown in Fig. 13.5 (b) and the values are tabulated here:

FB = 0
FC = – w . a = – 1.5 × 1.6 = – 2.4 kN

FA = – 2.4 kN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.5 (c) and the values are tabulated here:

MB = 0

MC =
22 1.5 (1.6)

2 2
wa ×− = = – 1.92 kN-m

MA = ( )1.6(1.5 1.6) 0.4
2

⎡ ⎤− × +⎢ ⎥⎣ ⎦
= – 2.88 kN-m

Fig. 13.5
NOTE. The bending moment at A is the moment of the load between C and B (equal to 1.5 × 1.6 = 2.4 kN) about

A. The distance between the centre of the load and A is 0.4 + 
1.6
2

 = 1.2 m.
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EXAMPLE 13.3.  A cantilever beam of 1.5 m span is loaded as shown in Fig. 13.6 (a). Draw
the shear force and bending moment diagrams.

SOLUTION.  Given :  Span (l) = 1.5 m ;  Point load at B (W) = 2 kN ;  Uniformly distributed load
(w) = 1 kN/m and length of the cantilever AC carrying the load (a) = 1 m.

Shear force diagram

Fig. 13.6

The shear force diagram is shown in Fig. 13.6 (b) and the values are tabulated here:

FB = – W = – 2 kN
FC = – 2 kN

FA = – [2 + (1 × 1)] = – 3 kN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.6 (c) and the values are tabulated here:

MB = 0

MC = – [2 × 0.5] = – 1 kN-m

MA =
1(2 1.5) (1 1)
2

⎡ ⎤− × + × ×
⎢ ⎥⎣ ⎦

 = – 3.5 kN-m

13.10. Cantilever with a Gradually Varying Load
Consider a cantilever AB of length l, carrying a gradually varying load from zero at the free end

to w per unit length at the fixed end, as shown in Fig. 13.7 (a).

We know that, the shear force at any section X, at a distance x from the free end B,

FX = ( ) 2

.
2 2

wx x wx
l l

− = − ...(i)   (Minus sign due to right downward)

Thus, we see that the shear force is zero at the free end (where x = 0) and increases in the form of

a parabolic curve [as given by equation (i) above] to 
2

2 2
− = −wl wl

l
 = at A (where x = l ) as shown in

Fig. 13.7 (b).
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Fig. 13.7

We also know that the bending moment at X,

MX =
2 2

2 3 6
wx x wx

l l
− × = − ...(ii)   (Minus sign due to hogging)

Thus, we see that the bending moment is zero at the free end (where x = 0) and increases in the

form of a cubic parabolic curve [as given by equation (ii) above] to 
3 2

6 6
− = −wl wl

l
 at A (where x = l)

as shown in Fig. 13.7 (c).

EXAMPLE 13.4.  A cantilever beam 4 m long carries a gradually varying load, zero at the free
end to 3 kN/m at the fixed end. Draw B.M. and S.F. diagrams for the beam.

SOLUTION.  Given :  Span (l) = 4 m and gradually varying load at A (w) = 3 kN/m
The cantilever beam is shown in Fig. 13.8 (a).

Shear force diagram
The shear force diagram is shown in Fig. 13.8 (b) and the values are tabulated here:

FB = 0

FA =
3 4

2
×−  = – 6 kN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.8 (c) and the values are tabulated here:

MB = 0

MA =
23 (4)

6
×−  = – 8 kN-m
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Fig. 13.8

EXAMPLE 13.5.   A cantilever beam of 2 m span is subjected to a gradually varying load from
2 kN/m to 5 kN/m as shown in Fig. 13.9.

Fig. 13.9

Draw the shear force and bending moment diagrams for the beam.

SOLUTION.  Given :  Span (l ) = 2 m ;  Gradually varying load at A (wA) = 5 kN/m and gradually
varying load at B (wB) = 2 kN/m.

The load may be assumed to be split up into (i) a uniformly distributed load (wl) of 2 kN/m over
the entire span and (ii) a gradually varying load (w1) from zero at B to 3 kN/m at A as shown in
Fig. 13.10 (a)
Shear force diagram

The shear force diagram is shown in Fig. 13.10 (b) and the values are tabulated here:

FB = 0

FA =
3 2

(2 2)
2

⎡ × ⎤⎛ ⎞− × + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 = – 7 kN
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Fig. 13.10

Bending moment diagram
The bending moment diagram is shown in Fig. 13.10 (c) and the values are tabulated here:

MB = 0

MA =
2 22 (2) 3(2)

2 6

⎡ ⎤⎛ ⎞ ⎛ ⎞×− +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 = – 6 kN-m

EXERCISE 13.1

1. A cantilever beam 2 m long carries a point load of 1.8 kN at its free end. Draw shear force and
bending moment diagrams for the cantilever. [Ans. Fmax = – 1.8 kN ;  Mmax = – 3.6 kN-m]

2. A cantilever beam 1.5 m long carries point loads of 1 kN, 2 kN and 3 kN at 0.5 m, 1.0 m and
1.5 m from the fixed end respectively. Draw the shear force and bending moment diagrams for
the beam.

[Ans. Fmax = – 6 kN ;  Mmax = – 7 kN-m]
3. A cantilever beam of 1.4 m length carries a uniformly distributed load of 1.5 kN/m over its

entire length. Draw S.F. and B.M. diagrams for the cantilever.
[Ans. Fmax = – 2.1 kN ;  Mmax = – 1.47 kN-m]

4. A cantilever AB 1.8 m long carries a point load of 2.5 kN at its free end and a uniformly distributed
load of 1 kN/m from A to B. Draw the shear force the bending moment diagrams for the beam.

[Ans. Fmax = – 4.3 kN ;  Mmax= – 6.12 kN-m]

5. A cantilever 1.5 m long is loaded with a uniformly distributed load of 2 kN/m and a point load
of 3 kN as shown in Fig. 13.11
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Fig. 13.11

Draw the shear force and bending moment diagrams for the cantilever.
[Ans. Fmax = – 5.5 kN ;  Mmax= – 5.94 kN-m]

6. A cantilever beam 2 m long is subjected to a gradually varying load from zero at the free end to 2
kN/m at the fixed end. Find the values of maximum shear force and bending moment and draw the
shear force and bending moment diagrams. [Ans. Fmax = – 2 kN ;  Mmax= – 1.33 kN-m]

13.11. Simply Supported Beam with a Point Load at its Mid-point
Consider a *simply supported beam AB of span l and carrying a point load W at its mid-point C

as shown in Fig. 13.12 (a). Since the load is at the mid-point of the beam, therefore the reaction at the
support A,

RA = RB = 0.5 W

Fig. 13.12.  Simply supported beam with a point load

Thus we see that the shear force at any section between A and C  (i.e., up to the point just before
the load W) is constant and is equal to the unbalanced vertical force, i.e., + 0.5 W. Shear force at any
section between C and B (i.e., just after the load W) is also constant and is equal to the unbalanced
vertical force, i.e., – 0.5 W as shown in Fig. 13.12 (b).

We also see that the bending moment at A and B is zero. It increases by a straight line law and is
maximum at centre of beam, where shear force changes sign as shown in Fig. 13.12 (c).

* It is beam supported or resting freely on the walls or columns on both ends.
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Therefore bending moment at C,

MC =
1

2 2 4
W Wl× = ...(Plus sign due to sagging)

NOTE. If the point load does not act at the mid-point of the beam, then the two reactions are obtained and the
diagrams are drawn as usual.

EXAMPLE 13.6.  A simply supported beam AB of span 2.5 m is carrying two point loads as
shown in Fig. 13.13.

Fig. 13.13

Draw the shear force and bending moment diagrams for the beam.

SOLUTION.  Given :  Span (l) = 2.5 m ;  Point load at C (W1) = 2 kN and point load at B (W2) = 4 kN.

Fig. 13.14

First of all let us find out the reactions RA and RB. Taking moments about A and equating the
same,

RB × 2.5 = (2 × 1) + (4 × 1.5) = 8

RB = 8/2.5 = 3.2 kN

and RA = (2 + 4) – 3.2 = 2.8 kN
Shear force diagram

The shear force diagram is shown in Fig. 13.14 (b) and the values are tabulated here:

FA = + RA = 2.8 kN
FC = + 2.8 – 2 = 0.8 kN

FD = 0.8 – 4 = – 3.2 kN

FB = – 3.2 kN
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Bending moment diagram
The bending moment diagram is shown in Fig. 13.14 (c) and the values are tabulated here:

MA = 0

MC = 2.8 × 1 = 2.8 kN-m
MD = 3.2 × 1 = 3.2 kN-m

MB = 0
NOTE. The value of MD may also be found and from the reaction RA. i.e.,

MD = (2.8 × 1.5) – (2 × 0.5) = 4.2 – 1.0 = 3.2 kN-m

13.12. Simply Supported Beam with a Uniformly Distributed Load
Consider a simply supported beam AB of length l and carrying a uniformly distributed load of w

per unit length as shown in Fig. 13.15. Since the load is uniformly distributed over the entire length of
the beam, therefore the reactions at the supports A,

Fig. 13.15.  Simply supported beam with a uniformly distributed load

RA = RB = 
2

wl
 = 0.5 wl

We know that shear force at any section X at a distance x from A,

Fx = RA – wx = 0.5 wl – wx

We see that the shear force at A is equal to RA = 0.5 wl, where x = 0 and decreases uniformly by
a straight line law, to zero at the mid-point of the beam ;  beyond which it continues to decrease
uniformly to – 0.5 wl at B i.e., RB as shown in Fig. 13.15 (b). We also know that bending moment at
any section at a distance x from A,

Mx = RA . x – 
2 2

2 2 2
wx wl wxx= −
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We also see that the bending moment is zero at A and B (where x = 0 and x = l) and increases in
the form of a parabolic curve at C, i.e., mid-point of the beam where shear force changes sign as
shown in Fig. 13.15 (c). Thus bending moment at C,

MC = ( ) ( )2 2 2 2

2 2 2 2 4 8 8
wl l w l wl wl wl− = − =

EXAMPLE 13.7.  A simply supported beam 6 m long is carrying a uniformly distributed load
of 5 kN/m over a length of 3 m from the right end. Draw the S.F. and B.M. diagrams for the beam
and also calculate the maximum B.M. on the section.

Fig. 13.16

SOLUTION.  Given :  Span (l) = 6 m ;  Uniformly distributed load (w) = 5 kN/m and length of the
beam CB carrying load (a) = 3 m.

First of all, let us find out the reactions RA and RB. Taking moments about A and equating the same,
RB × 6 = (5 × 3) × 4.5 = 67.5

∴ RB =
67.5

6  = 11.25 kN

and RA = (5 × 3) – 11.25 = 3.75 kN

Shear force diagram
The shear force diagram is shown in Fig. 13.16 (b) and the values are tabulated here:

FA = + RA = + 3.75 kN

FC = + 3.75 kN

FB = + 3.75 – (5 × 3) = – 11.25 kN
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Bending moment diagram
The bending moment is shown in Fig. 13.16 (c) and the values are tabulated here:

MA = 0

MC = 3.75 × 3 = 11.25 kN

MB = 0

We know that the maximum bending moment will occur at M, where the shear force changes
sign. Let x be the distance between C and M. From the geometry of the figure between C and B, we
find that

3.75
x

=
3
11.25

x−
          or          11.25 x = 11.25 – 3.75 x

15 x = 11.25            or          x = 11.25/15 = 0.75 m

∴ MM = 3.75 × (3 + 0.75) – 5 × 0.75
2

 = 12.66 kN-m

EXAMPLE 13.8.  A simply supported beam 5 m long is loaded with a uniformly distributed
load of 10 kN/m over a length of 2 m as shown in Fig. 13.17.

Fig. 13.17

Draw shear force and bending moment diagrams for the beam indicating the value of maximum
 bending moment.

SOLUTION.  Given :  Span (l) = 5 m ;  Uniformly distributed load (w) = 10 kN/m and length of the
beam CD carrying load (a) = 2 m.

First of all, let us find out the reactions RA and RB. Taking moments about A and equating the
same,

RB × 5 = (10 × 2) × 2 = 40

∴ RB = 40/5 = 8 kN

and RA = (10 × 2) – 8 = 12 kN

Shear force diagram

The shear force diagram is shown in Fig. 13.18 (b) and the values are tabulated here:

FA = + RA = + 12 kN

FC = + 12 kN

FD = + 12 – (10 × 2) = – 8 kN

FB = – 8 kN
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Fig. 13.18

Bending moment diagram
The bending moment diagram is shown in Fig. 13.18 (c) and the values are tabulated here:

MA = 0

MC = 12 × 1 = 12 kN-m
MD = 8 × 2 = 16 kN-m

We know that maximum bending moment will occur at M, where the shear force changes sign.
Let x be the distance between C and M. From the geometry of the figure between C and D, we find
that

12
x

=
2

8
x−

        or        8 x = 24 – 12 x

20 x = 24              or        x = 24/20 = 1.2 m

MM = 12 (1 + 1.2) – 10 × 1.2 × 
1.2
2

 = 19.2 kN-m

EXAMPLE 13.9.  A simply supported beam of 4 m span is carrying loads as shown in
Fig. 13.19.

Fig. 13.19

Draw shear force and bending moment diagrams for the beam.
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SOLUTION.  Given :  Span (l) = 4 m ;  Point load at C (W) = 4 kN and uniformly distributed load
between C and D (w) = 2 kN/m.

First of all, let us find out the reactions RA and RB. Taking moments about A and equating the
same,

RB × 4 = (4 × 1.5) + (2 × 1) × 2 = 10

Fig. 13.20

RB = 10/4 = 2.5 kN

and RA = 4 + (2 × 1) – 2.5 = 3.5 kN

Shear force diagram

The shear force diagram is shown in Fig. 13.20 (b) and the values are tabulated here:

FA = + RA = + 3.5 kN

FC = + 3.5 – 4 = – 0.5 kN

FD = – 0.5 – (2 × 1) = – 2.5 kN

FB = – 2.5 kN

Bending moment diagram

The bending moment diagram is shown in Fig. 13.20 (c) and the values are tabulated here:

MA = 0

MC = 3.5 × 1.5 = 5.25 kN-m

MD = 2.5 × 1.5 = 3.75 kN-m

MB = 0

We know that the maximum bending moment will occur at C, where the shear force changes sign,
i.e., at C as shown in the figure.
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EXAMPLE 13.10.  A simply supported beam AB, 6 m long is loaded as shown in Fig. 13.21.

Fig. 13.21

Construct the shear force and bending moment diagrams for the beam and find the position and
value of maximum bending moment.

SOLUTION.  Given :  Span (l) = 6 m ;  Point load at E (W) = 5 kN ;  Uniformly distributed load
between A and C (w1) = 4 kN/m and uniformly distributed load between D and B = 2 kN/m.

First of all, let us find out the reactions RA and RB. Taking moments about A and equating the
same,

RB × 6 = (4 × 1.5 × 0.75) + (2 × 3 × 4.5) + (5 × 4.5) = 54

RB = 54/6 = 9 kN

and RA = (4 × 1.5) + (2 × 3) + 5 – 9 = 8 kN

Fig. 13.22
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 Shear force diagram
The shear force diagram is shown in Fig. 13.22 (b) and the values are tabulated here:

FA = + RA = + 8 kN

FC = 8 – (4 × 1.5) = 2 kN

FD = 2 kN
FE = 2 – (2 × 1.5) – 5 = – 6 kN

FB = – 6 – (2 × 1.5) = – 9 kN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.22 (c) and the values are tabulated here:

MA = 0

MC = (8 × 1.5) – (4 × 1.5 × 0.75) = 7.5 kN-m

MD = (8 × 3) – (4 × 1.5 × 2.25) = 10.5 kN-m
ME = (9 × 1.5) – (2 × 1.5 × 0.75) = 11.25 kN-m

MB = 0

We know that maximum bending moment will occur at M, where the shear force changes sign.
Let x be the distance between E and M. From the geometry of the figure between D and E, we find that

1
x

=
1.5

2
x−

     or     2 x = 1.5 – x

3 x = 1.5             or     x = 1.5/3 = 0.5 m

∴ MM = 9 (1.5 + 0.5) – (2 × 2 × 1) – (5 × 0.5) = 11.5 kN-m

13.13. Simply Supported Beam with a Triangle Load, Varying
Gradually from Zero at Both Ends to w per unit length at
the Centre

Consider a simply supported beam AB of span l and carrying a triangular load, varying gradually
from zero at both the ends to w per unit length, at the centre as shown in Fig. 13.23 (a). Since the load
is symmetrical, therefore the reactions RA and RB will be equal.

or RA = RB = 
1
2

 × w × 
1
2 4

wl=

=
2

W
... ( )where Total load

2
= = wlW

The shear force at any section X at a distance x from B,

FX =
2 2 2

4 2B
wx wx wl wx WR

l l l
− + = − = − ...(i)

Thus we see that shear force is equal to 
2

W−  at B, where x = 0 and increases in the form of a

parabolic curve [as given by equation (i) above] to zero at C, i.e., mid-point of the span ;  beyond

which it continues to increase to 
2

W+  at A where x = l as shown in Fig. 13.23 (b). The bending

moment at any section X at a distance x from B,

MX = RB . x – 
3

2 3 4 3
2

× × = −wx x x wlx wx
l l

...(ii)
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Fig. 13.23

Thus we see that the bending moment at A and B is zero and increases in the form of a cubic
curve [as given by the equation (ii) above] at C, i.e., mid-point of the beam, where bending moment
will be maximum because shear force changes sign.

∴ MM = ( ) ( )3 2

4 2 3 2 12
wl l w l wl

l
− =

= 6
Wl

... ( )where Total load
2

= = wlW

EXAMPLE 13.11.  A simply supported beam of 5 m span carries a triangular load of 30 kN.
Draw S.F. and B.M. diagrams for the beam.

SOLUTION.  Given :  Span (l) = 5 m and total triangular load (W) = 30 kN

By symmetry, RA = RB = 
30
2

 = 15 kN

Shear force diagram
The shear force diagram is shown in Fig. 13.24 (b) and the values are tabulated here:

FA = + RA = + 15 kN
FB = – RB = – 15 kN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.24 (c). It is zero at A and B and the maximum

bending moment will occur at the centre i.e., at M, where the shear force changes sign. We know that
maximum bending moment,

MM =
30 5

6 6
Wl ×=  = 25 kN-m
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Fig. 13.24

13.14. Simply Supported Beam with a Gradually Varying Load from
Zero at One End to w per unit length at the Other End

Consider a simply supported beam AB of length l and carrying a gradually varying load zero at
one end and w per unit length at the other as shown in Fig. 13.25 (a). Since the load is varying
gradually from zero at one end to w per unit length at the other, therefore both the reactions at A and
B will have to be first calculated.

Taking moments about A,

RB × l =
20

2 3 6
w l wll

+⎛ ⎞ × × =⎜ ⎟
⎝ ⎠

∴ RB =
2 1

6 6
wl wl

l
× =

= 3
W

... ( )where Total load
2

wlW = =

and RA = 2 6 3
wl wl wl− =

=
2
3
W

... ( )where
2

wlW =

We know that the shear force at any section X at a distance x from B,

FX =
2 2

2 2 3B
wx wx WR

l l
− + = − ...(i)

Thus we see that the shear force is equal to 
3

W−  at B (where x = 0) and increases in the form of

a parabolic curve [as is given by the equation (i) above] to zero at M ;  beyond which it continues to

increase to 2
3
W+  at A (where x = l) as shown in Fig. 13.25 (b). The bending moment at any section

X at a distance x from B,
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Fig. 13.25

MX = RB . x – 
2 3

wx x x
l

× ×

=
3

6 6
wlx wx

l
− ...(ii)

Thus bending moment at A and B is zero and it increases in the form of a cubic curve [as given by
the equation (ii) above] at M, where the shear force changes sign. To find out the position M, let us
equate the equation (i) to zero, i.e.,

2

2 6
wx wl

l
− = 0       or       

2

2 6
wx wl

l
−

∴ x2 =
2

3
l

     or       
3
lx =  = 0.577 l

∴ MM =
3 2

6 63 3 9 3
wl l w l wl

l
⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
2

9 3

Wl
 = 0.128 Wl ... ( )where

2
wlW =

NOTE. In such cases the different values of shear force and bending moment should be calculated at intervals of
0.5 m or 1 m [as per equations (i) and (ii) above] and then the diagrams should be drawn.

EXAMPLE 13.12.  The intensity of loading on a simply supported beam of 6 m span increases
gradually from 800 N/m run at one end to 2000 N/m run at the other as shown in Fig. 13.26.

Find the position and amount of maximum bending moment. Also draw the shear force and
bending moment diagrams.
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Fig. 13.26

SOLUTION.  Given :  Span (l) = 6 m ;  Gradually varying load at A (wA) = 2000 N/m and gradually
varying load at B (wB) = 800 N/m.

The weight may be assumed to be split up with
(i) a uniformly distributed load of 800 N/m over the entire span and
(ii) a gradually varying load of zero at B to 1200 N/m at A.
∴ Total uniformly distributed load,

W1 = 800 × 6 = 4800 N

∴ RB =
4800 3600

2 3
+  = 3600 N

and RA =
2 36004800

2 3
×+  = 4800 N.

Fig. 13.27

Shear force diagram
The shear force diagram is shown in Fig. 13.27 (b), and the values are tabulated here:

FA = + RA = 4800 N
FB = – RB = – 3600 N

Bending moment diagram
The bending moment diagram is shown in Fig. 13.27 (c). It is zero at A and B and the maximum

bending moment will occur at M, where the shear force changes sign.
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Maximum bending moment
We know that maximum bending moment will occur at a point (M), where shear force changes

sign. Let x be the distance between B and M. We also know that shear force at a distance x from M,

= – 3600 + 800 x + 
1
2

 × 1200 x × 
6
x

= – 3600 + 800 x + 100 x2

= 100 x2 + 800 x – 3600

Now to find the position of M (i.e., the point where shear force changes sign), let us equate the
above equation to zero. i.e.,

100 x2 + 800 x – 3600 = 0

or x2 + 8 x – 36 = 0

This is a quadratic equation. Therefore

∴ x =
28 (8) (4 36)
2

− ± + ×
 = 3.21 m

and bending moment at M,

MM = ( )2 13600 800 1200
2 2 6 3
x x xx x

⎛ ⎞
− × − × × ×⎜ ⎟
⎝ ⎠

= 3600 x – 400 x2 – 3100
3

x

= (3600 × 3.21) – 400 × (3.21)2 – 100
3

 × (3.21)3 N-m

= 11556 – 4122 – 1102 = 6332 N-m

EXERCISE 13.2

1. A simply supported beam of 3 m span carries two loads of 5 kN each at 1 m and 2 m from the
left hand support. Draw the shear force and bending moment diagrams for the beam.

[Ans. Mmax = 5 kN-m]
2. A simply supported beam of span 4.5 m carries a uniformly distributed load of 3.6 kN/m over a

length of 2 m from the left end A. Draw the shear force and bending moment diagrams for the
beam. [Ans.  Mmax = 4.36 kN-m at 1.56 m from A]

3. A simply supported beam ABCD is of 5 m span, such that AB = 2 m, BC = 1 m and CD = 2 m.
It is loaded with 5 kN/m over AB and 2 kN/m over CD. Draw shear force and bending moment
diagrams for the beam. [Ans.  Mmax = 7.74 kN-m at 1.76 m from A]

4. Draw shear force and bending moment diagrams for a simply supported beam, loaded as shown
in Fig. 13.28.

Fig. 13.28

Find the position and value of the maximum bending moment that will occur in the beam.
[Ans.  3.47 kN-m at 1.3 m from C]
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5. A simply supported beam AB, 6 m long is loaded as shown in Fig. 13.29.

Fig. 13.29

Draw the shear force and bending moment diagrams for the beam.
[Ans. Mmax = 11.75 kN-m at 0.56 m from E]

6. A simply supported beam 3 m long carries a triangular load of 12 kN. Draw the S.F and B.M.
diagrams for the beam. [Ans.  Mmax = 6 kN-m]

13.15. Overhanging Beam
It is a simply supported beam which overhangs (i.e., extends in the form of a cantilever) from its

support.
For the purposes of shear force and bending moment diagrams, the overhanging beam is analysed

as a combination of a simply supported beam and a cantilever. An overhanging beam may overhang
on one side only or on both sides of the supports.

13.16. Point of Contraflexure
We have already discussed in the previous article that an overhanging beam is analysed as a

combination of simply supported beam and a cantilever. In the previous examples, we have seen that
the bending moment in a cantilever is negative, whereas that in a simply supported beam is positive.
It is thus obvious that in an overhanging beam, there will be a point, where the bending moment will
change sign from negative to positive or vice versa. Such a point, where the bending moment changes
sign, is known as a point of contraflexure.

EXAMPLE 13.13.  An overhanging beam ABC is loaded as shown in Fig. 13.30.

Fig. 13.30

Draw the shear force and bending moment diagrams and find the point of contraflexure, if any.

SOLUTION.  Given :  Span (l) = 4 m ;  Uniformly distributed load (w) = 4.5 kN/m and overhanging
length (c) = 1 m.

First of all, let us find out the reactions RA and RB. Taking moment about A and equating the
same,

RB × 3 = (4.5 × 4) × 2 = 36

∴ RB = 36/3 = 12 kN

and RA = (4.5 × 4) – 12 = 6 kN
Shear force diagram

The shear force diagram is shown in Fig. 13.31 (b) and the values are tabulated here:
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Fig. 13.31

FA = + RA = + 6 kN
FB = + 6 – (4.5 × 3) + 12 = 4.5 kN

FC = + 4.5 – (4.5 × 1) = 0

Bending moment diagram
The bending moment diagram is shown in Fig. 13.31 (c) and the values are tabulated here:

MA = 0

MB = ( )14.5 1
2

− × ×  = – 2.25 kN-m

MC = 0
We know that maximum bending moment will occur at M, where the shear force changes sign.

Let x be the distance between A and M. From the geometry of the figure between A and B, we find that

6
x

=
3
7.5

x−
     or     7.5 x = 18 – 6 x

13.5 x = 18           or     x = 18/13.5 = 1.33 m

∴ MM = (6 × 1.33) – 4.5 × 1.33 × 
1.33

2
 = 4 kN-m

Point of contraflexure
Let P be the point of contraflexure at a distance y from the support A. We know that bending

moment at P.

MP = 6 × y – 4.5 × y × 
2
y

 = 0

2.25 y2 – 6 y = 0          or          2.25 y = 6
∴ y = 6/2.25 = 2.67 m        Ans.
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EXAMPLE 13.14.  A beam ABCD, 4 m long is overhanging by 1 m and carries load as shown
in Fig. 13.32.

Fig. 13.32

Draw the shear force and bending moment diagrams for the beam and locate the point of
contraflexure.

SOLUTION.  Given :  Span (l) = 4 m ;  Uniformly distributed load over AB (w) = 2 kN/m and point
load at C (W) = 4 kN.

First of all, let us find out the reactions RB and RD. Taking moments about B and equating the
same,

RD × 3 = (4 × 1) – (2 × 1) × 
1
2

 = 3

∴ RD = 3/3 = 1 kN

and RB = (2 × 1) + 4 – 1 = 5 kN

Fig. 13.33
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Shear force diagram
The shear force diagram is shown in Fig. 13.33 (b) and the values are tabulated here:

FA = 0

FB = 0 – (2 × 1) + 5 = + 3 kN

FC = + 3 – 4 = – 1 kN

FD = 1 kN

Bending moment diagram

The bending moment diagram is shown in Fig. 13.33 (c) and the values are tabulated here:

MA = 0

MB = – (2 × 1) 0.5 = – 1 kN-m

MC = 1 × 2 = + 2 kN

MD = 0

We know that maximum bending moment occurs either at B or C, where the shear force changes
sign. From the geometry of the bending moment diagram, we find that maximum negative bending
moment occurs at B and maximum positive bending moment occurs at C.

Point of contraflexure
Let P be the point of contraflexure at a distance y from the support B. From the geometry of the

figure between B and C, we find that

1.0
y

=
1
2.0

y−

2y = 1 – y          or          3y = 1

or y = 1/3 = 0.33 m        Ans.

EXAMPLE 13.15.  Draw shear force and bending moment diagrams for the beam shown in
Fig. 13.34. Indicate the numerical values at all important sections.

Fig. 13.34

SOLUTION.  Given :  Span (l) = 15 m ;  Uniformly distributed load between A and B (w1) = 1000
N/m ;  Point load at C (W1) = 8000 N ;  Point load at D (W2) = 4000 N and uniformly distributed load
between B and E (w2) = 1600 N/m.

First of all, let us find out the reactions RA and RB.

Taking moments about A and equating the same,
RB × 12.5 = (1600 × 2.5) × 13.75 + (4000 × 7.5) + (8000 × 5) + (1000 × 5) × 2.5

= 137500

RB =
137500

12.6  = 110000 N
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Fig. 13.35

and RA = (1000 × 5 + 8000 + 4000 + 1600 × 2.5) – 11000 N
= 10000 N

Shear force
The shear force diagram is shown in Fig. 13.35 (b) and the values are tabulated here:

FA = + 10000 N

FC = + 10000 – (1000 × 5) – 800 = – 3000 N

FD = – 3000 – 4000 = – 7000 N

FB = – 7000 + 11000 = + 4000 N

FE = + 4000 – 1600 × 2.5 = 0

Bending moment
The bending moment diagram is shown in Fig. 13.35 (c), and the values are tabulated here:

MA = 0

MC = (10000 × 5) – (1000) × (5 × 2.5) = 37500 N-m

MD = (10000 × 7.5) – (1000 × 5 × 5) – (8000 × 2.5) N-m

= 30000 N-m

MB = – 1600 × 2.5 × 
2.5
2

 = – 5000 N-m
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Maximum bending moment
The maximum bending moment, positive or negative will occur at C or at B because the shear

force changes sign at both these points. But from the bending moment diagram, we see that the
maximum positive bending moment occurs at C and the maximum negative bending moment occurs
at B.

EXAMPLE 13.16.  Draw the complete shear force diagram for the overhanging beam shown
in Fig. 13.36.

Fig. 13.36

Hence, determine the position in the central bay, at which the positive bending moment occurs.
Find also magnitude of the maximum positive and negative bending  moment.

SOLUTION.  Given :  Span (l) = 7.5 m ;  Uniformly distributed load between C and D = 9 kN/m ;
Point load at E (W) = 5 kN ;  Uniformly distributed load between D and F (w2) = 3 kN/m and
overhanging on both sides = 1.5 m.

Taking moments about A,

RB × 4.5 = (3 × 4.5) × 3,75 + (5 × 2.7) = 64.125
(ä U.D.L. of 9 kN/m will have zero moment about A)

∴ RB =
64.125

4.5  = 14.25 kN

and RA = (9 × 3 + 5 + 3 × 4.5) – 14.25 = 31.25 kN

Shear force diagram

The shear force diagram is shown in Fig. 13.37 (b) and the values are tabulated here:

FC = 0

FA = 0 – 9 × 1.5 + 31.25 = + 17.75 kN

FD = + 17.75 – 9 × 1.5 = + 4.25 kN

FE = + 4.25 – 3 × 1.2 – 5.0 = – 4.35 kN

FB = – 4.35 – 3 × 1.8 + 14.25 = + 4.5 kN

FF = + 4.5 – 3 × 1.5 = 0

Bending moment diagram

The bending moment diagram is shown in Fig. 13.37 (c) and the values are tabulated here:

MC = 0

MA =
29 (1.5)

2
×−  = – 10.125 kN-m

MD =
29 (3)

2
×−  + 31.25 × 1.5 = 6.375 kN-m
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Fig. 13.37

MB =
23 (1.5)

2
×−  = – 3.375 kN-m

ME =
23 (3.3)

2
×−  + 14.25 × 1.8 = 9.315 kN-m

MF = 0
Maximum bending moment

The maximum bending moment, positive or negative will occur at A, E or B, because the shear
force changes sign at all these three points. But from the bending moment diagram, we see that the
maximum negative bending moment occurs at A and the maximum positive bending moment occurs at E.

Example 13.17.  A simply supported beam with over-hanging ends carries transverse
loads as shown in Fig. 13.38.

Fig. 13.38

If W = 10 w, what is the overhanging length on each side, such that the bending moment at the
middle of the beam, is zero? Sketch the shear force and bending moment diagrams.
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SOLUTION.  Given :  Span (l)  = 10 m ;  Point loads at C and D = W and uniformly distributed load
between A and B = w/metre.

Since the beam is symmetrically loaded, therefore, the two reactions (i.e., RA and RB) will be
equal. From the geometry of the figure, we find that the reaction at A,

RA = RB = 
1
2

 (W + 10 w + W) = W + 5 w

= 10 w + 5 w = 15 w (ä W = 10 w)
Overhanging length of the beam on each side

Fig. 13.39

We know that the bending moment at the middle of the beam A,

ME = W (5 + x) + w × 5 × 
5
2

 – 15 w × 5

= 10 w (5 + x) + 12.5 w – 75 w (ä  W = 10 w)
= 50 w + 10 wx – 62.5 w

= 10 wx – 12.5 w ...(i)

Since the bending moment at the middle of the beam is zero, therefore equating the above equation
to zero,

10 wx – 12.5 w = 0

∴ x =
12.5
10  = 1.25 m        Ans.
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Shear force
The shear force diagram is shown in Fig. 13.39 (b), and the values are tabulated here:

FC = – 10 w

FA = – 10 w + 15 w = + 5 w
FB = + 5 w – 10 w + 15 w = + 10 w

FD = + 10 w

Bending moment
The bending moment diagram is shown in Fig. 13.39 (c) and the values are tabulated here:

MC = 0

MA = – 10 w × 1.25 = – 12.5 w
*ME = 0 ...(given)

MB = – 10 w × 1.25 = – 12.5 w

MD = 0

EXAMPLE 13.18. A beam of length l carries a uniformly distributed load of w per unit
length. The beam is supported on two supports at equal distances from the two ends. Determine
the position of the supports, if the B.M., to which the beam is subjected to, is as small as possible.
Draw the B.M. and S.F. diagrams for the beam.

SOLUTION.  Given :  Total span = l ;  Uniformly distributed load = w/unit length and overhanging
on both sides = a

Let a be the distance of the supports from the ends. The bending moment will be minimum, only
if the positive bending moment is equal to the negative bending moment. Since the beam is carrying
a uniformly distributed load and the two supports are equally spaced from the ends, therefore the two
reactions are equal.

or RA = RB = 
2

wl

From the geometry of the figure, we find that the maximum negative bending moment will be at
the two supports, whereas the maximum positive bending moment will be at the middle of the beam.
Now bending moment at A,

MA = – wa × 
2

2 2
a wa= − ...(i)

and bending moment at the middle of the beam,

MM = ( ) ( )2 2 4A
l wl lR a− − ×

= ( ) 2

2 2 8
wl l wla− − ...(ii)

Equating (i) and (ii) and ignoring the nature of MA,

2

2
wa

= ( ) 2

2 2 8
wl l wla− −

a2 =
2 2 2

2 4 4
l l lla la− − = −

* The moment at E (i.e., ME) may also be found out as discussed below:
ME = (10 w × 6.25) + (5 w × 2.5) – (15 w × 5) = 0
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Fig. 13.40

or a2 + la – 
2

4
l = 0

Solving it as a quadratic equation for a,

a =

2
2

2
4

24
2 2

×− ± + − ±
=

ll l l l

= 0. 5 l + 0.707 l = 0.207 l (Taking + sign)
Shear force

The shear force diagram is shown in Fig. 13.40 (b), and values are tabulated here:

FC = 0

FA = 0 – w × 0.207 l + 0.5 wl = + 0.293 wl

FM = + 0.293 wl – w × 0.293 l = 0

FB = 0 – w × 0.293 l + 0.5 wl = + 0.207 wl

FD = + 0.207 wl – w × 0.207 l = 0
Bending moment

The bending moment diagram is shown in Fig. 13.40 (c) and the values are tabulated here:

MC = 0

MA = MB = –
2

2 2
wa w= −  (0.207 l)2 = – 0.0215 wl2

MM = ( ) 2

2 4 2 2 8 2
wl l wl l wl wla− × + − = − +  (0.5 l – 0.207 l)
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=
2

8 2
wl wl− +  × 0.293 l = 0.021 5 wl2

EXAMPLE 13.19.  A horizontal beam 10 m long is carrying a uniformly distributed load of
1 kN/m. The beam is supported on two supports 6 m apart. Find the position of the supports, so
that bending moment on the beam is as small as possible. Also draw the shear force and bending
moment diagrams.

SOLUTION.  Given :  Total length of beam = 10 m ;  Uniformly distributed load (w) = 1 kN/m and
span (l) = 6 m

Let a be the distance between the support A and the left end of the beam as shown in Fig. 13.41 (a).

Fig. 13.41

Taking moments about ,
RB × 6 = 1 × 10 (5 – a) = 10 (5 – a)

∴ RB =
10 (5 ) 5 (5 )

6 3
a

a
− = −

and RA =
5 510 (5 ) (1 )
3 3

a a− − = +

From the geometry of the figure, we find that the maximum negative bending moment will be at
either of the two supports and the maximum positive bending moment will be in the span AB. Let the
maximum positive bending moment be at M at a distance of x from C.

Since the shear force at M is zero, therefore
1 × x – RA = 0

∴ x = RA =
5
3  (1 + a)
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We know that the bending moment at A,

MA = – 1 × a × 
2

2 2
a x= − ...(i)

and bending moment, where shear force is zero (i.e., at a distance of x from C),

MM = 1 × x × 
2
x

 + RA (x – a) = RA (x – a) – 
2

2
x

=
2

5 5 1 5(1 ) (1 ) (1 )
3 3 2 3

a a a a⎡ ⎤ ⎡ ⎤+ + − − +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

...(ä Substituting the values of RA and x)

=
25 5 5 25(1 ) (1 )

3 3 3 18
aa a a⎡ ⎤+ + − − +

⎢ ⎥⎣ ⎦

=
25 5 3 25(1 ) 1 (1 )

3 3 5 18
aa a a⎡ ⎤+ + − − +

⎢ ⎥⎣ ⎦

=
225 2 25(1 ) 1 (1 )

9 5 18
aa a⎡ ⎤+ + − +

⎢ ⎥⎣ ⎦

=
5 2 )25 1(1 ) (1 )

9 5 2
a

a a
⎡ + ⎤⎛ ⎞+ − +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

=
10 4 5 525 (1 )

9 10
a a

a
+ − −⎡ ⎤+ ⎢ ⎥⎣ ⎦

=
525 (1 )

9 10
a

a
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

=
55 5(1 ) (1 ) (5 )

9 2 18
a

a a a
−⎡ ⎤+ = + −⎢ ⎥⎣ ⎦

=
25 (5 5 )

18
a a a− + −

=
25 (5 4 )

18
a a+ − ...(ii)

Equating (i) and (ii) and ignoring the nature of MA,

2

2
a =

2
2 55 25 20(5 4 )

18 18 18 18
aaa a+ − = + −

∴ a2 =
2525 20

9 9 9
aa+ −

or 14 a2 – 20a – 25 = 0
Solving it as a quadratic equation for a,

a =
220 (20) (4 14 25)
2 14

± + × ×
×  = 2.23 m

∴ x =
5 5(1 ) (1 2.23)
3 3

a+ = + = 5.38 m

Now reaction at B,

RB =
5
3

(5 – a) = 
5
3

 (5 – 2.23) = 4.62 kN

and RA =
5
3

 (1 + a) = 
5
3

 (1 + 2.23) = 5.38 kN
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Shear force diagram
The shear force diagram is shown in Fig. 13.41 (b), and the values are tabulated here:

FC = 0

FA = 0 – 1 × 2.23 + 5.38 = + 3.15 kN
FB = + 3.15 – 1 × 6 + 4.62 = + 1.77 kN

FD = + 1.77 – 1.77 = 0

Bending moment diagram
The bending moment diagram is drawn in Fig. 13.41 (c), and the values are tabulated here:

MC = 0

MD = 0

MA = – 1 × 2.23 × 2.23
2

 = – 2.49 kN-m

MM = – 1 × 5.38 × 
5.38

2
 + 5.38 × 3.15 = 2.47 kN-m

MB = 1 × 1.77 × 1.77
2

 = 1.56 kN-m

13.17. Load and Bending Moment Diagrams from a Shear Force
Diagram

Sometimes, instead of load diagram, a shear force diagram for a beam is given. In such cases, we
first draw the actual load diagram and then the bending moment diagram. The load diagram for the
beam may be easily drawn by keeping the following points in view:

1. If there is a sudden increase or decrease (i.e., vertical line of the shear force diagram), it indi-
cates that there is either a point load or reaction (i.e., support) at that point.

2. If there is no increase or decrease in shear force diagram between any two points (i.e., the shear
force line is horizontal and consists of rectangle), it indicates that there is no loading between
the two points.

3. If the shear force line is an inclined straight line between any two points, it indicates that there
is a uniformly distributed load between the two points.

4. If the shear force line is a parabolic curve between any two points, it indicates that there is a
uniformly varying load between the two points.

After drawing the load diagram, for the beam the bending moment diagram may be drawn as usual.

EXAMPLE 13.20.  The diagram shown in Fig. 13.42 is the shear force diagram in metric
units, for a beam, which rests on two supports, one being at the left hand end.

Fig. 13.42
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Deduce directly from the shear force diagram, (a) loading on the beam, (b) bending moment at
2 m intervals along the beam and (c) position of the second support. Also draw bending moment
diagram for the beam and indicate the position and magnitude of the maximum value on it.

SOLUTION.  Given :  Total length (l) = 18 m ;  Shear force at A = 10 kN and shear force at D = 3 kN.

First of all, let us analyse the shear force diagram as discussed below:

1. At A
We see that the shear force increases suddenly from 0 to 10 kN. Therefore there is a support

reaction of 10 kN at A.

2. Between A and B
We see that the shear force diagram has an inclined straight line between A and B. Therefore the

beam is carrying a uniformly distributed load between A and B. We also see that there is a decrease of
10 – 5.5 = 4.5 kN shear force in 6 m length of beam. Therefore the beam carries a uniformly distributed
load of 4.5/6 = 3/4 kN/m.
3. At B

We see that the shear force has a sudden decrease of 5.5 + 1.5 = 7 kN. Thus there is a point load
of 7 kN at B.

4. Between B and C
We see that the shear force diagram has an inclined straight line between B and C. Therefore the

beam is carrying a uniformly distributed load between B and C. We also see that there is a decrease of
9 – 1.5 = 7.5 kN shear force in 10 m length of beam. Therefore the beam carries a uniformly distributed
load of 7.5/10 = 3/4 kN/m.

5. At C
We see that the shear force has a sudden increase of 9 + 3 = 12 kN. Thus there is a support

reaction of 12 kN at C.
6. Between C and D

We see that the shear force diagram has a straight horizontal line between C and D. Therefore
there is no load between C and D.

7. At D
We see that the shear force decreases suddenly from + 3 kN to 0. Therefore there is a point load

of 3 kN at D.

The load diagram is shown in Fig. 13.43 (b).

Bending Moment
Let us calculate bending moments at 2 meters interval along the beam.

M0 = 0

M2 = 10 × 2 – 3
4

 × 2 × 1 = 18.5 kN-m

M4 = 10 × 4 – 3
4

 × 4 × 2 = 34 kN-m

M6 = 10 × 6 – 3
4

 × 6 × 3 = 46.5 kN-m

M8 = 10 × 8 – 3
4

 × 8 × 4 – 7 × 2 = 42 kN-m

M10 = 10 × 10 – 3
4

 × 10 × 5 – 7 × 4 = 34.5 kN-m
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Fig. 13.43

M12 = 10 × 12 – 3
2

 × 12 × 6 – 7 × 6 = 24 kN-m

M14 = 10 × 14 – 3
2

 × 14 × 7 – 7 × 8 = 10.5 kN-m

M16 = 10 × 16 – 3
2

 × 16 × 8 – 7 × 10 = – 6 kN-m

M18 = 0

Maximum bending moment
The maximum bending moment, positive or negative will occur at B (i.e., 6 m from A) and C (i.e.,

16 m from A) because the shear force changes sign at both the points. But from the bending moment
diagram, we see that maximum positive bending moment occurs at B and the maximum negative
bending moment at C. Now complete the diagram as shown in Fig. 13.43 (c).

EXAMPLE 13.21.  Figure 13.44 shows the shear force diagram of a loaded beam.

Fig. 13.44

Find the loading on the beam and draw the bending moment diagram.
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SOLUTION.  Given :  Total length (L) = 7 m ;  Shear force at A = 8 kN and shear force at D = 6 kN
First of all, let us analyse the shear force diagram as discussed below:

1. At A
We see that the shear force increase suddenly from 0 to 8 kN. Therefore there is a support

reaction of 8 kN at A.
2. Between A and B

We see that shear force diagram has a straight horizontal line between A and B. Therefore there
is no load between A and B.

3. At B
We see that the shear force has a sudden decrease of  8 – 3 = 5 kN. Therefore there is a point load

of 5 kN at B.

4. Between B and C
We see that the shear force diagram has an inclined straight line between B and C. Therefore the

beam is carrying a uniformly distributed load between B and C. We also see that there is a decrease of
3 + 1 = 4 kN in 2 m length of the beam. Therefore the beam is carrying a uniformly distributed load
of 4/2 = 2 kN/m.
5. At C

We see that the shear force has sudden decrease of 6 – 1 = 5 kN. Therefore there is a point load
of 5 kN at C.

6. Between C and D
We see that the shear force has a straight horizontal line between C and D. Therefore there is no

load between C and D.

7. At D
We see that the shear force suddenly decreases from – 6 kN to 0. Therefore there is a section of

6 kN at D.
The load diagram is shown in Fig. 13.45.

Fig. 13.45
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Bending moment diagram
The bending moment diagram is shown in Fig. 13.45 and the values are tabulated here:

MA = 0

MB = 8 × 2 = 16 kN-m
MC = 6 × 3 = 18 kN-m

MD = 0

We know that the maximum bending moment will occur at M, where the shear force changes
sign. Let x be the distance between B and M. From the geometry of the figure between B and M,

3
x

=
2

1
− x

      or      x = 6 – 3x

4x = 6               or      x = 1.5 m

∴ MM = (8 × 3.5) – (5 × 1.5) – (2 × 1.5 × 
1.5
2

)

= 18.25 kN-m

EXAMPLE 13.22.  Shear force diagram for a loaded beam is shown in Fig. 13.46.

Fig. 13.46

Determine the loading on the beam and bence draw bending moment diagram. Locate the
point of contraflexure, if any. All the values are in kilonewtons.

SOLUTION.  Given :  Total span (L) = 8.5 m ;  Shear force at A = – 3 kN and shear force at D =
+ 4 kN

First of all, let us analyse the shear force diagram discussed below:

1. At A
We see that the shear force decreases suddenly from 0 to 3 kN at A. Therefore there is a point

load of 3 kN at A.

2. Between A and B
We see that the shear force diagram is a straight horizontal line between A and B. Therefore there

is no load between A and B.
3. At B

We see that the shear force diagram has a sudden increase of 3 + 2.5 = 5.5 kN at B. Thus there is
a support reaction of 5.5 kN at B.

4. Between B and C
We see that the shear force diagram is an inclined straight line between B and C. Therefore the

beam is carrying a uniformly distributed load between B and C. We also see that there is a decrease of
2.5 + 3.5 = 6 kN shear force in 6 m length of beam. Therefore the beam carries a uniformly distributed
load of 6/6 = 1 kN/m.
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Fig. 13.47

5. At C
We see that the shear force diagram has a sudden increase of 3.5 + 4 = 7.5 kN. Thus there is a

support reaction of 7.5 kN at C.

6. Between C and D
We see that the shear force diagram is a straight horizontal line between C and D. Therefore there

is no load between C and D.
7. At D

We see that the shear force decreases suddenly from + 4 kN to 0. Therefore there is a point load
of 4 kN at D.

The load diagram is shown in Fig. 13.47 (b).
Bending moment diagram

The bending moment diagram is shown in Fig. 13.47 (c) and the values are tabulated here:

MA = 0
MB = – 3 × 1 = – 3 kN-m

MC = – 4 × 1.5 = – 6 kN-m

MD = 0
Maximum bending moment

The maximum bending moment, positive or negative will occur at B, M or C because shear force
changes sign at all three points. Let x be the distance between B and M. From the geometry of the
figure between B and C,

2.5
x

=
6
3.5

x−
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3.5 x = 15 – 2.5 x
or x = 2.5 m

∴ MM = – (3 × 3.5) + (5.5 × 2.5) – ( )2.51 2.5
2

× ×  = 0.125 kN-m

Thus we see that the maximum positive bending moment occurs at M and maximum negative
bending moment occurs at C.

Points of Contraflexures
Let the point of contraflexure be at a distance of x metres from B (it will be between B and C as

is seen in the bending moment diagram). We know that bending moment at any section X at a distance
of x from B,

MX = – (x + 1) + 5.5 x – 1 × x × 
2
x

= – 3 x – 3 + 5.5 x – 
2 2

2 2
x x= −  + 2.5 x – 3

Equating the above equation to zero, we get
2

2
x−  + 2.5 x – 3 = 0

or x2 – 5 x + 6 = 0

x =
25 (5) 4 6 5 1

2 2
± − × ±=  = 2 m and 3 m        Ans.

EXERCISE 13.3

1. A beam 6 m long rests on two supports 5 m apart. The right end is overhanging by 1 m. The
beam carries a uniformly distributed load of 1.5 kN/m over the entire length of the beam. Draw
S.F. and B.M. diagram and find the amount and position of maximum bending moment.

[Ans. 4.32 kN-m at 2.4 m from left end]
2. Draw the shear force and bending moment diagrams, for the overhanging beam carrying loads

as shown in Fig. 13.48.

Fig. 13.48

Mark the values of the principal ordinates and locate the point of contraflexure, if any.
[Ans. 1 m from A]

3. A beam 10 m long carries load as shown in Fig. 13.49.

Fig. 13.49

Draw shear force and bending moment diagrams for the beam and determine the points of
contraflexures, if any. [Ans. 3.62 m and 5.72 m from C]
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4. A beam AB 20 metres long, carries a uniformly distributed load 0.6 kN/m together with concen-
trated loads of 3 kN at left hand end A and 5 kN at right hand-end B as shown in Fig. 13.50.

Fig. 13.50

The props are so located that the reaction is the same at each support. Determine the position of
the props and draw bending moment and shear force diagrams. Mark the values of the maxi-
mum bending moment and maximum shear force. [Ans. 5 m ; 17 m]

13.18. Beams Subjected to a Moment
Sometimes, a beam is subjected to a clockwise or anticlockwise moment (or couple) at a section.

In such a case, the magnitude of the moment is considered while calculating the reactions. The bending
moment at the section of the couple changes suddenly in magnitude equal to that of the couple. This
may also be found out by calculating the bending moment separately with the help of both the reactions.
Since the bending moment does not involve any load, therefore the shear force does not change at the
section of couple.
NOTES:  1. A clockwise moment (called positive moment) causes negative shear force over the beam and
positive bending moment at the section. Similarly, an anticlockwise moment (called negative moment) causes
positive shear force over the beam and negative bending moment at the section.

2. The bending moment will suddenly increase due to clockwise moment and decrease due to anticlockwise
moment at the point of its application when we move from left to right along the beam.

EXAMPLE 13.23.  A simply supported beam of 5 m span is subjected to a clockwise moment
of 15 kN-m at a distance of 2 m from the left end as shown in Fig. 13.51.

Fig. 13.51

Draw the shear force and bending moment diagrams for the beam.

SOLUTION.  Given :  Span (l) = 5 m and couple at C (μ) = 15 kN-m

We know that the tendency of the moment is to uplift the beam from its support A and to depress
it at its support B. It is thus obvious that the reaction at A will be downwards and that at B will be
upwards as shown in Fig. 13.52 (a).

Taking moments about ,

RB × 5 = 15 ...(Since the beam is subjected to moment only)

∴ RB =
15
5  = 3 kN     (upwards)

Since there is no external loading on the beam, therefore the reaction at A will be of the same
magnitude but in opposite direction. Therefore reaction at A,

RA = 3 kN     (downwards)
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Shear force diagram
We know the shear force is constant from A to B and is equal to – 3 kN (because of downward

reaction at A or upward reaction at B) as shown in Fig. 13.52 (b).

Fig. 13.52

Bending moment diagram
The bending moment diagram is shown in Fig. 13.52 (c) and the values are tabulated here:

MA = 0
MB = 0

Bending moment just on the left side of C,

= RA × 2 = – 3 × 2 = – 6 kN-m
and bending moment just on the right side of C*

= – 6 + 15 = + 9 kN-m

EXAMPLE 13.24. A simply supported beam of span 2.5 m is subjected to a uniformly
distributed load and a clockwise couple as shown in Fig. 13.53.

Fig. 13.53

Draw the shear force and bending moment diagrams for the beam.

SOLUTION.  Given :  Span (l) = 2.5 m ;  Uniformly distributed load between A and C (w)=2 kN/m
and couple at D (μ) = 2 kN-m

* At C, the bending moment will suddenly increase due to clockwise moment at C. The bending moment just
on the right side C may also be found out from the reaction RB, i.e., = RB × 3 = + 3.0 × 3 = + 9.0 kN-m
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First of all, let us find out the reactions RA and RB. Taking moments about A and equating the same,

RB × 2.5 = ( )12 1
2

× ×  + 2 = 3 ...(+ 3 due to clockwise moment)

∴ RB = 3/2.5 = 1.2 kN

and RA = (2 × 1) – 1.2 = 0.8 kN
Shear force diagram

The shear force diagram is shown in Fig. 13.54 (b) and the values are tabulated here:

FA = + RA = + 8 kN
FC = + 0.8 – (2 × 1) = – 1.2 kN

FB = – 1.2 kN

Bending moment diagram
The bending moment diagram is shown in Fig. 13.54 (c) and the values are tabulated here:

MA = 0

MC = (0.8 × 1) – (2 × 1 × 0.5) = – 0.2 kN-m
MD = (0.8 × 1.5) – (2 × 1 × 1) = – 0.8 kN-m

...(With the help of RA)

= 1.2 × 1= 1.2 kN-m ...(With the help of RB)

We know that maximum bending moment will occur either at E where shear force changes sign
or at D due to couple. Let x be the distance between A and E. From the geometry of the figure between
A and C, we find that

0.8
x

=
1
1.2

x−

Fig. 13.54
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or 1.2 x = 0.8 – 0.8 x

2 x = 0.8          or          x = 
0.8
2

 = 0.4 m

∴ ME = (0.8 × 0.4) – ( )0.42 0.4
2

× × = + 0.16 kN-m

From the above two values of MD, we find that it will suddenly increase from – 0.8 kN-m to
+ 1.2 kN-m due to the clockwise moment of 2 kN-m,

MB = 0

EXAMPLE 13.25.  A simply supported beam 5 metres long carries a load of 10 kN on a
bracket welded to the beam as shown in Fig. 13.55.

Fig. 13.55

Draw the shear force and bending moment diagrams for the beam.

SOLUTION.  Given :  Span (l) = 5 m and load on the bracket at C = 10 kN.

It will be interesting to know that the 10 kN load, applied on the bracket will have the following
two effects:

1. Vertical load of 10 kN at C,

2. An anticlockwise couple of moment equal to 10 × 0.5 = 5 kN-m at C.

Fig. 13.56
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Now the shear force and bending moment diagrams should be drawn by combining the above
two mentioned effects as shown in Fig. 13.56 (a). First of all, let us find out the reactions RA and RB.
Taking moments about A and equating the same,

RB × 5 = (10 × 3) – 5 = 25 ...(– 5 due to anticlockwise moment)

∴ RB = 25/5 = 5 kN

and RA = 10 – 5 = 5 kN

Shear force diagram

The shear force diagram is shown in Fig. 13.56 (b) and the values are tabulated here:

FA = + RA = + 5 kN

FC = + 5 – 10 = – 5 kN

FB = – 5 kN

Bending moment diagram

The bending moment diagram is shown in Fig. 13.56 (c) and the values are tabulated here:

MA = 0

MC = 5 × 3 = 15 kN-m ...(With the help of RA)

= 5 × 2 = 10 kN-m ...(With the help of RB)

MB = 0

From the above two values of MC we find that it will suddenly decrease from 15 kN-m to 10 kN-
m due to the anticlockwise moment of 5 kN-m.

EXAMPLE 13.26.  A beam is loaded as shown in Fig. 13.57.

Fig. 13.57

Construct the shear force and bending moment diagrams for the beam and mark the values of
the important ordinates.

SOLUTION.  Given :  Span (l) = 7 m ;  Couple at C (μ) = 12 kN-m ;  Point load at D (W1) = 6 kN
and point load at E (W2) = 6 kN

Taking moments about A,

RB × 6 = (6 × 4) + (6 × 7) – 12 = 54
...(– 12 due to anticlockwise moment)

RB =
54
6  = 9 kN

∴ RA = (6 + 6) – 9 = 3 kN

Shear force diagram

The shear force diagram is shown in Fig. 13.58 (b) and the values are tabulated here:

FA = + 3 kN
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Fig. 13.58

FD = + 3 – 6 = – 3 kN ...(With the help of RA)

FB = – 3 + 9 = + 6 kN

FE = + 6 kN

Bending moment diagram

The bending moment diagram is shown in Fig. 13.58 (c) and the values are tabulated here:

MA = 0

MC = 3 × 2 = 6 kN-m

MD = 3 × 4 – 12 = 0

MB = – 6 × 1 = – 6 kN-m

ME = 0

At C, the bending moment will suddenly decrease from 6 kN-m to 6 – 12 = – 6 kN-m because of
anticlockwise couple as shown in Fig. 13.58 (c).

13.19. Beams Subjected to Inclined Loads
In the previous articles, we have been discussing the cases, when the load used to act at right

angles to the axis of the beam. But in actual practice, there may be cases when a beam is subjected to
inclined loads. These inclined loads are resolved at right angles and along the axis of the beam. A
little consideration will show that the transverse components (i.e., components, which are resolved at
right angles to the axis of the beam) will cause shear force and bending moments. The axial components
(i.e., components, which are resolved along the axis of the beam) will cause thrust i.e., pulls or pushes
in the beam, depending upon its end position.
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In such cases, one end of the beam is hinged, whereas the other is simply supported or supported
on rollers. The hinged end will be subjected to horizontal thrust equal to the unbalanced horizontal
force of the axial components of the inclined loads. In such cases, like shear force and bending
moment diagrams, an axial force diagram is drawn, which represents the horizontal thrust. The general
practice, to draw the axial force diagram is that the tensile force is taken as positive, whereas the
compressive force as negative.

EXAMPLE 13.27.  Analyse the beam shown in Fig. 13.59 and draw the bending moment and
shear force diagrams.

Fig. 13.59

Locate the points of contraflexure, if any.

SOLUTION.  Given :  Span l = 9 m ;  Inclined load at B = 6 N ;  Uniformly distributed load between
C and D (w) = 1 kN/m and point load at E = 3 kN.

Resolving vertically the force of 6 kN at B
= 6 sin 30° = 6 × 0.5 = 3 kN

and now resolving horizontally the force of 6 kN at B

= 6 cos 30° = 6 × 0.866 = 5.196 kN
*Taking moments about A, RD × 8 = (3 × 9) + (1 × 4 × 6) + (3 × 2) = 57

∴ RD = 57
8

 = 7.125 kN

and RA = (3 + 4 + 3) – 7.125 = 2.875 kN

The load diagram and reactions are shown in Fig. 13.60 (a).

Shear force diagram
The shear force diagram is shown in Fig. 13.60 (b) and the values are tabulated here:

FA = + 2.875 kN

FB = + 2.875 – 3 = – 0.125 kN
FC = – 0.125 kN

FD = – 0.125 – (1 × 4) + 7.125 = + 3 kN

FE = + 3 kN
Bending moment diagram

The bending moment diagram is shown in Fig. 13.60 (c) and the values are tabulated here:

MA = 0
MB = 2.875 × 2 = 5.75 kN-m

MC = (2.875 × 4) – (3 × 2) = 5.5 kN-m

MD = – 3 × 1 = – 3 kN-m

* The moment of axial component i.e., horizontal component of the 6 kN force will have no moment
about A.
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Fig. 13.60

Point of contraflexure
Let the point of contraflexure (P) be at a distance of x from D (It will be between C and D as is

seen in the bending moment diagram). We know that the bending moment at any section X in CD at a
distance x from D,

MX = 3 (x + 1) + (1 × x × 
2
x ) – 7.125 x

Equating the above equation to zero,

3 (x + 1) + 
2

2
x

 – 7.125 x = 0

3 x + 3 + 
2

2
x  – 7.125 x = 0

2

2
x  – 4.125 x + 3 = 0

x2 – 8.25 x + 6 = 0

Solving it as a quadratic equation for x,

x =
28.25 (8.25) (4 6)

2
± − ×

 = 0.8 m        Ans.
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Axial force diagram
From the load diagram, we see that horizontal reaction at A (being a hinged end) is equal to 5.196

kN (←). Therefore the section AB of the beam is subjected to an axial tensile force (AAB) of 5.196 kN.
The beam from B to E is not subjected to any axial force. The axial force diagram is drawn in Fig.
13.60 (d).

EXAMPLE 13.28.  A horizontal beam AB 6 m long is hinged at A and freely supported at B.
The beam is loaded as shown in Fig. 13.61.

Fig. 13.61

Draw the shear force, bending moment and thrust diagrams for the beam.

SOLUTION.  Given :  Span (l) = 6 m ;  Inclined load of C = 4 kN ;  Inclined load of D = 6 kN and
inclined load of E = 8 kN.

Resolving vertically the force of 4 kN at C
= 4 sin 30° = 4 × 0.5 = 2 kN

and now resolving horizontally the force of 4 kN at C

= 4 cos 30° = 4 × 0.866 = 3.464 kN
Similarly, resolving vertically the force of 6 kN at D

= 6 sin 45° = 6 × 0.707 = 4.242 kN

and now resolving horizontally the force of 6 kN at D
= 6 cos 45° = 6 × 0.707 = 4.242 kN

Similarly, resolving vertically the force of 8 kN at E

= 8 sin 60° = 8 × 0.866 = 6.928 kN
and now resolving horizontally the force of 8 kN at E

= 8 cos 60° = 8 × 0.5 = 4 kN (→)

Taking moments about A,
RB × 6 = (2 × 1) + (4.242 × 2.5) + 6.928 × 4.5 = 43.78

∴ RB =
43.78

6
 = 7.3 kN

and RA = 2 + 4.242 + 6.928 – 7.3 = 5.87 kN

The load diagram and reactions are shown in Fig. 13.62 (a).
Shear force diagram

The shear force diagram is shown in Fig. 13.62 (b) and the values are tabulated here:

FA = + 5.87 kN
FC = + 5.87 – 2 = + 3.87 kN

FD = + 3.87 – 4.242 = – 0.372 kN

FE = – 0.372 – 6.928 = – 7.3 kN
FB = – 7.3 + 7.3 = 0
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Fig. 13.62

Bending moment diagram
The bending moment diagram is shown in Fig. 13.62 (c) and the values are tabulated here:

MA = 0

MC = 5.87 × 1 = 5.87 kN-m

MD = 5.87 × 2.5 – 2 × 1.5 = 11.675 kN-m
ME = 7.3 × 1.5 = 10.95 kN-m

MB = 0

Maximum bending moment
It will occur at D, where shear force changes sign. Thus we see that maximum bending moment

occurs at D.

Axial force diagram
From the load diagram, we see that the horizontal reaction at A (being a hinged end) is

3.464 4.0 4.242
← ← →

+ −  = 3.222 kN (←) The axial force diagram is shown in Fig. 13.62 (d) and the

values are tabulated here:

AAC = 3.222 kN (Tensile)
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ACD = 3.464 – 3.222 = 0.242 kN (Compressive)
ADE = 4.242 – 0.242 = 4 kN (Tensile)

AEB = 0

13.20. Shear Force and Bending Moment Diagrams for Inclined
Beams

In the previous articles, we have discussed the cases of horizontal beams, subjected to various
types of loadings. But sometimes, we come across inclined beams or members (such as ladders etc.)
and carrying vertical loads. In such cases, the given loads are resolved at right angles and along the
axis of the beam. The beam is further analysed in the same manner as a beam is subjected to inclined
loads. The horizontal and vertical reactions at the two supports of the inclined beam are found out
from the simple laws of statics.

EXAMPLE 13.29.  A ladder AB 5 m long, weighing 500 N/m, rests against a smooth wall and
on a rough floor as shown in Fig. 13.63.

Fig. 13.63

Find the reactions at A and B and construct the shear force, bending moment and axial thrust
diagrams for the ladder.

SOLUTION.  Given :  Span (l) = 5 m ;  Uniformly distributed load (w) = 500 N/m and point load at D
= 750 N.

From the geometry of the figure, we find that

tan θ =
3
4

 = 0.75

∴ sin θ =
3
5

 = 0.6          and           cos θ = 
4
5

 = 0.8

RA and RB = Normal reactions at the wall and floor,

Rf = *Frictional resistance at the floor.

Equating the vertical and horizontal forces,
RB = (500 × 5) + 750 = 3250 N

and RA = Rf

Taking moments about B,
RA × 3 = (500 × 5 × 2) + (750 × 0.8) = 5600

* Since the wall is smooth, therefore there is no frictional resistance at the wall.
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Fig. 13.64

∴ RA = Rf = 
5600

3  = 1867 N

Resolving the reaction RA at A along the beam

= RA cos θ = 1867 × 0.8 = 1493.6 N

and now resolving the reaction RA at right angles to the beam
= RA sin θ = 1867 × 0.6 = 1120 N

Similarly, resolving the reactions RB and Rf at B along the beam

= RB sin θ + Rf cos θ
= 3250 × 0.6 + 1867 × 0.8 = 3443.6 N

and now resolving the reactions RB and Rf at right angles to the beam

= RB cos θ – Rf sin θ
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= 3250 × 0.8 – 1867 × 0.6 = 1480 N

Resolving the force 750 N at D along the beam

= 750 sin θ = 750 × 0.6 = 450 N

and now resolving this force 750 N at right angle to the beam

= 750 cos θ = 750 × 0.8 = 600 N

Resolving the weight of ladder 500 N/m along the beam

= 500 sin θ = 500 × 0.6 = 300 N/m

and now resolving this weight of 500 N/m at right angles to the beam

= 500 cos θ = 500 × 0.8 = 400 N/m

Shear force

The shear force diagram is shown in Fig. 13.64 (b) and the values are tabulated here:

FA = +1120 N

FD = + 1120 – (400 × 4) – 600 = – 1080 N

FB = – 1080 – (400 × 1) + 1480 = 0

Bending moment

The bending moment diagram is shown in Fig. 13.64 (c) and the values are tabulated here:

MA = 0

MD = 3250 × 0.8 – 1867 × 0.6 – 400 × 1 × 0.5 N

= 1279.8 N

MB = 0

Maximum bending moment

It will occur at M, where shear force changes sign. Let x be the distance between D and M. From
the geometry of the figure, distance between A and D, we find that

1120
x

=
4
480

x−

or 480 x = 4480 – 1120 x

x = 2.8

∴ MM = 1120 × 2.8 – 400 × 2.8 × 
2.8
2

 = 1568 N

Axial force diagram

The axial force diagram as shown in Fig. 13.64 (d) and the values are tabulated here:

PA = – 1493.6 N

PD = – 1493.6 – (300 × 4) – 450 N

= – 3143.6 N

PB = – 3143.6 – (300 × 1) = – 3443.6 N
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EXERCISE 13.4

1. A simply supported beam AB of 4 m span is subjected to a clockwise moment of 20 kN-m at its
centre. Draw the S.F. and B.M. diagrams. [Ans. RA = RB = 5 kN ; M = 10 kN-m]

2. A simply supported beam 7.5 m long is subjected to a couple of 30 kN-m in an anticlockwise
direction at a distance of 5.5 m from the left support. Draw the S.F. and B.M. diagrams for the
beam. [Ans. RA = RB = 4 kN ; M = – 22 kN-m ; + 8 kN-m]

3. Analyse the beam subjected to the moment and uniformly distributed load as shown in
Fig. 13.65.

Fig. 13.65

Draw the moment and bending diagrams. [Ans. Mmax = – 18.0 kN.m at C]
4. Calculate the reactions at A and B for the beam shown in Fig. 13.66 and draw the bending

moment diagram and shear force diagram. ⎡
⎢⎣

Ans. 
4 2

;
3 2
W W ⎤

⎥⎦

Fig. 13.66

5. Analyse the beam shown in Fig. 13.67.

Fig. 13.67

Draw the shear force, bending moment and thrust diagrams.
[Ans.  = 2.09 kN ; RB = 1.53 kN ; MC = 2.09 kN-m ; MD = 3.11 kN-m ; MA = 3.06 kN-m ;

PA = – 1.893 kN ; PC = – 3.307 kN ; PD = 2.6 kN ; PE = – 2.6 kN]

QUESTIONS

1. Define the terms shear force and bending moment.

2. Discuss the utility of shear force and bending moment diagrams.
3. Explain briefly the relationship between shear force and bending moment at a section.
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4. How will you determine the maximum bending moment in a simply supported beam?
5. What do you understand by the term, ‘point of contraflexture’?

6. Describe the effect of a couple on the S.F. and B.M. diagram of a beam.

7. Explain the procedure adopted for analysing simply supported beam subjected to inclined loads.

OBJECTIVE TYPE QUESTIONS

1. If a cantilever beam is subjected to a point load at its free end, then the shear force under the
point load is

(a) zero (b) less than the load

(c) equal to the load (d) more than the load.
2. The bending moment at the free end of a cantilever beam carrying any type of load is

(a) zero (b) minimum (c) maximum  (d) equal to the load.

3. The B.M. at the centre of a simply supported beam carrying a uniformly distributed load is

(a) w . l (b)
2

wl
(c)

2

4
wl (d)

2

8
wl

When w = Uniformly distributed load and
l = Span of the beam.

4. When shear force at a point is zero, then bending moment at that point will be

(a) zero (b) minimum (c) maximum  (d) infinity.
5.  The point of contraflexure is a point where

(a) shear force changes sign (b) bending moment changes sign

(c) shear force is maximum (d) bending moment is maximum.

ANSWERS

1. (c) 2. (a) 3. (d) 4. (c) 5. (b)
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14.1. Introduction
We have already discussed in Chapter 13 that

the bending moments and shearing forces are set
up at all sections of a beam, when it is loaded
with some external loads. We have also discussed
the methods of estimating the bending moments
and shear forces at various sections of the beams
and cantilevers.

As a matter of fact, the bending moment at a
section tends to bend or deflect the beam and the
internal stresses resist its bending. The process of
bending stops, when every cross-section sets up
full resistance to the bending moment. The
*resistance, offered by the internal stresses, to the

* The resistance offered by the internal stresses
to the shear force is called shearing stresses. It
will be discussed in the next chapter.

14C h a p t e r
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bending, is called bending stress, and the relevant theory is called the theory of simple bending.

14.2. Assumptions in the Theory of Simple Bending
The following assumptions are made in the theory of simple bending:

1. The material of the beam is perfectly homogeneous (i.e., of the same kind throughout) and
isotropic (i.e., of equal elastic properties in all directions).

2. The beam material is stressed within its elastic limit and thus, obeys Hooke’s law.
3. The transverse sections, which were plane before bending, remains plane after bending also.

4. Each layer of the beam is free to expand or contract, independently, of the layer above or below it.

5. The value of E (Young’s modulus of elasticity) is the same in tension and compression.
6. The beam is in equilibrium i.e., there is no resultant pull or push in the beam section.

14.3. Theory of Simple Bending
Consider a small length  of a simply supported beam subjected to a bending moment  as shown in

Fig. 14.1 (a). Now consider two sections AB and CD, which are normal to the axis of the beam RS.
Due to action of the bending moment, the beam as a whole will bend as shown in Fig. 14.1 (b).

Since we are considering a small length of dx of the beam, therefore the curvature of the beam in
this length, is taken to be circular. A little consideration will show that all the layers of the beam,
which were originally of the same length do not remain of the same length any more. The top layer of
the beam  has suffered compression and reduced to A′C′. As we proceed towards the lower layers of
the beam, we find that the layers have no doubt suffered compression, but to lesser degree; until we
come across the layer RS, which has suffered no change in its length, though bent into R′S′. If we
further proceed towards the lower layers, we find the layers have suffered tension, as a result of which
the layers are stretched. The amount of extension increases as we proceed lower, until we come
across the lowermost layer BD which has been stretched to B′ D′.

Fig. 14.1.  Simple bending

Now we see that the layers above  have been compressed and those below RS have been stretched.
The amount, by which layer is compressed or stretched, depends upon the position of the layer with
reference to RS. This layer RS, which is neither compressed nor stretched, is known as neutral plane
or neutral layer. This theory of bending is called theory of simple bending.

14.4. Bending Stress
Consider a small length dx of a beam subjected to a bending moment as shown in Fig. 14.2 (a).

As a result of this moment, let this small length of beam bend into an arc of a circle with O as centre
as shown in Fig. 14.2 (b).

 Let M = Moment acting at the beam,
θ = Angle subtended at the centre by the arc and

R = Radius of curvature of the beam.
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Fig. 14.2.  Bending stress

Now consider a layer PQ at a distance y from RS the neutral axis of the beam. Let this layer be
compressed to P′ Q′ after bending as shown in Fig. 14.2 (b).

We know that decrease in length of this layer,

δ l = PQ – P′ Q′

∴ Strain ε =
Original length

l PQ P Q
PQ

δ − ′ ′=

Now from the geometry of the curved beam, we find that the two sections OP′ Q′ and OR′ S′ are
similar.

∴ P Q
R S

′ ′
′ ′ =

R y
R
−

or 1
P Q
R S

′ ′−
′ ′ = 1

R y
R
−−

or
R S P Q

PQ
′ ′− ′ ′

=
y
R

PQ P Q
PQ
− ′ ′

=
y
R

...(PQ = R′ S′ = Neutral axis)

ε =
y
R

... − ′ ′⎛ ⎞ε =⎜ ⎟⎝ ⎠

PQ P Q
PQ

ä

It is thus obvious, that the strain (ε) of a layer is proportional to its distance from the neutral axis.
We also know that the bending stress,

σb = Strain × Elasticity = ε × E
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=
y EE y
R R

× = × ...
y
R

⎛ ⎞ε =⎜ ⎟
⎝ ⎠
∵

Since E and R are constants in this expression, therefore the stress at any point is directly
proportional to y, i.e., the distance of the point from the neutral axis. The above expression may also
be written as,

b E
y R

σ
= or  b

E y
R

σ = ×

NOTE. Since the bending stress is inversely proportional to the radius (R), therefore for maximum stress the
radius should be minimum and vice versa.

EXAMPLE 14.1.  A steel wire of 5 mm diameter is bent into a circular shape of 5 m radius.
Determine the maximum stress induced in the wire. Take E = 200 GPa.

SOLUTION.  Given : Diameter of steel wire (d) = 5 mm ;
Radius of circular shape (R) = 5 m = 5 × 103 mm and modulus
of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

We know that distance between the neutral axis of the
wire and its extreme fibre,

y =
5

2 2
d =  = 2.5 mm

and maximum bending stress induced in the wire,

σb (max) =
3

3

200 10

5 10
E y
R

×× =
×

 × 2.5 = 100 N/mm2 = 100 MPa        Ans.

EXAMPLE 14.2.   A copper wire of 2 mm diameter is required to be wound around a drum.
Find the minimum radius of the drum, if the stress in the wire is not to exceed 80 MPa. Take
modulus of elasticity for the copper as 100 GPa.

SOLUTION.  Given : Diameter of wire (d) = 2 mm ;
Maximum bending stress σb (max) = 80 MPa = 80 N/mm2

and modulus of elasticity (E) = 100 GPa = 100 × 103

N/mm2.
We know that distance between the neutral axis of

the wire and its extreme fibre

y =
2
2

 = 1 mm

∴ Minimum radius of the drum

R =
(max)

1
80b

y
E× =

σ  × 100 × 103 ... b E
y R

σ⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

= 1.25 × 103 mm = 1.25 m        Ans.

EXAMPLE 14.3.    A metallic rod of 10 mm diameter is bent into a circular form of radius 6 m.
If the maximum bending stress developed in the rod is 125 MPa, find the value of Young’s modulus
for the rod material.

SOLUTION.  Given : Diameter of rod (d) = 10 mm ; Radius (R) = 6 m = 6 × 103 mm and maximum
bending stress σb (max) = 125 MPa = 125 N/mm2.

We know that distance between the neutral axis of the rod and its extreme fibre,

y =
10
2

 = 5

Fig. 14.3

Fig. 14.4
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∴ Value of Young’s modulus for the rod material,

E = (max) 125
5

b R
y

σ
× =  × (6 × 103) N/mm2 ... b E

y R
σ⎛ ⎞=⎜ ⎟

⎝ ⎠
∵

= 150 × 103 N/mm2 = 150 GPa        Ans.

EXERCISE 14.1

1. A copper rod 20 mm diameter is bent into a circular arc of 8 m radius. Determine the intensity
of maximum bending stress induced in the metal. Take E = 100 GPa. [Ans. 125 MPa]

2. A steel wire of 3 mm diameter is to be wound around a circular component. If the bending stress
in the wire is limited to 80 MPa, find the radius of the component. Take Young’s modulus for
the steel as 200 GPa. [Ans. 3.75 m]

3. An alloy wire of 5 mm diameter is wound around a circular drum of 3 m diameter. If the
maximum bending stress in the wire is not to exceed 200 MPa, find the value of Young’s modu-
lus for the alloy. [Ans. 120 GPa]

14.5. Position of Neutral Axis
The line of intersection of the neutral layer, with any normal cross-section of a beam, is known as

neutral axis of that section. We have seen in Art. 14.2 that on one side of the neutral axis there are
compressive stresses, whereas on the other there are tensile stresses. At the neutral axis, there is no
stress of any kind.

Consider a section of the beam as shown in Fig. 14.5. Let  be the
neutral axis of the section. Consider a small layer PQ of the beam section
at a distance  from the neutral axis as shown in Fig. 14.5.

Let δ a = Area of the layer PQ.

We have seen in Art. 14.4 that intensity of stress in the layer PQ,

σ =
Ey
R

×

∴ Total stress on the layer PQ

= Intensity of stress × Area

=
Ey a
R

× × δ

and total stress of the section.

= .E Ey a y a
R R

Σ × × δ = Σ δ

Since the section is in equilibrium, therefore total stress, from top to bottom, must be equal to zero.

∴ .E y a
R

Σ δ = 0

or Σ y . δ a = 0 ... ( )cannot be equal to zero∵
E
R

A little consideration will show that y × δ a is the moment of the area  about the neutral axis and
Σ y × δ a is the moment of the entire area of the cross-section about the neutral axis. It is thus obvious
that the neutral axis of the section will be so located that moment of the entire area about the axis is

Fig. 14.5. Neutral axis
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zero. We know that the moment of any area about an axis passing through its central axis of a section
always passes through its centroid. Thus to locate the neutral axis of a section, first find out the
centroid of the section and then draw a line passing through this centroid and normal to the plane of
bending. This line will be the neutral axis of the section.

14.6. Moment of Resistance
We have already seen in Art. 14.2 that on one side of the neutral axis there are compressive

stresses and on the other there are tensile stresses. These stresses form a couple, whose moment must
be equal to the external moment (M). The moment of this couple, which resists the external bending
moment, is known as moment of resistance.

Consider a section of the beam as shown in Fig. 14.6. Let NA be the
neutral axis of the section. Now consider a small layer PQ of the beam section
at a distance y from the neutral axis as shown in Fig. 14.6.

Let δ a = Area of the layer PQ.
We have seen in Art. 14.4 that the intensity of stress in the layer PQ,

σ =
Ey
R

×

∴ Total stress in the layer PQ

=
Ey a
R

× × δ

and moment of this total stress about the neutral axis

=
2 .E Ey a y y a

R R
× × δ × = δ ...(i)

The algebraic sum of all such moments about the neutral axis must be equal to M. Therefore

M = 2 2. .E Ey a y a
R R

Σ δ = Σ δ

The expression Σ y2 . δ a represents the moment of inertia of the area of the whole section about
the neutral axis. Therefore

M =
E I
R

× ...(where I = moment of inertia)

or M
I

=
E
R

We have already seen in Art 14.4 that,

y
σ =

E
R

∴ M
I

=
E

y R
σ =

It is the most important equation in the theory of simple bending, which gives us relation between
various characteristics of a beam.

14.7. Distribution of Bending Stress across the Section
We have seen in the previous articles that there is no stress at the neutral axis. In a *simply

supported beam, there is a compressive stress above the neutral axis and a tensile stress below it.

Fig. 14.6. Moment of
        resistance

* In a cantilever, there is a tensile stress above the neutral axis and compressive stress below it.
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We have also discussed that the stress at a point is directly proportional to its distance from the
neutral axis. If we plot the stresses in a simply supported beam section, we shall get a figure as shown
in Fig. 14.7.

Fig. 14.7.  Distribution of Bending Stress

The maximum stress (either compressive or tensile) takes place at the outermost layer. Or in
other words, while obtaining maximum bending stress at a section, the value of y is taken as
maximum.

14.8. Modulus of Section
We have already discussed in the previous article, the relation for finding out the bending stress

on the extreme fibre of a section, i.e.,

M
I

=
y
σ

          or          
IM
y

= σ ×

From this relation, we find that the stress in a fibre is proportional to its distance from the c.g. If
ymax is the distance between the c.g. of the section and the extreme fibre of the stress, then

M = σmax × 
max

I
y

= σmax × Z

where Z = 
max

I
y

. The term ‘Z’ is known as modulus of section or section modulus. The general

practice of writing the above equation is M = σ × Z, where σ denotes the maximum stress, tensile or
compressive in nature.

We know that if the section of a beam to, is symmetrical, its centre of gravity and hence the
neutral axis will lie at the middle of its depth. We shall now consider the modulus of section of the
following sections:

1. Rectangular section. 2. Circular section.

1. Rectangular section
We know that moment of inertia of a rectangular section about an axis through its centre of gravity.

I =
3

12
bd

∴ Modulus of section Z =
3 22

12 6
I bd bd
y d

= × = ... ( )2
dy =∵



Chapter 14 : Bending Stresses in Simple Beams � 351

2. Circular section
We know that moment of inertia of a circular section about an axis through its c.g.,

I =
4( )

64
dπ

∴ Modulus of section Z =
4 22( ) ( )

64 32
I d d
y d

π π= × = ... ( )2
dy =∵

NOTE : If the given section is hollow, then the corresponding values for external and internal dimensions
should be taken.

14.9. Strength of a Section
It is also termed as flexural strength of a section, which means the moment of resistance offered

by it. We have already discussed the relations :

M
I

=
y
σ

          or          M I
y
σ= ×           and          M = σ Z

It is thus obvious that the moment of resistance depends upon moment of inertia (or section
modulus) of the section. A little consideration will show that the moment of inertia of beam section
does not depend upon its cross-section area, but its disposition in relation to the neutral axis.

We know that in the case of a beam, subjected to transverse loading, the bending stress at a point
is directly proportional to its distance from the neutral axis. It is thus obvious that a larger area near
the neutral axis of a beam is uneconomical. This idea is put into practice, by providing beams of
section, where the flanges alone withstand almost all the bending stress.

EXAMPLE 14.4. For a given stress, compare the moments of resistance of a beam of a square
section, when placed (i) with its two sides horizontal and (ii) with its diagonal horizontal.

Fig. 14.8

SOLUTION.  Given: The square section with its two horizontal sides and with its diagonal horizontal
are shown in Fig. 14.8 (a) and (b).

Let a = Side of the square beam,

M1 = Moment of resistance of section 1 and

M2 = Moment of resistance of section 2.

We know that the section modulus of the beam section with its two sides horizontal,

Z1 =
22 3

6 6 6
a abd a×= = ...(i)
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and moment of inertia of the beam section with its diagonal horizontal may be found out by splitting
up the section into two triangles and then adding the moments of inertia of the two triangles about
their base.

∴ I2 =

3

3 4
2

2
2 2

12 12 12

aa
bh a

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠× = × =

and ymax =
2

a

∴ Z2 =

4

3
12

6 2
2

max

a
I a

ay
= = ...(ii)

Sine the moment of resistance of a section is directly proportional to their moduli of section,
therefore

1

2

M
M =

3

1
3

2

6 2

6 2

a
Z
Z a

= =  = 1.414        Ans.

EXAMPLE 14.5. A rectangular beam is to be cut from a circular log of wood of diameter D.
Find the ratio of dimensions for the strongest section in bending.

SOLUTION.  Given : Diameter of the circular log of wood = D.

Let b = Breadth of the rectangular
beam section and

d = Depth of the rectangular
beam section.

We know that section modulus of the rectangular section.

Z =
2

6
bd

From the geometry of the figure, we find that
b2 + d2 = D2

or d2 = D2 – b2

Substituting the value of d2 in equation (i),

Z =
2 2 2 3( )

6 6
b D b bD b× − −=

We also know that for the strongest section, let us differentiate the above equation and equate it
to zero. i.e.,

dZ
db =

2 3 2 23
6 6

bD b D bd
db

⎡ ⎤− −=⎢ ⎥
⎢ ⎥⎣ ⎦

or
2 23

6
D b−

= 0          or          D2 – 3b2 = 0          or          b = 3
D

Fig. 14.9
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Substituting this value of b in equation (ii),

d2 =
2 2

2 2
3 3

D DD − =           or          d = 2
3

D         Ans.

EXAMPLE 14.6.  Two beams are simply supported over the same span and have the same
flexural strength. Compare the weights of these two beams, if one of them is solid and the other is
hollow circular with internal diameter half of the external diameter.

SOLUTION.  Given : Span of the solid beam = Span of the hollow beam and flexural strength of
solid beam = Flexural strength of the hollow section.

Fig. 14.10

Let D = Diameter of the solid beam and

D1 = Diameter of the hollow beam.
First of all consider the solid beam as shown in Fig. 14.10 (a). We know that section modulus of

the solid section,

Z1 =
3 3( )

32 32
D Dπ π× = × (i)

and now consider the hollow beam as shown in Fig. 14.10 (b). We also know that section modulus of
the hollow section,

Z2 =
4 4 4 4
1 1 1

1 1

(0.5 )
32 32

D d D D
D D

π π⎡ ⎤ ⎡ ⎤× − = × −
⎣ ⎦ ⎣ ⎦

=
3
10.9375

32
Dπ × ...(ii)

Since both the beams are supported over the same span (l) and have the same flexural strength,
therefore section modulus of both the beams must be equal. Now equating equations (i) and (ii),

3

32
Dπ × =

3
10.9375

32
Dπ ×           or          D3 = 0.9375 (D1)

3

∴ D = (0.9375)1/3  D1 = 0.98 D1

We also know that wights of two beams are proportional to their respective cross-sectional areas.
Therefore

Weight of solid beam
Weight of hollow beam

=
Area of solid beam

Area of hollow beam

or =

2
2

2 22 2
1 11

4
( ) (0.5 )( )

4

D
D

D DD d

π ×
=π −⎡ ⎤× −

⎣ ⎦

=
2 2

2
2 2

1 1

1 1(0.98)
0.75 0.750.75( ) ( )

D D

D D
= × = ×  = 1.28        Ans.
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EXAMPLE 14.7. Three beams have the same length, the same allowable stress and the same
bending moment. The cross-section of the beams are a square, a rectangle with depth twice the
width and a circle as shown in Fig. 14.11.

Fig. 14.11

Find the ratios of weights of the circular and the rectanguar beams with respect to the square
beam.

SOLUTION.  Square, rectangular and circular sections are shown in Fig. 14.11 (a), (b) and (c).
Let a = Side of the square beam,

b = Width of a rectangular beam,

∴ 2b = Depth of the rectangular beam and
d = Diameter of a circular section.

Since all the three beams have the same allowable stress (σ) and bending moment (M), therefore
the modulus of section of the three beams must be equal.

We know that the section modulus for a square beam,

Z1 =
22 3

6 6 6
a abd a×= = ...(i)

Similarly, modulus of section for rectangular beam,

Z2 =
22 3(2 ) 2

6 6 3
= =b bbd b ...(ii)

and modulus of section for a circular beam,

Z3 =
3

32
dπ × ...(iii)

Equating equations (i) and (ii),
3

6
a =

32
3
b           or          a3 = 6 × 

32
3
b  = 4b3

∴ b = 0.63 a ...(iv)
Now equating equations (i) and (iii),

3

6
a =

3

32
dπ ×

∴ a3 =
3 336

32 16
d dπ π× × = ×

or d = 1.19 a ...(v)
We know that weights of all the beams are proportional to the cross sectional areas of their

sections. Therefore

Weight of square beam
Weight of rectangular beam

=
Area of square beam

Area of rectangular beam
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=
2 2

2 2
1

0.792 2 (0.63 )
a a

b a
= =

×
        Ans.

and
Weight of square beam
Weight of circular beam

=
Area of square beam

Area of circular beam

=
2 2

2 2

1
1.12(1.19 )

4 4

a a

d a
= =π π× ×

        Ans.

EXAMPLE 14.8.   Prove that moment of resistance of a beam of square section, with its
diagonal in the plane of bending is increased by flatting top and bottom corners as shown in Fig.
14.12. Also prove that the moment of resistance is a maximum when y = 8Y/9.

Fig. 14.12

SOLUTION.  First of all, let us divide the section into a square with diagonal 2y and a rectangle
with sides as 2y and 2 (Y – y) as shown in Fig. 14.13 (a) and (b).

The moment of inertia of the square section with its diagonal in the plane of bending may be
found out by splitting up the section into two triangles, and then adding the moments of inertia of the
two triangles about its base.

Fig. 14.13.  (a)  and (b)

We know that moment of inertia for the square section,

I1 =
3 43 2

2 2
12 12 3

y y ybh ×× = × =

and moment of inertia for the rectangular section,

I2 =
3

3 42( ) (2 ) 4 ( )
12 3

Y y y
Yy y

− × = −
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∴ Total moment of inertia of the section,

I = I1 + I2 = 
4

3 4 3 44 4( )
3 3 3
y

Yy y Yy y+ − = −

We also know that the bending stress at a distance x from the neutral axis,

σb =
3 4 2 34 4

3 3

M M My y
I Yy y Yy y

× = × =
− −

Now for maximum bending stress, differentiating the above equation and equating the same to zero,

2 34 ·
3

d M
dy Y y y

⎛ ⎞
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎝ ⎠

= 0          or          4
3

 Y × 2y – 3y2 = 0

8 3
3
Y y− = 0          or          y = 

8
9
Y

        Ans.

EXAMPLE 14.9.   A wooden floor is required to carry a load of 12 kN/m2 and is to be supported
by wooden joists of 120 mm × 250 mm in section over a span of 4 metres. If the bending stress in
these wooden joists is not to exceed 8 MPa, find the spacing of the joists.

SOLUTION.  Given : Load on the floor = 12 kN/m2 = 12 × 10–3 N/mm2 ;  Width of joist (b) = 120
mm ;  Depth of joist (d) = 250 mm ;  Span (l) = 4 m = 4 × 103 mm and maximum bending stress
σb (max) = 8 MPa = 8 N/mm2.

Let x = Spacing of the joists in mm.

We know that rate of loading on the joist,

w = 12 × 10–3 × x × 1 = 12 × 10–3 x  N/mm
and maximum bending moment at the centre of a simply supported beam subjected to a uniformly
distributed load,

M =
3 3 22 (12 10 ) (4 10 )

8 8

−× × ×= xwl  = 24 × 103 x  N-m ...(i)

We also know that section modulus of each rectangular joist,

Z =
22 120 (250)

6 6
bd ×=  = 1.25 × 106 mm3

and moment of resistance,

24 × 103 x = σb (max) . Z = 8 × 1.25 × 106 = 10 × 106

∴ x =
6

3

10 10

24 10

×
×

 = 417 mm        Ans.

14.10. Bending Stresses in Symmetrical Sections

Fig. 14.14.  Symmetrical sections.

We know that in a symmetrical section (i.e., circular, square or rectangular), the centre of gravity
of the section lies at the geometrical centre of the section as shown in Fig. 14.14. Since the neutral
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axis of a section passes through its centre of gravity, therefore neutral axis of a symmetrical section
passes through its geometrical centre. In such cases, the outermost layer or extreme fibre is at a
distance of d/2 from its geometrical centre, where d is the diameter (in a circular section) or depth (in
square or rectangular sections).
NOTE : In most or the cases, we are required to find the maximum bending stress in the section. We know that
the bending stress at a point, in a section is directly proportional to its distance from the neutral axis. Therefore,
maximum bending stress in a section will occur in the extreme fibre of the section.

EXAMPLE 14.10.  A rectangular beam 60 mm wide and 150 mm deep is simply supported
over a span of 6 m. If the beam is subjected to central point load of 12 kN, find the maximum
bending stress induced in the beam section.

SOLUTION.  Given : Width (b) = 60 mm ;  Depth (d) = 150 mm ;  Span (l ) = 6 × 103 mm and load
(W) = 12 kN = 12 × 103 N.

Fig. 14.15

We know that maximum bendint moment at the centre of a simply supported beam subjected to
a central point load,

M =
3 3(12 10 ) (6 10 )

4 4
Wl × × ×=  = 18 × 106 N-mm

and section modulus of the rectangular section,

Z =
22 60 (150)

6 6
bd ×=  = 225 × 103 mm3

∴ Maximum bending stress,

σmax =
6

3

18 10

225 10
M
Z

×=
×

 = 80 N/mm2 = 80 MPa        Ans.

EXAMPLE 14.11.  A rectangular beam 300 mm deep is simply supported over a span of
4 metres. What uniformly distributed load the beam may carry, if the bending stress is not to
exceed 120 MPa. Take I = 225 × 106 mm4.

SOLUTION.  Given : Depth (d) = 300 mm ;  Span (l) = 4 m = 4 × 103 mm ;  Maximum bending
stress (σmax) = 120 MPa = 120 N/mm2 and moment of inertia of the beam section (I) = 225 × 106

mm4.
Let w = Uniformly distributed load the beam can carry.

We know that distance between the neutral axis of the section and extreme fibre,

y =
300

2 2
d =  = 150 mm

and section modulus of the rectangular section,

Z =
6225 10

150
I
y

×=  = 1.5 × 106 mm3
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Fig. 14.16

∴ Moment of resistance,

M = σmax × Z = 120 × (1.5 × 106) = 180 × 106 N-mm.

We also know that maximum bending moment at the centre of a simply supported beam subjected
to a uniformly distributed load (M),

180 × 106 =
3 22 (4 10 )

8 8
wwl × ×=  = 2 × 106 w

∴ w =
180

2
 = 90 N/mm = 90 kN/m        Ans.

EXAMPLE 14.12.  A cantilever beam is rectrangular in section having 80 mm width and 120
mm depth. If the cantilever is subjected to a point load of 6 kN at the free end and the bending
stress is not to exceed 40 MPa, find the span of the cantilever beam.

SOLUTION.  Given : Width (b) = 80 mm ;  Depth (d) = 120 mm ;  Point load (W) = 6 kN = 6 × 103

N and maximum bending stress (σmax) = 40 MPa = 40 N/mm2.

Fig. 14.17

Let l = Span of the cantilever beam.
We know that section modulus of the rectangular section,

Z =
22 80 (120)

6 6
bd ×=  = 192 × 103 mm3

and maximum bending moment at the fixed end of the cantilever subjected to a point load at the free
end,

M = Wl = (6 × 103) × l

∴ Maximum bending stress [σb (max)]

40 =
3

3

6 10
32192 10

lM l
Z

× ×= =
×

or l = 40 × 32 = 1280 mm = 1.28 m        Ans.



Chapter 14 : Bending Stresses in Simple Beams � 359

EXAMPLE 14.13.   A rectangular beam 60 mm wide and 150 mm deep is simply supported
over a span of 4 metres. If the bneam is subjected to a uniformly distributed load of 4.5 kN/m, find
the maximum bending stress induced in the beam.

SOLUTION.  Given : Width (b) = 60 mm ;  Depth (d) = 150 mm ;  Span (l ) = 4 m = 4 × 103 mm and
uniformly distributed load (w) = 4.5 kN/m = 4.5 N/mm.

Fig. 14.18

We know that section modulus of the rectangular section,

Z =
22 60 (150)

6 6
bd ×=  = 225 × 103 mm3

and maxmum bending moment at the centre of a simply supported beam subjected to a uniformly
distributed load,

M =
3 22 4.5 (4 10 )

8 8
wl × ×=  = 9 × 106 N-mm

∴ Maximum bending stress,

σmax =
6

3

9 10

225 10
M
Z

×=
×

 = 40 N/mm2 = 40 MPa        Ans.

EXAMPLE 14.14.  A timber beam of rectangular section supports a load of 20 kN uniformly
distributed over a span of 3.6 m. If depth of the beam section is twice the width and maximum
stress is not to exceed 7 MPa, find the dimensions of the beam section.

SOLUTION.  Given : Total load (W) = 20 kN = 20 × 103 N ;  Span (l) = 3.6 × 103 mm ;  Depth of
beam section (d) = 2b and (σmax) = 7 MPa = 7 N/mm2.

Fig. 14.19

We know that section modulus of the rectangular section,

Z =
22 3(2 ) 2

6 6 3
b bbd b×= =

and maximum bending moment at the centre of a smiply supported beam subject to a uniformly
distributed load,

M =
3 32 (20 10 ) (3.6 10 )

8 8 8
wl Wl × × ×= =  = 9 × 106 N-mm
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∴ Maximum bending stress (σmax),

7 =
6 6

2 3

9 10 13.5 10

2
3

M
Z b b

× ×= =

or b3 =
6(13.5 10 )

7
×

 = 1.93 × 106

∴ b = 1.25 × 102 = 125 mm        Ans.
and d = 2b = 2 × 125 = 250 mm        Ans.

EXAMPLE 14.15. A hollow square section with outer and inner dimensions of 50 mm and
40 mm respectively is used as a cantilever of span 1 m. How much concentrated load can be
applied at the free end of the cantilever, if the maximum bending stress is not to exceed 35 MPa?

SOLUTION.  Given : Outer width (or depth) (B) = 50 mm ;  Inner width (or depth) = (b) = 40 mm;
Span (l) = 1 × 103 mm and maximum bending stress σb (max) = 35 MPa = 35 N/mm2.

Fig. 14.20

Let W = Concentreated load that be applied at the free end of the
cantilever.

We know that moment of inertia of the hollow square section,

I =
4 43 3 3 3 4 4 (50) (40)

12 12 12 12 12 12 12 12
BD bd BB bb B b− = − = − = − mm4

= 307.5 × 103 mm4

∴ Modulus of section, Z =
3307.5 10

25
I
y

×=  = 12300 mm3

and maximum bending moment at the fixed end of the cantilever subjected to a point load at the free end,

M = Wl = W × (1 × 103) = 1 × 103 W
∴ Maximum bending stress (σmax),

35 =
31 10

12300
WM

Z
×=

or W = 3

35 12300

1 10

×
×

 = 430.5 N        Ans.

EXAMPLE 14.16. A hollow steel tube having external and internal diameter of 100 mm and
75 mm respectively is simply supported over a span of 5 m. The tube carries a concentrated load
of W at a distance of 2 m from one of the supports. What is the value of W, if the maximum bending
stress is not to exceed 100 MPa.
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SOLUTION.  Given : External diameter (D) = 100 mm ;  Internal diameter (d) = 75 mm ;  Span (l)
= 5 m = 5 × 103 mm ;  Distance AC (a) = 2m = 2 × 103 mm or Distance BC (b) = 5 – 2 = 3 m =
3 × 103 mm and maximum bending stress (σmax) = 100 MPa = 100 N/mm2.

Fig. 14.21

We know that maximum bending moment over a simply supported beam subjected to an eccentric
load,

M =
3 3

3

(2 10 ) (3 10 )

5 10

WWab
l

× × × ×=
×

 = 1.2 × 103 W

and section modulus of a hollow circular section,

Z = ( ) ( )4 44 4 100 75
32 32 100

D d
D

π π ⎡ ⎤⎡ ⎤× − = × −
⎣ ⎦ ⎣ ⎦× × mm3

= 67.1 × 103 mm3

We also know that maximum bending stress [σb (max)],

100 =
3

3

1.2 10

67.1 10

WM
Z

×=
×

 = 0.018 W

∴ W =  
100

0.018  = 5.6 × 103 N = 5.6 kN        Ans.

EXAMPLE 14.17.  A cast iron water pipe of 500 mm inside diameter and 20 mm thick is
supported over a span of 10 meters. Find the maximum stress in the pipe metal, when the pipe is
running full. Take density of cast iron as 70.6 kN/m3 and that of water as 9.8 kN/m3.

SOLUTION.  Given : Inside diameter (d) = 500 mm ;  Thickness (t) = 20 mm or outside diameter
(D) = d + 2t = 500 + (2 × 20) = 540 mm ;  Span (l) = 10 m = 10 × 103 mm ;  density of cast iron = 70.6
kN/m3 = 70.6 × 10–6 N/mm2 and density of water = 9.8 kN/m3 = 9.8 × 10–6 N/mm2.

Fig. 14.22

We know that cross-sectional area of the cast iron pipe,

=
2 2 2 2(540) (500)

4 4
D dπ π⎡ ⎤ ⎡ ⎤× − = × −
⎣ ⎦ ⎣ ⎦  = 32.67 × 103 mm2

and its weight (w1) = (70.6 × 10–6) × (32.67 × 103) = 2.31 N/mm



362 � Strength of Materials

We also know that cross-sectional area of the water section

=
2( )

4 4
dπ π× = × (500)2 = 196.35 × 103 mm2

and its weight (w2) = (9.8 × 10–6) × (196.35 × 103) = 1.92 N/mm

∴ Total weight of the cast iron pipe and water section

w = w1 + w2 = 2.31 + 1.92 = 4.23 N/mm

We also know that maximum bending moment at the centre of the beam subjected to a uniformly
distributed load,

M =
3 22 4.23 (10 10 )

8 8
wl × ×=  = 52.9 × 106 N-mm

and section modulus of a hollow circular section,

Z =
2 4 4 4(540) (500)

32 32 540
D d

D
π π⎡ ⎤ ⎡ ⎤× − = × −

⎣ ⎦ ⎣ ⎦× mm3

= 4.096 × 106 mm3

∴ Maximum bending stress,

σb (max) =
6

6

52.9 10

4.096 10
M
Z

×=
×

 = 12.9 N/mm2 = 12.9 MPa        Ans.

EXERCISE 14.2

1. A beam 3 m long has rectangular section of 80 mm width and 120 mm depth. If the beam is
carrying a uniformly distributed load of 10 kN/m, find the maximum bending stress developed
in the beam. [Ans. 58.6 MPa]

2. A rectangular beam 200 mm deep is simply supported over a beam of span 2 m. Find the
uniformly distributed load, the beam can carry if the bending stress is not to exceed 30 MPa.
Take I for the beam as 8 × 106 mm4. [Ans. 4.8 N/mm]

3. A rectangular beam, simply supported over a span of 4 m, is carrying a uniformly distributed load
of 50 kN/m. Find the dimensions of the beam, if depth of the beam section is 2.5 times its width.
Take maximum bending stress in the beam section as 60 MPa. [Ans. 125 mm; 300 mm]

4. Calculate the cross-sectional dimensions of the strongest rectangular beam, that can be cut out
of a cylindrical log of wood whose diameter is 500 mm. [Ans. 288.5 mm × 408.5 mm]

Fig. 14.23
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5.  Fig. 14.23 shows the section of a beam. What is the ratio of its moment of resistance to bending
in the plane Y-Y to that for bending in the plane X-X, if the maximum stress due to bending is
same in both the cases.

For a semi-circle of radius r, the centroid is at a distance of 4r/3π from the centre. [Ans. 2.85]

QUESTIONS

1. Define the term ‘bending stress’ and explain clearly the theory of simply bending.

2. State the assumptions made in the theory of simple bending.

3. Prove the relations,

M
I

=
E

y R
σ =

where M = Bending moment,

I = Moment of inertia,

σ = Bending stress in a fibre, at a distance y from the neutral axis,

E = Young’s modulus, and

R = Radius of curvature.

4. Discuss the procedure in finding out the bending stress in a symmetrical section.

5. How will you find the bending stress in a hollow circular section?

OBJECTIVE TYPE QUESTIONS

1. The neutral axis of a section is an axis, at which the bending stress is
(a) minimum (b) zero (c) maximum (d) infinity

2. In the theory of simply bending, the bending stress in the beam section varies

(a) linearly (b) parabolically (c) elliptically (d) none of them
3. When a cantilever is loaded at its free end, maximum compressive stress shall develop at

(a) bottom fibre (b) top fibre (c) neutral axis (d) centre of gravity

4. The section modulus of a rectangular section having width (b) and depth (d) is

(a) 6
bd

(b)
2

6
bd (c)

3

6
bd (d)

2

6
b d

5. The section modulus of a circular section of diameter (d) is

(a)
2( )

32
dπ

(b)
3( )

32
dπ

(c)
3( )

64
dπ

(d)
4( )

64
dπ

ANSWERS

1. (b) 2. (a) 3. (a) 4. (b) 5. (b)
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(Flitched Beams).

15.1. Introduction
In the last chapter, we have discussed the

bending stresses in simple beams, and the
pattern in which these stresses vary along the
symmetrical sections. But sometimes we come
across beams of composite sections. And we
are required to study the pattern in which these
stresses vary along such sections.

15.2. Types of Composite Beams
Though there are many types of composite

beams that we come across, yet the following are
important from the subject point of view:

1. Beams of unsymmetrical sections

2. Beams of uniform strength

3. Flitched beams.

15C h a p t e r
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15.3. Beams of Unsymmetrical Sections
We have already discussed in the last chapter that in a symmetrical section, the distance of

extreme fibre from the c.g. of the section y = d/2. But this is not the case, in an unsymmetrical section
(L, I, T, etc.), since the neutral axis of such a section does not pass through the geometrical centre of
the section. In such cases, first the centre of gravity of the section is obtained as discussed in Chapter
6 and then the values of y, in the tension and compression sides, is studied. For obtaining the bending
stress in a beam, the bigger value of y (in tension or compression) is used in the equation. This will be
illustrated by the following examples.

EXAMPLE 15.1.  Two wooden planks 150 mm × 50 mm each are connected to form a T-
section of a beam. If a moment of 6.4 kN-m is applied around the horizontal neutral axis, induc-
ing tension below the neutral axis, find the bending stresses at both the extreme fibres of the
cross- section.

SOLUTION.  Given: Size of wooden planks = 150 mm × 50 mm and moment (M) = 6.4 kN-m = 6.4
× 106 N-mm.

Two planks forming the T-section are shown in Fig. 15.1. First of all, let us find out the centre of
gravity of the beam section. We know that distance between the centre of gravity of the section and its
bottom face,

y =
(150 50) 175 (150 50) 75 1875000

(150 50) (150 50) 15000
× + × =

× + ×  = 125 mm

∴ Distance between the centre of gravity of the section and the upper extreme fibre,
yt = 20 – 125 = 75 mm

and distance between the centre of gravity of the section and the lower extreme fibre,

yc = 125 mm

We also know that Moment of inertia of the T section about an axis passing through its c.g. and
parallel to the botom face,

I =
3 3

2 2150 (50) 50 (150)
(150 50) (175 125) (150 50 (125 75)

12 12

⎡ ⎤ ⎡ ⎤× ×+ × − + + × −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

mm4

= (20.3125 × 106) + (32.8125 × 106) mm4

= 53.125 × 106 mm4

∴ Bending stress in the upper extreme fibre,

σ1 =
6

6

6.4 10

53.125 10
t

M y
I

×× =
×

 × 125 N/mm2

= 15.06 N/mm2 = 15.06 MPa (compression)        Ans.

and bending stress in the lower extreme fibre,

σ2 =
6

6

6.4 10

53.125 10
c

M y
I

×× =
×

 × 75 N/mm2

= 9.04 N/mm2 = 9.04 MPa (tension)        Ans.
Fig. 15.1
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EXAMPLE 15.2.  Figure 15.2 shows a rolled steel beam of an unsymmetrical I-section.

Fig. 15.2

If the maximum bending stress in the beam section is not to exceed 40 MPa, find the moment,
which the beam can resist.

SOLUTION.  Given: Maximum bending stress (σmax) = 40 MPa = 40 N/mm2.

We know that distance between the centre of gravity of the section and bottom face,

y =
(100 50) 275 (200 50) 150 (200 50) 25

(100 50) (200 50) (200 50)
× + × + ×

× + × + ×  = 125 mm

∴ y1 = 300 – 125 = 175 mm          and          y2 = 125 mm

Thus we shall take the value of y = 175 mm (i.e., greater of the two values between y1 and y2).
We also know that moment of inertia of the I-section about an axis passing through its centre of
gravity and parallel to the bottom face,

I =
33

2 250 (200)100 (50)
(100 50) (275 125) (50 200) (150 125)

12 12

⎡ ⎤⎡ ⎤ ×× + × − + + × −⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

+ 
3

2200 (50)
(200 50) (125 25)

12

⎡ ⎤× + × −⎢ ⎥
⎢ ⎥⎣ ⎦

mm4

= 255.2 × 106 mm4

and section modulus of the I-section,

Z =
6255.2 10

175
I
y

×=  = 1.46 × 106 mm3

∴ Moment, which the beam can resist,
M = σmax × Z = 40 × (1.46 × 106) N-mm

= 58.4 × 106 N-mm = 58.4 kN-m        Ans.

EXAMPLE 15.3.  A simply supported beam and its cross-section are shown in Fig. 15.3. The
beam carries a load of 10 kN as shown in the figure. Its self weight is 3.5 kN/m. Calculate the
maximum bending stress at X-X.
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Fig. 15.3

SOLUTION.  Given: Point load (W) = 10 kN = 10 × 103 N and self weight of the beam (w) = 3.5 kN/m
= 3.5 N/mm.

First of all, let us find out the centre of gravity of the beam section. We know that distance
between the centre of gravity of the section and its bottom face,

y =

2

2

[(200 300) 150] (150) 200
4

[200 300] (150)
4

π⎡ ⎤× − ×
⎢ ⎥⎣ ⎦

π⎡ ⎤× −
⎢ ⎥⎣ ⎦

 = 129 mm

∴ Distance between centre of gravity of the section and the upper extreme fibre,
yt = 30 – 129 = 171 mm

and distance between the centre of gravity of the section and the lower extreme fibre,
yc = 129 mm

Therefore for maximum bending stress, we shal use the value of y equal to 171 mm (i.e., greater
of the two values of yt and yc). We know that moment of inertia of the section passing through its
centre of gravity and parallel to x-x axis,

I =
3

2 4 2 2200 (300)
(200 300) (150 129) (150) (150) (200 129)

12 64 4

⎡ ⎤ π π⎡ ⎤+ × × − − + × × −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
mm4

= (476.5 × 106) – (113.9 × 106) = 362.6 × 106 mm4

Now let us find out the bending moment at x-x. Taking moments about A and equating the same,
RB × 3.6 = (3.5 × 3.6 × 1.8) + (10 × 2.4) = 46.68

∴ RB =
46.68
3.6

 = 13.0 kN

or RA = [(3.5 × 3.6) + 10] – 13.0 = 9.6 kN

and bending moment at X,

M = (9.6 × 1.2) – (3.5 × 1.2 × 0.6) = 9 kN-m = 9 × 106 N-mm
∴ Maximum bending stress at X,

σb =
6

6

9 10

362.6 10
M y
I

×× =
×

 × 171 = 4.24 N/mm2

= 4.24 MPa        Ans.
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EXAMPLE 15.4.  A steel tube 40 mm outside diameter and 30 mm inside diameter is simply
supported over a 6 m span and carries a central load of 200 N. Three such tubes and firmly
joined together, to act as a single beam, in such a way that their centres make an equilateral
triangle of side 40 mm. Find the central load, the new beam can carry, if the maximum bending
stress is the same in both the cases.

SOLUTION.  Given: Outside diameter (D) = 40 mm ;  Inside diameter (d) = 30 mm ;  Span (l) =
6 m = 6 × 103 mm and central point load in case of single tube (W1) = 200 N.

Fig. 15.4

First of all, consider a single tube as shown in Fig. 15.4 (a). We know that maximum bending
moment over simply supported load subjected to a central point load

M =
3200 (6 10 )

4 4
Wl × ×=  = 300 × 103 N-mm

and section modulus of a hollow circular section

Z =
4 4 4 4(40) (30)

32 32 40
D d

D
π π⎡ ⎤ ⎡ ⎤× − = × −

⎣ ⎦ ⎣ ⎦× mm3

= 4.295 × 103 mm3

∴ Maximum bending stress,

σmax =
3

3

300 10

4.295 10
M
Z

×=
×

 = 69.85 N/mm2

Now consider these tubes firmly joined together as shown in Fig. 15. 4 (b). We know that vertical
height of the equilateral triangle,

= AB sin 60° = 40 × 0.866 = 34.64 mm

∴ Centre of gravity of the section will lie at a height of 34.64/3 = 11.5 mm from the base BC.
Thus distance between the centre of gravity of the section and upper extreme fibre,

yc = (34.64 – 11.55) + 20 = 43.09 mm

and distance between the centre of gravity of the section and the lower extreme fibre,

yt = 11.55 + 20 = 31.55 mm
Therefore for maximum bending stress, we shall use the value of y equal to 43.09 mm (i.e.,

greater of two values of yc and yt). We know that cross-sectional area of one tube,

A =
2 2 2 2(40) (30)

4 4
D dπ π⎡ ⎤ ⎡ ⎤× − = × −
⎣ ⎦ ⎣ ⎦  = 549.8 mm2

and moment of inertia of one hollow tube

=
4 4 4 4(40) (30)

64 64
D dπ π⎡ ⎤ ⎡ ⎤× − = × −
⎣ ⎦ ⎣ ⎦  = 85.9 × 103 mm4
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∴ Moment of inertia of whole section passing through its centre of gravity and parallel to X-X axis,

I =
3 2 3 22 85.9 10 549.8(11.55) 85.9 10 549.8(34.64 11.55)⎡ ⎤ ⎡ ⎤× + + × + −

⎣ ⎦ ⎣ ⎦

= (318.5 × 103) + (379.0 × 103) = 697.5 × 103 mm4

and maximum bending moment at the centre of beam due to the central load W2,

M =
3

2 2 (6 10 )
4 4

W l W × ×
=  = 1.5 × 103 W2 N-mm

We know that maximum bending stress (σmax)

69.85 =
3

2
3

1.5 10

697.5 10

WM y
I

×
× =

×
 × 43.09 = 0.093 W2

∴ W2 =
69.85
0.093

 = 751 N        Ans.

EXAMPLE 15.5.  Figure 15.5 shows a rolled steel beam of an unsymmetrical I-section.

Fig. 15.5

If a similar I-section is welded on the top of it to form a symmetrical section, determine the
ratio of the moment of resistance of the new section to that of the single section. Assume the
permissible bending stress in tension and compression to be the same.

SOLUTION.  Given: Permissible bending stess in tension = Permissible bending stress in
compression.

First of all, let us find the centre of gravity of the section. We know that distance between the
centre of gravity of the section and bottom face,

y =
(120 30)345 (300 30) 180 (250 30) 15

(120 30) (300 30) (250 30)
× + × + ×

× + × + × mm

=
2974500
20100  = 148 mm

∴ y1 = 360 – 148 = 212 mm          and          y2 = 148 mm
Thus for the prupose of calculating moment of resistance of the section, we shall take the value

of y equal to 212 mm (i.e., greater of the two values between y1 and y2). We also know that moment of
inertia of the I-section about an axis through its centre of gravity and parallel to its x-x axis,

I1 =
3 3

2 2120 (30) 30 (300)
(120 30)(345 148) (30 300) (180 148)

12 12

⎡ ⎤ ⎡ ⎤× ×+ × − + + × −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+
3

2250 (30)
(250 30) (148 15)

12

⎡ ⎤× + × −⎢ ⎥
⎢ ⎥⎣ ⎦

mm4
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= 350 × 106 mm4

∴ Section modulus of the I-section,

Z1 =
6350 101

212y
×=  = 1.65 × 106 mm3

and moment of resistance of the I-section

M1 = σ × Z1 = σ × 1.65 × 106 = 1.65 × 106 σ ...(i)
Now, let us consider the double section as shown in Fig. 15.6. We

know that in this case, centre of gravity of the section will lie at the
junction of the two sections.

Therefore moment of inertia of the double section about its axis
through its c.g. and parallel to x-x axis,

I2 = 2 [(350 × 106) + 20100 × (212)2] mm4

= 2 [(350 × 106) + (903.4 × 106)] = 2506.8 × 106 mm4

∴ Section moulus of the double section,

Z2 =
62506.8 10

360
I
y

×=  = 6.96 × 106 mm3

and moment of resistance of the double I-section

M2 = σ × Z2 = σ × 6.96 × 106 σ                               ...(ii)

∴ Ratio of moments of resistances

2

1

M
M

=
6

6

6.96 10

1.65 10

× σ
× σ

 = 4.22        Ans.

EXAMPLE 15.6.  The cross-section of a beam is shown in Fig. 15.7. The beam is made of
material with permissible stress in compression and tension equal to 100 MPa and 140 MPa
respectively.

Fig. 15.7

Calculate the moment of resistance of the cross-section, when subjected to a moment causing
compression at the top and tension at the bottom.

Fig. 15.6
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SOLUTION.  Given: Permissible stress in compression (σc) = 100 MPa = 100 N/mm2 and permissible
stress in tension (σt) = 140 MPa = 140 N/mm2.

Moment of resistance of the cross-section

First of all, let us find the centre of gravity of the section. We know that the distance between the
centre of gravity of the section and its bottom face,

y =
(50 20) 90 (70 15) 45 (25 10)5

(50 20) (70 15) (25 10)
× + × + ×

× + × + ×  = 60.2 mm

∴ y1 = 100 – 60.2 = 39.8 mm          and          y2 = 60.2 mm

Thus for the purpose of calculating moment of resistance of the section, we shall take the value
of y equal to 60.2 mm (i.e., greater of the two values between y1 and y2). We also know that moment
of inertia of the section about an axis through its c.g. and parallel to x-x axis,

I =
3 3

2 250 (20) 15 (70)
(50 20) (90 60.2) (70 15) (60.2 45)

12 12

⎡ ⎤ ⎡ ⎤× ×+ × − + + × −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

3
225 (10)

(25 10) (60.2 5)
12

⎡ ⎤×+ + × −⎢ ⎥
⎢ ⎥⎣ ⎦

mm4

= 2356.6 × 103 mm4

∴ Section modulus of the section (in compression zone),

Z1 =
3

1

2356.6 10
39.8

I
y

×=  = 59.2 × 103 mm3

and moment of resistance of the compression zone,

M1 = σc × Z1 = 100 × 59.2 × 103 = 5920 × 103 N-mm

Similarly, section modulus of the section (in tension zone),

Z2 =
3

2

2356.6 10
60.2

M
y

×=  = 39.1 × 103 mm3

and moment of resistance of the tension zone,

M2 = σt × Z2 = 140 × 39.1 × 103 = 5474 × 103 N-mm

∴ Moment of resistance of the cross-section is the least of the two values i.e.,

5474 × 103 N-mm        Ans.

EXERCISE 15.1

1. Cantilever beam of span 2.5 m has a T-section as shown in Fig. 15.8. Find the point load, which
the cantilever beam can carry at its free end, if the bending stress is not to exceed 50 MPa.

(Ans. 1.6 kN)
2. An I-section shown in Fig. 15.9 is simply supported over a span of 5 metres. If the tensile stress

is not to exceed 20 MPa, find the safe uniformly distributed load, the beam can carry.
(Ans. 6.82 kN/m)
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Fig. 15.8 Fig. 15.9

3. Two beams are simply supported over the same span and have the same flexural strength. Com-
pare the weights of these two beams, if one of them is solid circular and the other hollow
circular with internal diameter half of the external diameter. (Ans. 1.28)

15.4. Beams of Uniform Strength
We have already discussed that in a simply supported beam, carrying a *uniformly distributed

load, the maximum bending moment will occur at its centre. It is thus obvious that the bending stress
is also maximum at the centre of the beam. As we proceed, from the centre of the beam towards the
supports, the bending moment decreases and hence the maximum stress developed is below the
permissible limit. It results in the wastage of material. This wastage is negligible in case of small
spans, but considerable in case of large spans.

The beams of large spans are designed in such a way that their cross-sectional area is decreased
towards the supports so that the maximum bending stress developed is equal to the allowable stress
(as is done at the centre of the beam). Such a beam, in which bending stress developed is constant and
is equal to the allowable stress at every section is called a beam of uniform strength. The section of a
beam of uniform strength may be varied in the following ways:

1. By keeping the width uniform and varying the depth.

2. By keeping the depth uniform and varying the width.

3. By varying both width and depth.

The most common way of keeping the beam of uniform strength is by keeping the width uniform
and varying the depth.

EXAMPLE 15.7.   A simply supported beam of 2.4 meters span has a constant width of 100
mm throughout its length with varying depth of 150 mm at the centre to minimum at the ends as
shown in Fig. 15.10. The beam is carrying a point load W at its mid-point.

* This is the most practical case. However, if a beam is carrying some other type loading, the maximum
bending moment will occur, at a point, near its centre.
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Fig. 15.10

Find the minimum depth of the beam at a section 0.6 m from the left hand support, such that
the maximum bending stress at this section is equal to that at the mid-span of the beam.

SOLUTION.  Given: Span (l ) = 2.4 m = 2.4 × 103  mm ;  Width (b) = 100 mm and depth at the centre
(dC) = 150 mm.

Let dX = Depth at the section X i.e., 0.6 m (i.e., 600 mm) from the left end.

fX = Bending stress at X and

fC = Bending stress at C.
Since the beam is carrying a central point load, therefore the reaction at A,

RA = RB = 
2

W

Bending moment at C, MC =
2

W
× 1200 = 600 W

Similarly, MX =
2

W
× 600 = 300 W

We know that section modulus at the centre of beam,

ZX =
2 2 2. 100

50
6 6 3

= =X X Xb d d d
 mm3

and ZC =
2 2. 100 (150)

6 6
Cb d ×=  = 375 000 mm3

We also know that bending moment at C (MC),
600 W = σC × ZC = σC × 375 000

∴ σC =
600

375 000
W

...(i)

Similarly bending moment at X (MX)

300 W = σX × ZX = σX × 
250

3
Xd

∴ σX = 300 W × 2 2

183
50 X X

W

d d
= ...(ii)

Since σC is equal to σX, therefore equating (i) and (ii),

600
375000

W
= 2

18

X

W

d

∴ dX
2 =

18 375000
600

×
 = 11250 mm2

or dX = 106.01 mm        Ans.
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EXAMPLE 15.8.  A horizontal cantilever 3 m long is of rectangular cross-section 60 mm wide
throughout its length, and depth varying uniformly from 60 mm at the free end to 180 mm at the
fixed end. A load of 4 kN acts at the free end as shown in Fig. 15.11.

Fig. 15.11

Find the position of the highest stressed section and the value of the maximum bending stress
induced. Neglect the weight of the cantilever itself.

SOLUTION.  Given: Span (l) = 3 m = 3 × 103 mm and point load at the free end (W) = 4 kN = 4 × 103 N.

Position of the highest stressed section
Let x = Distance in metres of the section from B, which is highest stressed.

We know that the moment at X,

MX = (4 × 103) (x × 103) = 4 × 106 x N-mm ...(i)
and depth of the cantilever at X,

d =
180 60

60
3

x
−+ = 60 + 40 x mm ...(ii)

∴ Section modulus at X,

ZX =
2 60

6 6
bd =  (60 + 40 x)2 mm3

= 10 [20 (3 + 2 x)]2 = 4000 (3 + 2 x)2 mm3 ...(iii)
We also know that bending stress at X,

σ =
6 3

2 2

4 10 10

4000(3 2 ) (3 2 )
X

X

M x x
Z x x

×= =
+ +

 N/mm2 ...(iv)

Now for σ to be maximum, differentiate the above equation and equate it to zero, i.e.,

d
dx
σ

=
3

2

10
0

(3 2 )

xd
dx x

⎛ ⎞
=⎜ ⎟⎜ ⎟+⎝ ⎠

          or          2 (3 + 2 x) = 0

∴ x = 1.5 m        Ans.
Value of the maximum bending stress

Now substituting the value of x in equation (iv),

σmax =
3

2

10 1.5

(3 2 1.5)

×
+ ×

 = 41.7 N/mm2 = 41.7 MPa        Ans.
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15.5 Beams of Composite Section (Flitched Beams)
A composite section may be defined as a section made up of two or more different materials,

joined together in such a manner that they behave like a single piece and, each material bends to the
same radius of curvature. Such beams are used when a beam of one material, if used alone, requires
quite a large cross-sectional area; which does not suit the space available. A material is then reinforced
with some other material, of higher strength, in order to reduce the cross-sectional area of the beam
and to suit the space available (as is done in the case of reinforced cement concrete beams).

In such cases, the total moment of resistance will be equal to the sum of the moments of individual
sections.

Consider a beam of a composite section made up of two different materials as shown in Fig. 15.12.

Let E1 = Modulus of elasticity of part 1,
I1 = Moment of inertia of the part 1,

M1 = Moment of resistance for part 1,

σ1 = Stress in part 1,
Z1 = Modulus of section for part 1,

E2, I2, M2, σ2, Z2 = Corresponding values for part 2 and

R = Radius of the bend up beam.
We know that the moment of resistance for beam 1,

M1 = σ1 × Z1 (ä M = σ × Z)

Similarly, M2 = σ2 × Z2

∴ Total moment of resistance of the composite section,

M = M1 + M2 = (σ1 × Z1) + (σ2 × Z2) ...(i)

We also know that at any distance from the neutral axis, the strain in both the materials will be the
same.

1

1E
σ

= 2

1E
σ

          or          σ1 = 1

2

E
E

 × σ2 = m × σ2

where m = 1

2

F
E

 i.e., Modulus ratio.

From the above two relations, we can find out the total moment of resistance of a composite
beam or stresses in the two materials. But, if the sections of both the materials are not symmetrical,
then one area of the components is converted into an equivalent area of the other.

EXAMPLE 15.9.  A flitched timber beam made up of steel and timber has a section as shown
in Fig. 15.13.

Determine the moment of resistance of the beam. Take σS = 100
MPa and σT = 5 MPa.

SOLUTION.  Width of each timber section (bT) = 60 mm ;  Depth of
each timber section (dT) = 200 mm ;  Stress in timber (σT) = 5 MPa = 5
N/mm2 ;  Width of steel section (bS) = 15 mm ;  Depth of steel section
(dS) = 20 mm and stress in steel (σS) = 100 MPa = 100 N/mm2.

We know that the section modulus of a rectangular body,

Z =
2

6
bd

Fig. 15.12

Fig. 15.13
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∴ Modulus of section for both the timber sections,

ZT =
260 (200)

2
2

⎡ ⎤×
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 800 × 103 mm3 ...(ä of two sections)

Similarly, modulus of section for the steel section

ZS =
215 (200)

6
×

 = 100 × 103 mm3

We also know that moment of resistance for timber,

MT = σT × ZT = 5 × (800 × 103) = 4 × 106 N-mm

Similarly, MS = σS × ZS = 100 × (100 × 103) = 10 × 106 N-mm

∴ Total moment of resistance of the beam,

M = MT + MS = (4 × 106) + (10 × 106) = 14 × 106 N-mm

= 14 kN-m        Ans.

EXAMPLE 15.10.  A timber beam 100 mm wide and 200 mm deep is strengthened by a steel
plate 100 mm wide and 100 mm thick, screwed at the bottom surface of the timber beam as shown
in Fig. 15.14.

Fig. 15.14

Calculate the moment of resistance of the beam, if the safe stresses in timber and steel are 10
MPa and 150 MPa respectively. Take ES = 20 ET.

SOLUTION.  Given :  Width of timber section (bT) = 100 mm ;  Depth of timber section (dT) = 200
mm ;  Safe stress in timber (σT) = 10 MPa = 10 N/mm2 ; Width of steel section (bS) = 100
mm ;  Depth of steel section (dS) = 10 mm ;  Safe stress in steel (σS) = 150 MPa = 150 N/mm2 and
modulus of elasticity for steel (ES) = 20 ET.

We know that stress in steel is m times (20 times in this case) the stress in timber at the same
level. Hence the resistance offered by the steel is also equal to m times the resistance offered by the
timber of an equal area. It is thus obvious that if we replace steel by timber (or vice versa) of an area
equal to m times the area of the steel, the total resistance to bending offered will remain unchanged;
provided the distribution of the area about the neutral axis also remains unchanged. This can be done,
by keeping the depth of the area unchanged and by increasing the breadth of the timber m times the
breadth of the steel. The section thus obtained is called equivalent section and its moment of resistance
is equal to that of the given section.
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Fig. 15.15

In this case the equivalent section (of wood) is shown in Fig. 15.15. The bottom steel plate has
been replaced by an equivalent timber of 100 × 20 = 2000 mm.

We know that distance between the centre of gravity of the equivalent timber section and its
bottom face,

y =
(2000 10) 5 (100 200) 110

(2000 10) (100 200)
× × + × ×

× + ×  = 57.5 mm

Therefore distance between the centre of gravity of the equivalent timber section and the upper
extreme fibre,

yC = 210 – 57.5 = 152.5 mm
and yT = 57.5 mm

Therefore we shall take the value of y = 152.5 mm (i.e., greater of the two values among, yT and
yC). Now when the stress in uppermost fibre is 10 N/mm2 (given safe stress), then the stress in the
lowermost fibre,

=
10 57.5

152.5
×

 = 3.77 N/mm2

∴ Actual stress in steel at this fibre = 3.77 × 20 = 75.4 N/mm2

It is below the given safe stress (i.e., 150 N/mm2). We also know that moment of inertia of the
equivalent timber section about an axis passing through its centre of gravity and parallel to x-x axis,

I =
3 3

2 22000 (10) 100 (200)
(2000 10) (57.5 5) (100 200)(110 57.5)

12 12

⎡ ⎤ ⎡ ⎤× ×+ × − + + × −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

mm4

= (55.3 × 106) + (121.8 × 106) = 177.1 × 106 mm4

and section modulus of the equivalent section,

Z =
6177.1 10

152.5
×=I

y
 = 1.16 × 106 mm3

∴ Moment of resistance of the equivalent section,
M = σ1 × Z = 10 (1.16 × 106) = 11.6 × 106 N-mm

= 11.6 kN-m        Ans.
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Alternate method
Let us convert the section into an equivalent steel section as shown in Fig. 15.16. The upper

timber beam has been replaced by an equivalent steel beam of thickness

y =
(100 10) 5 (200 5) 110

(100 10) (200 5)
× × + × ×

× + × mm

= 57.5 mm (same as in first method)

Therefore distance between the centre of gravity of the equivalent
steel section and the upper extreme fibre,

yc = 210 – 57.5 = 152.5 mm

and yt = 57.5 mm

Therefore we shall take the value of y = 152.5 mm (i.e., greater
of the two values i.e., yt and yc). Now when the stress in the uppermost
fibre is 10 × 20 = 200 N/mm2 (given safe stress), the stress in the
lowermost fibre

=
200 57.5

152.5
×

 = 75.4 N/mm2

It is below the given safe stress (i.e., 150 N/mm2). We also know that moment of inertia of the
equivalent steel section, about an axis passing through its c.g. and parallel to x-x axis,

I =

3 3
2 2100 (10) 5 (200)

(100 10)(57.5 5) (5 200)(110 57.5)
12 12

⎡ ⎤ ⎡ ⎤× ×+ × − + + × −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

mm4

= (2.76 × 106) + (6.09 × 106) = 8.85 × 106 mm4

and section modulus of the equivalent section,

Z =
68.85 10

152.5
×=I

y
 = 0.058 × 106 mm3

∴ Moment of resistance of the equivalent section,

M = σ2 × Z = (20 × 10) × (0.058 × 106) = 11.6 × 106 N-mm

= 11.6 kN-m        Ans.

EXAMPLE 15.11.  A compound beam is formed by joining two bars, one of brass and the
other of steel, each 40 mm wide and 10 mm deep. This beam is supported over a span of 1 mm
with the brass bar placed over the steel bar as shown in Fig. 15.17.

Fig. 15.17

Determine the maximum load, which can be applied at the centre of the beam, when the bars
are:

(a) separate and can beand independently,

(b) firmly secured to each other, throughout their length.

Take ES = 200 GPa ;  EB = 80 GPa and σS = 112.5 MPa ;  σB = 75 MPa

Fig. 15.16
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SOLUTION.  Given: Width (b) = 40 mm ;  Depth of brass bar (dB) = dS = 10 mm ;  Span (l) = 1 m
= 1 × 103 mm ;  Modulus of elasticity for steel (ES) = 200 GPa = 200 × 103 N/mm2 ;  Modulus of
elasticity for brass (EB) = 80 GPa = 80 × 10 N/mm2 ;  Allowable stress in steel (σS) = 112.5 MPa =
112.5 N/mm2 and allowable stress in brass σB = 75 MPa = 75 N/mm2.
When the bars are separate and can bend independently

Let W = Maximum load, which can be applied at the centre of the beam.

We know that section modulus for steel,

ZS = ZB = 
22 40 (10) 2000

6 6 3
bd ×= = mm3

A little consideration will show that each bar will bend about its own axis independently. But for
the sake of simplicity, let us assume that each bar has the same radius of curvature. We know that

M
I

=
E
R           or          R  =  

EI
M

∴
·S S

S

E I
M

=
·B B

B

E I
M

S

B

M
M

=
3

3

200 10
2.5

80 10
S

B

E
E

×= =
×

...(ä IS = IB)

or MS = 2.5 MB

∴ σS · ZS = 2.5 σB · ZB

σS = 2.5 σB ... ( )2000
3

= =∵ S BZ Z

Thus stress in brass when the *stress in steel is 112.5 N/mm2,

σB =
112.5

2.5 2.5
Sσ

=  = 45 N/mm2

It is below the permissible stress (i.e., 75 N/mm2). Therefore moment of resistance of the steel
beam,

MS = σS × ZS = 112.5 × 2000
3

 = 75 000 N-mm

and MB = σB × ZB = 45 × 
2000

3
 = 30 000 N-mm

Therefore total moment of resistance,

M = MS + MB = 75 000 + 30 000 = 105 000 N-mm ...(i)

We know that maximum bending moment at the centre, when it is to support a load W at the
centre,

M =
3(1 10 )

4 4
WWl × ×=  = 250 W ...(ii)

* If the maximum stress in brass is considered to be 75 N/mm2, then the stress in steel
σS = 2.5 σB = 2.5 × 75 = 187.5 N/mm2

But it is more than the permissible limit. Therefore we shall consider stress in steel as 112.5 N/mm2.
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Equating equations (i) and (ii),
105 000 = 250 W

∴ W =
105000

250  = 420 N        Ans.

When the bars are firmly secured to each other throughout their length
Now let us convert the whole section into an equivalent *brass section as shown in Fig. 15.18.

Fig. 15.18

The bottom steel plate has been replaced by an equivalent brass plate of thickness

=
3

3

200 10
40

80 10

××
×

 = 100 mm

We know that distance between the centre of gravity of the section and bottom face of the equivalent
brass section,

y =
(100 10) 5 (40 10) 15

(100 10) (40 10)
× + ×

× + ×  = 7.86 mm

∴ Distance of centre of gravity from the upper extreme fibre,

y1 = 20 – 7.86 = 12.14 mm          and          v2  =  7.86 mm

Therefore we shall take the value of y = 12.14 mm (i.e., greater of the two values among yT
and yC).

Now when the stress in the uppermost fibre is 75 N/mm2 (given stress) then the stress in the
lowermost fibre is

=
75 7.86

12.14
×

 = 48.6 N/mm2

Therefore actual stress in steel in the lowermost fibre

= 48.6 × 2.5 = 121.5 N/mm2

It is more than the given safe stress in steel (i.e., 112.5 N/mm2). It is thus obvious that the brass
cannot be fully stressed. Now taking maximum stress in steel at the bottom to be 112.5 N/mm2, we
find that the stress in brass at the bottom fibre,

σB = 112.5
2.5 2.5
σ

=S = 45 N/mm2

We also know that moment of inertia of the equivalent section about an axis passsing through its
centre of gravity and parallel to x-x axis,

I =
3 3

2 2100 (10) 40 (10)
(100 10)(7.86 5.0) (40 10)(15 7.86)

12 12

⎡ ⎤ ⎡ ⎤× ×+ × − + + × −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

mm4

* We may also convert the whole section into an equivalent steel section.
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= 40.24 × 103 mm4

and section modulus of the equivalent section,

Z =
340.24 10

12.14
I
y

×=  = 3.31 × 103 mm3

∴ Moment of resistance of the equivalent section,

M = σ × Z = 45 × (3.31 × 103) = 149 × 103 N-mm ...(iii)
We know that the maximum bending moment at the centre, when it is to support a load W at the

centre,

M =  
3(1 10 )

4 4
WWl × ×=  = 250 W ...(iv)

Equating equations (iii) and (iv)

149 × 103 = 250 W

∴ W =
3149 10

250
×

 = 596 N        Ans.

EXERCISE 15.2

1. A cantilever beam 2.5 m long has 50 mm width throughout its length and depth varying uni-
formly from 50 mm at the free end to 150 mm at the fixed end. If a load of 3 kN acts at the free
end, find the position of highest stressed section and value of maximum bending stress induced.
Neglect the weight of the beam itself. (Ans. 1.25 m ;  45 MPa)

2. A timber beam 150 mm deep and 150 mm wide is reinforced by a steel plate 100 mm wide and
10 mm deep attached at the lower face of the timber beam. Calculate the moment of resistance
of the beam, if allowable stresses in timber and steel are 6 MPa and 60 MPa respectively. Take
Es = 166 Et. (Ans. 9.45 kN-m)

3. A timber joist 100 mm wide and 150 mm deep is reinforced by fixing two steel plates each 100
mm wide and 10 mm thick attached symmetrically at the top and the bottom. Find the moment
of resistance of the beam, if allowable stresses in timber and steel are 7 MPa and 100 MPa
respectively. Take Es = 16 Et. (Ans. 17.15 kN-m)

QUESTIONS

1. Discuss the difference of procedure in finding out the bending stress in (a) symmetrical section,
and (b) an unsymmetrical section.

2. Explain the term ‘strength of a section’.

3. Illustrate the term ‘beam of uniform strength’. Explain its necessity.

4. What do you understand by the term flitched beam? How would you find out the bending
stresses in such a beam when it is of (a) a symmetrical section and (b) an unsymmetrical sec-
tion?

5. Define the term ‘equivalent section’ used in a flitched beam.
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OBJECTIVE TYPE QUESTIONS

1. Which of the following is a composite section?

(a) hollow circular section (b) T-section
(c) Z-section (d) both ‘b’ and ‘c’

2. A beam of uniform strength has constant

(a) shear force (b) bending moment
(c) cross-sectional area (d) deflection

3. In a flitched beam, one section is reinforced with another section. The purpose of such a beam
is to improve

(a) shear force over the section (b) moment of resistance over the section
(c) appearance of the section (d) all of these

ANSWERS

1. (d) 2. (b) 3. (b)
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16.1. Introduction
In the previous chapter, we discussed the

theory of simple bending. In this theory, we
assumed that no shear force is acting on the
section. But in actual practice when a beam is
loaded, the shear force at a section always comes
into play, alongwith the bending moment. It has
been observed that the effect of shearing stress,
as compared to the bending stress, is quite
negligible, and is not of much importance. But,
sometimes, the shearing stress at a section assumes
much importance in the design criterion. In this
chapter, we shall discuss the shearing stress for
its own importance.

16C h a p t e r

Note :
Important Results related to this
chapter are given at the end of this
book See Appendix Table 3
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16.2. Shearing Stress at a Section in a Loaded Beam
Consider a small portion ABDC of length dx of a beam loaded with uniformly distributed

load as shown in Fig. 16.1 (a).

Fig. 16.1.  Shearing stress

We know that when a beam is loaded with a uniformly distributed load, the shear force and
bending moment vary at every point along the length of the beam.

Let M = Bending moment at AB,

M + dM = Bending moment at CD,

F = Shear force at AB,

F + dF = Shear force at CD, and

I = Moment of inertia of the section about its neutral axis.

Now consider an elementary strip at a distance y from the neutral axis as shown in Fig. 16.1 (b).

Now let σ = Intensity of bending stress across AB at distance y from the neutral axis and

      a = Cross-sectional area of the strip.
We have already discussed  that

M
I

= y
σ

          or          σ  =  
M
I

 × y  ... (See Art. 14.6)

Similarly, σ + dσ =
M dM

y
I

+ ×

where σ + dσ = Intensity of bending stress across CD.

We know that the force acting across AB

= Stress × Area = σ × a = M
I

× y × a ...(i)

Similarly, force acting across CD

= (σ + dσ) × a = 
M dM

y a
I

+ × × ...(ii)

∴ Net unbalanced force on the strip

=
M dM M dMy a y a y a

I I I
+ × × − × × = × ×
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The total *unbalanced force (F) above the neutral axis may be found out by integrating the above
equation between 0 and d/2.

or = 2 2

0 0
· · · ·

d d
dM dM dMa y dy a y dy Ay

I I I
= =∫ ∫ ...(iii)

where A = Area of the beam above neutral axis, and y = Distance between

the centre of gravity of the area and the neutral axis.

We know that the intensity of the shear stress,

τ =
·Total force

Area ·

dM Ay
I
dx b

= ...(Where b is the width of beam)

=
·A ydM

dx Ib
×

=
Ay

F
Ib

× ( )Substituting Shear forcedM F
dx

= =

16.3. Distribution of Shearing Stress
In the previous article, we have obtained a relation, which helps us in determining the value of

shear stress at any section on a beam. Now in the succeeding articles, we shall study the distribution
of the shear stress along the depth of a beam. For doing so, we shall calculate the intensity of shear
stress at important sections of a beam and then sketch a shear stress diagram. Such a diagram helps us
in obtaining the value of shear stress at any section along the depth of the beam. In the following
pages, we shall discuss the distribution of shear stress over the following sections:

1. Rectangular sections,

2. Triangular sections,
3. Circular sections,

4. I-sections,

5. T-sections and
6. Miscellaneous sections.

16.4. Distribution of Shearing Stress over a Rectangular Section
Consider a beam of rectangular section ABCD of width  and depth  as shown in Fig. 16.2 (a). We

know that the shear stress on a layer JK of beam, at a distance y from the neutral axis,

τ =
A y

F
Ib

× ...(i)

*  This may also be found out by splitting up the beam into number of strips at distance of  from the neutral axis.

We know that unbalanced force on strip 1 = 1 1·dM a y
I

×

Similarly, unbalanced force on strip 2 = 2 2·dM a y
I

×

and unbalanced force on strip 3 =  3 3·dM a y
I

×  and so on

∴ Total force, F = 1 1 2 2 3 3· · · ....× + × + × +dM dM dM
a y a y a y

I I I

= 1 1 2 2 3 3( . . . ...)+ + + =dM dM
a y a y a y A y

I I
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where F = Shear force at the section,
A = Area of section above  y (i.e., shaded area AJKD ),

y = Distance of the shaded area from the neutral axis,

∴ A y = Moment of the shaded area about the neutral axis,

I = Moment of inertia of the whole section about its neutral axis, and

b = Width of the section.

Fig. 16.2.  Rectangular section

We know that area of the shaded portion AJKD,

A = ( )2
db y− ...(ii)

∴ y = ( )1
2 2 4 2

yd dy y y+ − = + −

= ( )1
2 4 2 2
y d dy+ = + ...(iii)

Substituting the above values of A and y  in equation (i),

τ =
( ) ( )1

2 2 2
d db y y

A y
F F

Ib Ib

− × +
× = ×

=
2

2

2 4
F d y
I
⎛ ⎞

−⎜ ⎟
⎝ ⎠

...(iv)

We see, from the above equation, that τ increase as y decreases. At a point, where y = d/2, τ = 0;
and where y is zero, τ is maximum. We also see that the variation of τ with respect to y is a parabola.

At neutral axis, the value of τ is maximum. Thus substituting y = 0 and I = 
3

12
bd  in the above equation,

τmax =
2

3

3
4 2

2
12

FF d
bdba

⎛ ⎞
=⎜ ⎟

⎝ ⎠×
 = 1.5 τav ... ( )Areaav

F F
bd

τ = =∵

Now draw the shear stress distribution diagram as shown in Fig. 16.2 (b).
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EXAMPLE 16.1.  A wooden beam 100 mm wide, 250 mm deep and 3 m long is carrying a
uniformly distributed load of 40 kN/m. Determine
the maximum shear stress and sketch the variation
of shear stress along the depth of the beam.

SOLUTION.  Given: Width (b) = 100 mm ;  Depth
(d) = 250 mm ;  Span (l) = 3 m = 103 mm and uniformly
distributed load (w) = 40 kN/m = 40 N/mm.

We know that shear force at one end of the beam,

F =
340 (3 10 )

2 2
wl × ×=  N

= 60 × 103 N

and area of beam section,
A = b · d = 100 × 250 = 25 000 mm2

∴ Average shear stress across the section,

τav =
360 10

25000
F
A

×=  = 2.4 N/mm2 = 2.4 MPa

and maximum shear stress,
τmax = 1.5 × τ = 1.5 × 2.4 = 3.6 MPa        Ans.

The diagram showing the variation of shear along the depth of the beam is shown in Fig. 16.3 (b).

16.5. Distribution of Shearing Stress over a Triangular Section
Consider a beam of triangular cross-section ABC of base b and height h as shown in Fig. 16.4 (a).
We know that the shear stress on a layer JK at a distance y from the neutral axis,

τ =
A y

F
Ib

× ...(i)

where F = Shear force at the section,

A y = Moment of the shaded area about the neutral axis and

I = Moment of inertia of the triangular section about its neutral
axis.

Fig. 16.4. Triangular section.

Fig. 16.3
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We know that width of the strip JK,

b = bx
h

∴ Area of the shaded portion AJK,

A =
21 1

2 2 2
⎛ ⎞× = × =
⎝ ⎠

bx bxJK x x
h h

and y =
2 2 2 ( )
3 3 3
h x h x− = −

Substituting the values of b, A and y  in equation (i),

τ =

2 2 ( )
2 3

[ ( )]
3

bx h x
h FF x h x

bx II
h

⎛ ⎞
× −⎜ ⎟

⎝ ⎠× = × −
×

=
2

3
F hx x
I

⎡ ⎤× −
⎣ ⎦ ...(ii)

Thus we see that the variation of τ with respect to x is parabola. We also see that as a point where

x = 0 or x = h, τ = 0. At neutral axis, where x = 
2
3
h

,

τ =
2 2 22 2 2 2

3 3 3 3 9 27

⎡ ⎤⎛ ⎞× − = × =⎢ ⎥⎝ ⎠
⎣ ⎦

F h h F h Fh
h

I I I

=
2

3
2 8

3
27

36

Fh F
bhbh

=
×

... 
3

36
bhI

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∵

=
4 1.33
3 Area av

F× = τ ... Area
2

bh⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

Now for maximum intensity, differentiating the equation (ii) and equating to zero,

2( )
3

d F hx x
dx I

τ ⎡ ⎤−⎢ ⎥⎣ ⎦
= 0

∴ h – 2x = 0    or    x  =  
2
h

Now substituting this value of x in equation (ii),

τmax =
2 2 2

33 2 2 12
12

36

F h h Fh Fhh
I I bh

⎡ ⎤⎛ ⎞× − = =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦ ×

... 
3

36
bhI

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∵

= 3 3 1.5
2 Area av

F F
bh

= × = τ

Now draw the shear stress distribution diagram as shown in Fig. 16.4 (b).

EXAMPLE 16.2.   A beam of triangular cross section having base width of 100 mm and height
of 150 mm is subjected to a shear force of 13.5 kN. Find the value of maximum shear stress and
sketch the shear stress distribution along the depth of beam.

SOLUTION. Given: Base width (b) = 100 mm ; Height (h) = 150 mm and shear force (F) =
13.5 kN = 13.5 × 103 N
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We know that area of beam section,

A = 2· 100 150
mm

2 2
b h ×=

= 7500 mm2

∴ Average shear stress across the section,

τav =
3

213.5 10
N/mm

7500
F
A

×=

= 1.8 N/mm2 = 1.8 MPa

and maximum shear stress,
τav = 1.5 × τav = 1.5 × 1.8 = 2.7 MPa        Ans.

The diagram showing the variation of shear stress along the
depth of the beam is shown in Fig. 16.5(b).

16.6. Distribution of Shearing Stress over a Circular Section

Fig. 16.6. Circular section.

Consider a circular section of diameter d as shown in Fig. 16.6 (a). We know that the shear stress
on a layer JK at a distance y from the neutral axis,

τ =
A y

F
Ib

×

where F = Shear force at the section,

A y = Moment of the shaded area about the neutral axis,

r = Radius of the circular section,
I  = Moment of inertia of the circular section and

b = Width of the strip JK.

We know that in a circular section,

width of the strip JK, b = 2 22 r y−

and area of the shaded strip,

A = 2 22 ·r y dy−

∴ Moment of this area about the neutral axis

= 2 22 ·y r y dy− ...(i)

Fig. 16.5
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Now moment of the whole shaded area about the neutral axis may be found out by integrating the
above equation between the limits y and r, i.e.,

A y =
2 22 ·

r

y

y r y dy−∫

= · ·
r

y

b y dy∫                 ... 2 2( 2 )b r y= −∵ ...(ii)

We know that width of the strip JK,

b = 2 22 r y−

or b2 = 2 24 r y− ... (Squaring both sides)

Differentiating both sides of the above equation,

2b · db = 4 (– 2y) dy = – 8y · dy

or y · dy =
1 ·
4

b db−

Substituting the value of y · dy in equation (ii),

A y = 21 1· ·
4 4

r r

y y

b b db b db⎛ ⎞− = −⎜ ⎟
⎝ ⎠∫ ∫ ... (iii)

We know that when y = y, width b = b and when y = r, width b = 0. Therefore, the limits of
integration may be changed from y to r, from b to zero in equation (iii),

or A y =
0

21 ·
4

b

b db− ∫

=
2

0

1 ·
4 ∫

b

b db ... (Eliminating –ve sign)

=
3 3

0

1
4 3 12

b
b b⎡ ⎤

− =⎢ ⎥
⎣ ⎦

Now substituting this value of A y  in our original formula for the shear stress, i.e.,

τ =

3

2
12

12

b
A y bF F F
Ib Ib I

× = × = ×

=
2 2 2(2 )
12

r y
F

I

⎡ ⎤−
⎢ ⎥×
⎢ ⎥
⎣ ⎦

... 2 2( 2 )b r y= −∵

=
2 2

3
r y

F
I

−×
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Thus we again see that τ increases as y decreases. At a point, where y = r, τ = 0,  = 0 and where
y is zero, τ is maximum. We also see that the variation of τ with respect to y is a parabolic curve. We
see that at neutral axis τ is maximum.

Substituting y = 0 and 4

64
I dπ= ×  in the above equation,

τmax =

2

2

4 2

2 4 1.33
3 3 3

64 4

⎛ ⎞
⎝ ⎠

× = × = = τπ π× × × × ×
av

d
r F

F F
I d d

Now draw the shear stress distribution diagram as shown in Fig. 16.6 (b).

EXAMPLE 16.3.  A circular beam of 100 mm diameter is subjected to a shear force of 30 kN.
Calculate the value of maximum shear stress and sketch the variation of shear stress along the
depth of the beam.

SOLUTION. Given: Diameter (d) = 100 mm and shear force (F) = 30 kN = 30 × 103 N

Fig. 16.7

We know that area of the beam section,

A = 2 2 2 2( ) (100) mm 7854 mm
4 4

dπ π= =

∴ Average shear stress across the section

τav =
3

230 10
3.82 N/mm 3.82 MPa

7854
F
A

×= = =

and maximum shear stress,
τmax = 1.33 × τav = 1.33 × 3.82 = 5.08 MPa       Ans.

The diagram showing the variation of shear stress along the depth of the beam is shown in Fig.
16.7.

EXERCISE 16.1

1. A rectangular beam 80 mm wide and 150 mm deep is subjected to a shearing force of 30 kN.
Calculate the maximum shear stress and draw the distribution diagram for the shear stress.]

[Ans. 3.75 MPa]

2. A rectangular beam 100 mm wide is subjected to a maximum shear force of 50 kN. Find the
depth of the beam, if the maximum shear stress is 3 MPa. [Ans. 250 mm]
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3. A triangular beam of base width 80 mm and height 100 mm is subjected to a shear force of 12
kN. What is the value of maximum shear stress? Also draw the shear stress distribution diagram
over the beam section. [Ans. 4.5 MPa]

4. A circular beam of diameter 150 mm is subjected to a shear force of 70 kN. Find the value of
maximum shear stress and sketch the shear stress distribution diagram over the beam section.

[Ans. 5.27 MPa]

16.7. Distribution of Shearing Stress over an I-Section

Fig. 16.8. I-section.

Consider a beam of an I-section as shown in Fig. 16.8 (a)

Let B = Overall width of the section,
D = Overall depth of the section,
d = Depth of the web, and
b = Thickness of the web.

We know that the shear stress on a layer JK at a distance y from the neutral axis,

τ =
A y

F
Ib

×  ... (i)

Now we shall discuss two important cases

(i) when y is greater than 
2
d

(ii) when y is less than 
2
d

.

Fig. 16.9
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(i) When y is greater than 
2
d

It means that y lies in the flange as shown in Fig. 16.9 (a). In this case, shaded area of the flange,

A =
2
DB y⎛ ⎞−⎜ ⎟

⎝ ⎠

and y =
1
2 2

Dy y⎛ ⎞+ −⎜ ⎟
⎝ ⎠

Now substituting these values of A and y  from the above equations, in our original equation (i)

of shear force, i.e.,

τ =

1
2 2 2
D DB y y y

A y
F F

Ib IB

⎡ ⎤⎛ ⎞ ⎛ ⎞− × + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦× = ×

=
2

2

2 4
F D y
I

⎛ ⎞
−⎜ ⎟

⎝ ⎠

Thus we see that τ increases as y decreases. We also see that the variation of τ with respect to y

is a parabolic curve. At the upper edge of the flange, where y = 
2
D

, shear stress is zero and at the

lower edge where y = 
2
d

, the shear stress,

τ =
22

2 2( )
2 4 2 8
F D d F D d
I I

⎡ ⎤⎛ ⎞− = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

(ii) When y is less than 
2
d

It means that y lies in the web as shown in Fig. 10.9 (b). In this case, the value of A y  for the

flange

= 1
2 2 2 2 2 2
D d d D dB ⎡ ⎤⎛ ⎞ ⎛ ⎞− × + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=
2 2( )1

2 2 2 8
D d D d D d

B B
− ⎡ + ⎤ −⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎝ ⎠⎣ ⎦
...(i)

and the value of A y  for the web above AB

= 1
2 2 2
d db y y y⎡ ⎤⎛ ⎞ ⎛ ⎞− × + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=
2

21
2 2 2 2 4
d d b db y y y

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞− × + = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠
...(ii)

∴ Total A y =
2 2 2

2( )
8 2 4

B D d b d y
⎛ ⎞− + −⎜ ⎟
⎝ ⎠

Now substituting the value of A y  from the above equation, in our original equation of shear

stress on a layer at a distance y from the neutral axis, i.e.,

τ =

22 2
2( )

48 2
dB D d b y

A y
F F

Ib Ib

⎛ ⎞− −+ ⎜ ⎟
⎝ ⎠× = ×
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=
2 2 2

2( )
8 2 4

B D dF b d y
Ib

⎡ ⎤⎛ ⎞− + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

Thus we see that in the web also τ increases as y decreases. We also see that the variation of τ
with respect to y in the web also is a parabolic curve. At neutral axis where y = 0, the shear stress is
maximum.

∴ Maximum shear stress,

∴ τmax =
2

2 2( )
8 8

F B bdD d
Ib

⎡ ⎤
− +⎢ ⎥

⎣ ⎦
...(Substituting y = 0)

Now, shear stress at the junction of the top of the web and bottom of the flange

=
2 2( )

8
F B D d
Ib

⎡ ⎤−⎢ ⎥⎣ ⎦
... Substituting

2
dy⎛ ⎞=⎜ ⎟

⎝ ⎠

=
2 2( )

8
F B D d
I b

× −

NOTES:1. We see that the shear stress at the junction of the top of web and bottom of the flange is different

from both the above expressions . ., when and
2 2
d di e y y⎛ ⎞> <⎜ ⎟

⎝ ⎠
.

We also see that the shear stress changes, abruptly from 2 2( )
8
F D d
I

−  to 2 2( )
8
F B D d
I b

× − .

Thus the shear stress at this junction, suddenly increases by B/b times as shown in Fig. 16.8(b).

2. If the I-section is symmetrical, the shear stress distribution diagram will also be symmetrical.

3. From the shear stress distribution diagram, we see that most of the shear stress is taken up by the
web. It is an important factor in the design of various important structures.

EXAMPLE 16.4.  An I-sections, with rectangular ends, has the following dimensions:

Flanges =150 mm × 20 mm, Web = 300 mm  10 mm.

Find the maximum shearing stress developed in the beam for a shear force of 50 kN.

SOLUTION. Given: Flange width (B) = 150 mm ;  Flange thickness
= 20 mm ;  Depth of web (d) = 300 mm; Width of web = 10 mm;
Overall depth of the section (D) = 340 mm and shearing force (F) =
50 kN = 50 × 103 N.

We know that moment of inertia of the I-section about its centre
of gravity and parallel to x-x axis,

IXX =
3 3

4150 (340) 140 (300)
mm

12 12
× ×−

= 176.3 × 106 mm4

and maximum shearing stress,

τmax =
2

2 2( )
8 8

F B bd
D d

Ib

⎡ ⎤
− +⎢ ⎥

⎢ ⎥⎣ ⎦

=
3 2

2 2 2
6

50 10 10 (300)150 [(340) (300) ] N/mm
8 8(176.3 10 ) 10

⎡ ⎤× ×− +⎢ ⎥
× × ⎢ ⎥⎣ ⎦

= 16.8 N/mm2 = 16.8 MPa       Ans.

Fig. 16.10
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EXAMPLE 16.5.  An I-section beam 350 mm × 200 mm has a web thickness of 12.5 mm and
a flange thickness of 25 mm. It carries a shearing force of 200 kN at a section. Sketch the shear
stress distribution across the section.

SOLUTION. Given: Overall depth (D) = 350 mm ;  Flange width (B) = 200 mm ;  Width of Web =
12.5 mm ;  Flange thickness = 25 mm and the shearing force (F) = 200 kN = 200 × 103 N.

We know that moment of inertia of the I-section about it centre of gravity and parallel to x-x axis,

IXX =
3 3

6 4200 (350) 187.5 (300)
292.7 10 mm

12 12
× ×− = ×

We also know that shear stress at the upper edge of the upper flange is zero. And shear stress at
the joint of the upper flange and web

=
3

2 2 2 2 2
6

200 10
[ ] [(350) (300) ] N/mm

8 8 (292.7 10 )

F D d
I

×− = −
× ×

= 2.78 N/mm2 = 2.78 MPa

Fig. 16.11

The shear stress at the junction suddenly increases from 2.78 MPa to 2002.78
12.5

×  = 44.48 MPa.

We also know that the maximum shear stress,

τmax =
2

2 2( )
· 8 8
F B bdD d

I b

⎡ ⎤
− +⎢ ⎥

⎣ ⎦

=
3 2

2 2
6

200 10 12.5 (300)200 (350) (300)
8 8(292.7 10 ) 12.5

⎡ ⎤× ×− +⎢ ⎥
× × ⎣ ⎦

=  52.1 N/mm2 = 52.1 MPa

Now complete the shear stress distribution diagram across the section as shown in Fig
16.11 (b).
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16.8. Distribution of Shearing Stress over a T-section
The procedure for determining the distribution of stress over a T-section is the same as discussed

in Art. 16.7. In this case, since the section is not symmetrical about x-x axis, therefore, the shear stress
distribution diagram will also not be symmetrical.

EXAMPLE 16.6.  A T-shaped cross-section of a beam shown in Fig. 16.12 is subjected to a
vertical shear force of 100 kN. Calculate the shear stress at important
points and draw shear stress distribution diagram. Moment of inertia
about the horizontal neutral axis is  mm4.

SOLUTION. Given: Shear stress (F) = 100 kN = 100 × 103 N and
moment of inertia (I) = 113.4 × 106 mm4.

First of all let us find out the position of the neutral axis. We know
that distance between the centre of gravity of the section and bottom of
the web,

y =
[(200 50) 225] [(200 50) 100]

(200 50) (20 50)
× × + × ×

× + ×

= 162.5 mm

∴ Distance between the centre of gravity of the section and top
of the flange,

yC = (200 + 50) – 162.5 = 87.5 mm

We know that shear stress at the top of the flanges is zero. Now let us find out the shear stress at
the junction of the flange and web by considering the area of the *flange of the section. We know that
area of the upper flange,

A = 200 × 50 = 10000 mm2

y = 5087.5 62.5
2

− =  mm

B = 200 mm
∴ Shear stress at the junction of the flange and web,

τ = 3 2
6

· 10000 62.5
100 10 N/mm

· (113.4 10 ) 200

A y
F

I B
×× = × ×

× ×
= 2.76 N/mm2 = 2.76 MPa

Fig. 16.12

* It may also be found out by considering the area of web of the section as discussed below. We know that
area of the web,

A = 200 × 50 = 10000 mm2

y = 162.5 – 200/2 = 62.5 mm, b = 50 mm

∴ Shear stress at the junction of the flange and web,

τ =
3

6
· 10000 62.5

100 10
· (113.4 10 ) 50

×× = × ×
× ×

A y
F

I b

= 11.04 N/mm2 = 11.04 MPa

In this case, the shear stress at the junction suddenly decreases from 11.04 MPa to 11.04 × 
50

200
  = 2.76 MPa.
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Fig. 16.13

The shear stress at the junction suddenly increases from 2.76 MPa to 2.76 × 200 11.04
50

= MPa.

Now let us find out the shear stress at the neutral axis, where the shear stress is maximum.
Considering the area of the T-section above the neutral axis of the section, we know that

* A y =
337.5[(200 50) 62.5] (37.5 50) mm

2
⎡ ⎤× × + × ×⎢ ⎥⎣ ⎦

= 660.2 × 103 mm3

and b = 50 mm

∴ Maximum shear stress,

τmax =
3

3 2
6

· 660.2 10
100 10 N/mm

· (113.4 10 ) 50

A y
F

I b
×× = × ×

× ×

= 11.64 N/mm2 = 11.64 MPa

Now draw the shear stress distribution diagram across the section as shown in Fig. 16.13(b).

16.9. Distribution of Shearing Stress over a Miscellaneous Section
The procedure for determining the distribution of shear stress over a miscellaneous

section, is the same as discussed in the previous articles. The shear stress at all the important
points should be calculated and then shear stress distribution diagram should be drawn as
usual.

* It may also be found out by considering the area below neutral axis as discussed below. We know that

A y =
3 3162.5(162.5 50) 660.2 10 mm

2
× × = ×
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EXAMPLE 16.7.  A cast-iron bracket subjected to bending, has a cross-section of I-shape
with unequal flanges as shown in Fig. 16.14.

Fig. 16.14

If the compressive stress in top flange is not to exceed 17.5 MPa, what is the bending moment,
the section can take? If the section is subjected to a shear force of 100 kN, draw the shear stress
distribution over the depth of the section.

SOLUTION. Given: Compressive stress (σc) = 17.5 MPa = 17.5 N/mm2 and shear force (F) = 100
kN =  100 × 103 N

Bending moment the section can take
First of all, let us find out the position of the neutral axis. We know that distance between centre

of gravity of the section and bottom face,

y =
(250 50) 325 (250 50) 175 (150 50) 25

(250 50) (250 50) (150 50)
× + × + ×

× + × + ×

=
6 437 500

198 mm
32 500

=

∴ Distance of centre of gravity from the upper extreme fibre,

yc = 350 – 198 = 152 mm

and moment of inertia of the section about an axis passing through its centre of gravity and parallel to
x-x axis,

I =
3

2250 (50)
(250 50) (325 198)

12

⎡ ⎤× + × −⎢ ⎥
⎢ ⎥⎣ ⎦

3
250 (250)

(50 250) (198 175)
12

⎡ ⎤×+ + × −⎢ ⎥
⎢ ⎥⎣ ⎦

+ 
3

2 4150 (50)
(150 50) (198 25) mm

12

⎡ ⎤× + × −⎢ ⎥
⎢ ⎥⎣ ⎦

= 502 × 106 mm4

∴ Bending moment the section can take

=
6 617.5 502 10 57.8 10

152
c

cy I
σ

= × × = ×
×  N-mm

= 57.8 kN-m        Ans.
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Shear stress distribution diagram
We know that the shear stress at the extreme edges of both the flanges is zero. Now let us find out

the shear stress at the junction of the upper flange and web by considering the area of the upper
flange. We know that area of the upper flange,

Fig. 16.15

A = 250 × 50 = 12500 mm

y =
50152 127
2

− =  mm

and B = 250 mm
∴ Shear stress at the junction of the upper flange and web,

τ = 3 2
6

· 12500 127
100 10 N/mm

· (502 10 ) 250

A y
F

I B
×× = ×

× ×
= 1.26 N/mm2 = 1.26 MPa

The shear stress at the junction suddenly increases from 1.26 MPa to 
2501.26 6.3
50

× =  MPa.

Now let us find out the shear stress at the junction of the lower flange and web by considering the area
of the lower flange. We know that area of the lower flange,

A = 150 × 50 = 7500 mm2

y =
50198 173 mm
2

− =

and B = 150 mm

∴ Shear stress at the junction of the lower flange and web,

τ = 3
6

· 7500 173
100 10

· (502 10 ) 150

A y
F

I B
×× = × ×

× ×
= 1.72 N/mm2 = 1.72 MPa

The shear stress at the function suddenly increases from 1.72 MPa to 1.72 × 150
50

 = 5.16 MPa.

Now let us find out the shear stress at the neutral axis, where the shear stress is maximum.
Considering the area of the I-section above neutral axis, we know that

A y =
3102[(250 50) 127] (102 50) mm

2
⎡ ⎤× × + × ×⎢ ⎥⎣ ⎦



400 � Strength of Materials

= 1.848 × 106 mm3

and b = 50 mm

∴ Maximum shear stress,

τmax =
6

3 2
6

· 1.848 10
100 10 N/mm

· (502 10 ) 50

A y
F

I b
×× = × ×

× ×
= 7.36 N/mm2 = 7.36 MPa

Now draw the shear stress distribution diagram over the depth of the section as shown in
Fig. 16.15.

EXAMPLE 16.8.  A steel section shown in Fig. 16.16 is subjected to a shear force of 20 kN.

Fig. 16.16

Determine the shear stress at the important points and sketch the shear distribution diagram.

SOLUTION. Given: Shear force (F) = 20 kN = 20 × 103 N
Since the section is symmetrical about x-x and y-y axes therefore, centre of the section will lie on

the geometrical centroid of the section. For the purpose of moment of inertia and shear stress, the two
semi-circular grooves may be assumed to be together and considered as one circular hole of 60 mm
diameter. Therefore moment of inertia of the section about an axis passing through its centre of
gravity and parallel to x-x axis,

I =
3

4 6 480 (100)
(60) 6.03 10 mm

12 64

⎡ ⎤× π⎡ ⎤− = ×⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

We know that shear stress at the extreme edges of A and E of the section is zero. Now let us find
out the shear stress at B by considering the area between A and B.

We know that area of the upper portion between A and B

A = 80 × 20 = 1600 mm2

y =
2030 40
2

+ =  mm

and B = 80 mm

∴ Shear stress at B, τ = 3 2
6

· 1600 40
20 10 N/mm

· (6.03 10 ) 80

A y
F

I B
×× = × ×

× ×
= 2.65 N/mm2 = 2.65 MPa
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Fig. 16.17

Now let us find out the shear stress at the neutral axis, where the shear stress is maximum.
Considering the area above the neutral axis, we know that

A y = 2 34 30
[(80 50) 25] (30) mm

2 3
×π⎡ ⎤× × − ×⎢ ⎥π⎣ ⎦

= 100 000 – 18 000 = 82 000 mm3

and b = 20 mm

∴ Maximum shear stress,

τmax = 3 2
6

· 82000
20 10 N/mm

· (6.03 10 ) 20
× = × ×

× ×
A y

F
I b

= 13.6 N/mm2 = 13.6 MPa
Now draw the shear stress distribution diagram over the section as shown in Fig. 16.17 (b).

EXAMPLE 16.9.  A beam of square section is used as a beam with one diagonal horizontal.
Find the maximum shear stress in the cross section of the beam. Also sketch the shear stress
distribution across the depth of the section.

SOLUTION. Given: A square section with its diagonal horizontal.
The beam with horizontal diagonal is shown in Fig. 16.18 (a).

Let 2b = Diagonal of the square, and

F = Shear force at the section.
Now consider the shaded strip AJK at a distance x from the corner A. From the geometry of the

figure, we find that length JK = 2x

∴ Area of AJK, A = 21 2 ·
2

x x x× =

and y =
2
3
xb −

We know that moment of inertia of the section ABCD about the neutral axis,

I =
3 42

2
12 3

b b b×× =



402 � Strength of Materials

Fig. 16.18

and shearing stress at any point,

τ =

2

4

2
3

2
3

xx b
Ay

F F
Ib b x

⎛ ⎞−⎜ ⎟
⎝ ⎠× = ×

×
(Here b = JK = 2x)

=
2

4 (3 2 )
2

F bx x
b

− ... (i)

We also know that when x = 0, τ = 0 and when x = b, then

τ = 2 Area2
mean

F F

b
= = τ

Now for maximum shear stress, differentiating the equation (i) and equating it to zero.
d
dx

τ
=

2
4

(3 2 ) 0
2

d F bx x
dx b

⎡ ⎤− =⎢ ⎥
⎣ ⎦

∴ 3b – 4x = 0           or              x  =  
3
4
b

Substituting this value of x in equation (i),

τmax =
2 2

4 4
3 3 93 2
4 4 82 2

F b b F bb
b b

⎡ ⎤⎛ ⎞× − = ×⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

= 2
9 9 9
8 8 Area 82

mean
F F

b
× = × = × τ

Now complete the shear stress distribution diagram as shown in Fig. 16.18 (b).

EXAMPLE 16.10.   A rolled steel joist 200 mm × 160 mm wide has flange 22 mm thick and web
12 mm thick. Find the proportion, in which the flanges and web resist shear force.

SOLUTION. Given : Overall depth (D) = 200 mm ;  Flange width (B) = 160 mm ;  Flange thickness
(tf) = 22 mm ;  Web thickness (b) = 12 mm and web depth (d) = 156 mm.

 Let F = Shear force resisted by the section.
From the geometry of the figure, we find that the moment of inertia of the section through its c.g.

and parallel to x-x axis,

I =
3 3 41 [(160) (200) (148) (156) ] mm

12
× −

= 59.84 × 106 mm4
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Now consider an elementary strip of thickness dy of the flange
at a distance y from the neutral axis. Therefore area of the
elementary strip,

dA = 160 dy

We know that the intensity of shear stress at the strip,

τ =
22

2 2(200)
2 4 2 4

⎛ ⎞⎛ ⎞
− = −⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

F D F
y y

I I

= 2(10000 )
2
F y
I

−

∴ Resistance offered to shear by this strip

=
2· (10 000 ) 160

2
FdA y dy
I

τ = − ×

=
2 280160 (10 000 ) (10 000 )

2
F Fdy y y dy
I I

× − = −

Now total resistance offered to shear by the flange

=

100
2

78

80 (10 000 )F y dy
I

−∫

=

1003

78

80 10 000
3
yF y

I

⎡ ⎤
−⎢ ⎥

⎣ ⎦

=
6 62 10 1.865 1080

3 3
F

I

⎡ ⎤× ×−⎢ ⎥
⎢ ⎥⎣ ⎦

=
60.135 1080

3
××F

I

=
6

6
80 0.045 10 0.06

59.84 10

F F× × =
×

∴ Total resistance offered to shear by both the flanges
= 0.06 F × 2 = 0.12 F

and total resistance offered to shear by the web

= F – 0.12 F = 0.88 F
It is obvious that the resistance offered by flanges is 12% and by web is 88%       Ans.

EXERCISE 16.2

1. An I-section beam consists of two flanges 150 mm × 20 mm and a web of 310 mm × 10 mm.
Find the magnitude of maximum shear stress when it is subjected to a shear force of 40 kN and
draw the shear stress distribution diagram over the depth of the section. [Ans. 13.1 MPa]

2. A T-section beam with 100 mm × 15 mm flange and 150 × 15 mm web is subjected to a shear
force of 10 kN at a section. Draw the variation of shear stress across the depth of the beam and
obtain the value of maximum shear stress at the section. [Ans. 6.3 MPa]

Fig. 16.19
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3. An I-section consists of the following sections:
Upper flange = 130 mm × 50 mm

Web = 200 mm × 50 mm

Lower flange = 200 mm × 50 mm
If the beam is subjected to a shearing force of 50 kN, find the maximum shear stress across the
section. Also draw the shear stress distribution diagram. Take I as 284.9 × 106 mm4.

[Ans. 4.42 MPa]

QUESTIONS

1. Derive an expression for the shear stress at any point in the cross-section of a beam.
2. Show that for a rectangular section, the distribution of shearing stress is parabolic.

3. The cross-section of a beam is a circle with the diameter D. If F is the total shear force at the
cross-section, show that the shear stress at a distance y from the neutral axis.

=
2

2
16 21

3

F v
DD

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠π ⎢ ⎥⎣ ⎦

4. Explain by mathematical expression, that the shear stress abruptly changes at the junction of the
flange and web of an I-section and a T-section.

5. Describe the procedure for drawing the shear stress distribution diagram for composite sections.

OBJECTIVE TYPE QUESTIONS

1. When a rectangular section of a beam is subjected to a shearing force, the ratio of maximum
shear stress to the average shear stress is

(a) 2.0 (b) 1.75 (c) 1.5 (d) 1.25
2. In a triangular section, the maximum shear stress occurs at

(a) apex of the triangle (b) mid of the height

(c) 1/3 of the height (d) base of the triangle
3. A square with side x of a beam is subjected to a shearing force of F. The value of shear stress at

the top edge of the section is

(a) zero (b) 0.5 F/a2 (c) F/a2 (d) 1.5 F/a2

4. An inverted T-section is subjected to a shear force F. The maximum shear stress will occur at
(a) top of the section (b) neutral axis of the section

(c) junction of web and flange (d) none of these

ANSWERS

1. (c) 2. (b) 3. (a) 4. (b)



Direct and

Bending Stresses
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2. Eccentric Loading.

3. Columns with Eccentric Loading.

4. Symmetrical Columns with
Eccentric Loading about One Axis.

5. Symmetrical Columns with
Eccentric Loading about Two
Axes.

6. Unsymmetrical Columns with
Eccentric Loading.

7. Limit of Eccentricity.

17.1. Introduction
We have already discussed in Chapter 2, that

whenever a body is subjected to an axial tension
or compression, a direct stress comes into play at
every section of the body. We also know that when-
ever a body is subjected to a bending moment a
bending stress comes into play. It is thus obvious
that if a member is subjected to an axial loading,
along with a transverse bending, a direct stress as
well as a bending stress comes into play. The
magnitude and nature of these stresses may be
easily found out from the magnitude and nature
of the load and the moment. A little consideration
will show that since both these stresses act nor-
mal to a cross-section, therefore the two stresses
may be algebraically added into a single resultant
stress.

17C h a p t e r
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17.2. Eccentric Loading
A load, whose line of action does not coincide with the axis of a column or a strut, is known as an

eccentric load. A bucket full of water, carried by a person in his hand, is an excellent example of an
eccentric load. A little consideration will show that the man will feel this load as more severe than the
same load, if he had carried the same bucket over his head. The simple reason for the same is that if
he carries the bucket in his hand, then in addition to his carrying bucket, he has also to lean or bend on
the other side of the bucket, so as to counteract any possibility of his falling towards the bucket. Thus
we say that he is subjected to :

1. Direct load, due to the weight of bucket (including water) and

2. Moment due to eccentricity of the load.

17.3. Columns with Eccentric Loading

Fig. 17.1

Consider a column subjected to an eccentric loading. The eccentric load may be easily analysed as
shown in Fig. 17.1 and as discussed below :

1. The given load P, acting at an eccentricity of e, is shown in Fig. 17.1 (a).
2. Let us introduce, along the axis of the strut, two equal and opposite forces P as shown in Fig.

17.1 (b).

3. The forces thus acting, may be split up into three forces.

4. One of these forces will be acting along the axis of the strut. This force will cause a direct
stress as shown in Fig. 17.1 (c).

5. The other two forces will form a couple as shown in Fig. 17.1 (d). The moment of this
couple will be equal to P × e (This couple will cause a bending stress).

NOTE : A column may be of symmetrical or unsymmetrical section and subjected to an eccentric load, with
eccentricity about one of the axis or both the axes. In the succeeding pages, we shall discuss these cases
one by one.

17.4. Symmetrical Columns with Eccentric Loading about One Axis
Consider a column ABCD subjected to an eccentric load about one axis (i.e., about y-y axis) as

shown in Fig. 17.2
Let P = Load acting on the column,

e = Eccentricity of the load,

b = Width of the column section and
d = Thickness of the column.

∴ Area of column section,

A = b · d
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and moment of inertia of the column section about an axis through its centre of
gravity and parallel to the axis about which the load is eccentric (i.e., y-y axis
in this case),

I =
2

12
d b⋅

and modulus of section, Z =
2 2/12
/2 6

I db db
y b

= =

We know that direct stress on the column due to the load,

σ0 =
P
A

and moment due to load, M = P · e
∴ Bending stress at any point of the column section at a distance y from

y-y axis,

σb =
M y M

I Z
⋅ =             ...

IZ
y

⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

Now for the bending stress at the extreme, let us substitute y  = 2
b

 in the

above equation,

σb = 3
2 2

12

b bM M

I db

⋅ ⋅
= ...

3

12
dbI

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∵

= 3 2

66 P eM

db db

⋅= ...(ä M = P · e)

=
6P e
A b

⋅
⋅

...(Substituting db = A)

We have already discussed in the previous article, that an eccentric load causes a direct stress as
well as bending stress. It is thus obvious that the total stress at the extreme fibre,

= σ0 ± σb = 
6P eP

A A b
⋅±
⋅ ...(In terms of eccentricity)

=
P M
A Z

±  ...(In terms of modulus of section)

The +ve or –ve sign will depend upon the position of the fibre with respect to the eccentric load.
A little consideration will show that the stress will be maximum at the corners B and C (because these
corners are near the load), whereas the stress will be minimum at the corners A and D (because these
corners are away from the load). The total stress along the width of the column will vary by a straight
line law. The maximum stress,

σmax = ( )6 61
P eP P e

A Ab A b
⋅+ = +  ...(In terms of eccentricity)

=
P M
A Z

+ ...(In terms of section modulus)

and σmin = ( )6 61
P eP P e

A Ab A b
⋅− = − ...(In terms of eccentricity)

=
P M
A Z

−  ...(In terms of section modulus)

Fig. 17.2
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NOTES : From the above equations, we find that

1. If σ0 is greater than σb, the stress throughout the section, will be of the same nature (i.e., compressive).

2. If σ0 is equal to σb, even then the stress throughout the section will be of the same nature. The minimum
stress will be equal to zero, whereas the maximum stress will be equal to 2 × σ0.

3. If σ0 is less than σb, then the stress will change its sign (partly compressive and partly tensile).

EXAMPLE 17.1. A rectangular strut is 150 mm and 120 mm thick. It car-
ries a load of 180 kN at an eccentricity of 10 mm in a plane bisecting the
thickness. Find the maximum and minimum intensities of stress in the section.

SOLUTION. Given: Width (b) = 150 mm ;  Thickness (d) = 120 mm ;

Load (P) = 180 kN = 180 × 103 N and eccentricity (e) = 10 mm.
Maximum intensity of stress in the section

We know that area of the strut,

A = b × d = 150 × 120 = 18 000 mm2

and maximum intensity of stress in the section,

σmax = ( ) 31800 10 6 1061 1
18 000 150

P e
A b

× ×⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

 N/mm2

= 10 (1 + 0.4) = 14 N/mm2 = 14 MPa      Ans.
Minimum intensity of stress in the section

We also know that minimum intensity of stress in the section,

σmin = ( ) 31800 10 6 1061 1
18 000 150

P e
A b

× ×⎛ ⎞− = −⎜ ⎟
⎝ ⎠

 N/mm2

= 10 (1 – 0.4) = 6 N/mm2 = 6 MPa      Ans.

EXAMPLE 17.2.   A rectangular column 200 mm wide and 150 mm thick is carrying a vertical
load of 120 kN at an eccentricity of 50 mm in a plane bisecting the thickness.
Determine the maximum and minimum intensities of stress in the
section.

SOLUTION. Given: Width (b) = 200 mm; Thickness (d) = 150 mm ;  Load
(P) = 120 kN = 120 × 103 N and eccentricity (e) = 50 mm.
Maximum intensity of stress in the section

We know that area of the column,
A = b × d = 200 × 150 = 30 000 mm2

and maximum intensity of stress in the section,

σmax = ( ) 3120 10 6 5061 1
30 000 200

P e
A b

× ×⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

 N/mm2

= 4 (1 + 1.5) = 10 N/mm2 = 10 MPa      Ans.
Minimum intensity of stress in the section

We also know that minimum intensity of stress in the section,

σmin = ( ) 3120 10 6 5061 1
30 000 200

P e
A b

× ×⎛ ⎞− = −⎜ ⎟
⎝ ⎠

 N/mm2

= 4 (1 – 1.5) = 4 (– 0.5) = – 2 N/mm2

= 2 N/mm2 (tension) = 2 MPa (tension)      Ans.

Fig. 17.3

Fig. 17.4
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EXAMPLE 17.3. In a tension specimen 13 mm in diameter the line of pull is parallel to the
axis of the specimen but is displaced from it. Determine the distance of the line of pull from the
axis, when the maximum stress is 15 per cent greater than the mean stress on a section normal to
the axis.

SOLUTION. Given: Diameter (d) = 13 mm and maximum stress (σmax)
= 1.15 σmean

We know that area of the specimen,

A =
2 2( ) (13)

4 4
dπ π=  = 132.7 mm2

and its section modulus,

Z =
3 3( ) (13)

32 32
dπ π=  = 215.7 mm3

Let P = Pull on the specimen in N, and

e  = Distance of the line of pull from
the axis in mm.

∴ Moment due to load,

M = P · e

We also know that the mean stress,

σmean = 132.7
P P
A

= N/mm2 ...(i)

and maximum stress,

σmax = 132.7 215.7mean
P eM P

Z
⋅σ + = +

Since σmax is 15% greater than σmean, therefore

132.7 215.7
P eP ⋅+ =

115
132.7 100

P ×

or
1

132.7 215.7
+ e

=
115

13270

∴ e = ( )115 1 215.7
13270 132.7

− ×  = 0.25 mm        Ans.

EXAMPLE 17.4. A hollow rectangular masonry pier is 1.2 m × 0.8 m wide and 150 mm thick.
A vertical load of 2 MN is transmitted in the vertical plane bisecting 1.2 m side and at an eccen-
tricity of 100 mm from the geometric axis of the section.

Calculate the maximum and minimum stress intensities in the section.

SOLUTION. Given: Outer width (B) = 1.2 m = 1.2 × 103 mm ;  Load (P) = 2 MN = 2 × 106 N ;
Outer thickness (D) = 0.8 m = 0.8 × 103 mm ;  Thickness (t) = 150 mm and eccentricity (e) = 100 mm.

Maximum stress intensity in the section
We know that area of the pier,

A = (BD – bd)

= [(1.2 × 103) × (0.8 × 103)] – [(0.9 × 103) × (0.5 × 103)]

= (0.96 × 106) – (0.45 × 106) = 0.51 × 106 mm2

Fig. 17.5
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and its section modulus,

Z =
1
6  [BD2 – bd2] = 

1
6  [(1.2 × 103) × (0.8 × 103)2]

 – [(0.9 × 103) × (0.5 × 103)2] mm3

=
1
6  [(768 × 106) – (225 × 106) = 90.5 × 106 mm3

We know that moment due to eccentricity of load,

M = P · e = (2 × 106) × 100 = 200 × 106 N-mm

∴ Maximum stress intensity in the section,

σmax =
6 6

6 6

2 10 200 10

0.51 10 90.5 10
P M
A Z

× ×+ = +
× ×

N/mm2

= 3.92 + 2.21 = 6.13 N/mm2 = 6.13 MPa        Ans.

Minimum stress intensity in the section

We also know that minimum stress intensity in the section,

σmin =
6 6

6 6

2 10 200 10

0.51 10 90.5 10
P M
A Z

× ×− = −
× ×

 N/mm2

= 3.92 – 2.21 = 1.71 N/mm2 = 1.71 MPa        Ans.

EXAMPLE 17.5. A hollow circular column having external and internal diameters of 300 mm
and 250 mm respectively carries a vertical load of 100 kN at the outer edge of the column.
Calculate the maximum and minimum intensities of stress in the section.

SOLUTION. Given: External diameter (D) = 300 mm ;  Internal diameter (d)
= 250 mm and load (P) = 100 kN = 100 × 103 N

Maximum intensity of stress in the section
We know that area of the column,

A =
2 2 2 2( ) [(300) (250) ]

4 4
D dπ π− = −  mm2

=  21.6 × 103 mm2

and its section modulus,

Z =
4 4 4 4(300) (250)

32 32 300
D d

D

⎡ ⎤ ⎡ ⎤− −π π× = ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 mm3

= 1372 × 103 mm3

Since the column carries the vertical load at its outer edge, therefore
eccentricity,

e = 150 mm
and moment due to eccentricity of load,

M = P · e = (100 × 103) × 150 = 15 × 106 N-mm

∴ Maximum intensity of stress in the section,

σmax =
3 6

3 3

100 10 15 10

21.6 10 1372 10
P M
A Z

× ×+ = +
× ×

 N/mm2

= 4.63 × 10.93 = 15.56 N/mm2 = 15.56 MPa        Ans.

Fig. 17.6

Fig. 17.7
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Minimum intensity of stress in the section
We also know that minimum intensity of stress in the section,

σmin =
3 6

3 3

100 10 15 10

21.6 10 1372 10
P M
A Z

× ×− = −
× ×

 N/mm2

= 4.63 – 10.93 = – 6.3 N/mm2

= 6.3 N/mm2 (tension) = 6.3 MPa (tension)        Ans.

EXERCISE 17.1

1. A rectangular strut 200 mm wide and 150 mm thick carries a load of 60 kN at an eccentricity of
20 mm in a plane bisecting the thickness. Find the maximum and minimum intensities of stresses
in the section. (Ans. 3200 kPa ;  800 kPa)

2. A circular column of 200 mm diameter is subjected to a load of 300 kN, which is acting 5 mm
away from the geometric centre of the column. Find the maximum and minimum stress intensi-
ties in the section. (Ans. 11.94 MPa ;  7.16 MPa)

3. A rectangular hollow masonry pier of 1200 mm × 800 mm with wall thickness of 150 mm carries
a vertical load of 100 kN at an eccentricity of 100 mm in the plane bisecting to 1200 mm side.
Calculate the maximum and minimum stress intensities in the section (Ans. 291.6 kPa ;  100.4
kPa)

4. A hollow circular column of 200 mm external diameter and 180 mm internal diameter is sub-
jected to a vertical load of 75 kN at an eccentricity of 35 mm. What are the maximum and
minimum stress intensities ?  (Ans. 22.28 MPa ;  2.84 MPa)

17.5. Symmetrical Columns with Eccentric Loading about Two Axes
In the previous articles, we have discussed the cases of eccentric loading about one axis only.

But, sometimes the load is acting eccentrically about two axes as shown in Fig. 17.8. Now consider a
column ABCD subjected to a load with eccentricity about two axes as shown in Fig. 17.8.

Let P = Load acting on the column ,

A = Cross-sectional area of the column,

eX = Eccentricity of the load about X-X axis,
 Moment of the load about X-X axis,

MX = P · eX

Let IXX = Moment of inertia of the column
section about X-X axis and

eY, MY, IYY = Corresponding values of Y-Y
axis.

The effect of such a load may be split up into the following three
parts :

1. Direct stress on the column due to the load,

σ0 =
P
A

 ...(i)

2. Bending stress due to eccentricity eX,

σbX = X X

XX XX

M y P e y
I I

⋅ ⋅ ⋅
=  ...(ii)

Fig. 17.8
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3. Bending stress due to eccentricity eY,

σbY = Y Y

YY YY

M x P e x
I I

⋅ ⋅ ⋅
= ...(iii)

∴ Total stress at the extreme fibre

= σ0 ± σbX ± σbY = 
X Y

XX YY

M y M xP
A I I

⋅ ⋅
± ±

The +ve or –ve sign depends upon the position of the fibre with respect to the load. A little
consideration will show that the stress will be maximum at B, where both the +ve signs are to be
adopted. The stress will be minimum at D, where both the –ve signs are to be adopted. While calcu-
lating the stress at A, the value of MX is to be taken as +ve, whereas the value of MY as –ve. Similarly
for the stress at C, the value of MY is to be taken as +ve, whereas the value of MX as –ve.

EXAMPLE 17.6. A column 800 mm  × 600 mm is subjected to an eccentric load of 60 kN as
shown in Fig. 17.9.

What are the maximum and minimum intensities of stresses
in the column ?

SOLUTION. Given: Width (b) = 800 mm ;  Thickness (d) =
600 mm ;  Load (P) = 60 kN = 60 × 103 N ; Eccentricity along
X-X axis (eX) = 100 mm and eccentricity along Y-Y axis (eY) =
100 mm.

Maximum intensity of stress in the column

We know that area of the column,

A = b × d =  800 × 600 = 480 × 103 mm2

and moment of inertia of the column about X-X axis,

IXX =
33 800 (600)

12 12
bd ×=  = 14.4 × 109 mm4

Similarly, IYY =
33 600 (800)

12 12
bd ×=  = 25.6 × 109 mm4

We also know that moment due to eccentricity of load along X-X axis,

MX = P · eX = (60 × 103) × 100 = 6 × 106 N-mm

Similarly, MY = P · eY = (60 × 103) × 100 = 6 × 106 N-mm
From the geometry of the loading, we find that distance between Y-Y axis and corners A and B (or

D and C).

x = 400 mm

Similarly, distance between X-X axis and corners A and D (or B and C).
y = 300 mm

We know that maximum intensity of stress at A,

σA =
X Y

XX YY

M y M xP
A I I

+ +

=
3 6 6

2
3 9 9

60 10 (6 10 ) 300 (6 10 ) 400
N/mm

480 10 14.4 10 25.6 10

× × × × ×+ +
× × ×

= 0.125 + 0.125 + 0.094 = 0.344 N/mm2 = 0.344 MPa        Ans.

Fig. 17.9
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Minimum intensity of stress in the column
We also know that minimum intensity of stress in the column,

σC = X Y

XX YY

M y M xP
A I I

⋅ ⋅
− −

=
3 6 6

2
3 9 9

60 10 (6 10 ) 300 (6 10 ) 400
N/mm

480 10 14.4 10 25.6 10

× × × × ×− −
× × ×

= 0.125 – 0.125 – 0.094 = – 0.094 N/mm2

= 0.094 N/mm2 (tension) = 0.094 MPa (tension)        Ans.

EXAMPLE 17.7. A masonry pier of 3 m × 4 m supports a vertical load of 80 kN as shown in
Fig. 17.10.

(a) Find the stresses developed at each corner of the pier.

(b) What additional load should be placed at the centre of the
pier, so that there is no tension anywhere in the pier section ?

(c) What are the stresses at the corners with the additional
load in the centre.

SOLUTION. Given: Width (b) = 4 m ;  Thickness (d) = 3 m ;  Load
(P) = 80 kN ;  Eccentricity along  X-X axis (eX) = 0.5 m and eccen-
tricity along Y-Y axis (eY) = 1 m.

(a) Stresses developed at each corner
We know that area of the pier,

A = b × d = 4 × 3 = 12 m2

and moment of inertia of the pier about X-X axis,

IXX =
33 4 (3)

12 12
bd ×=  = 9 m4

Similarly, IYY =
33 3 (4)

12 12
bd ×=  = 16 m4

We also know that moment due to eccentricity of load along X-X axis,
MX = P · eX = 80 × 0.5 = 40 kN-m

Similarly, MY = P · eY = 80 × 1.0 = 80 kN-m

From the geometry of the loading, we find that distance between Y-Y axis and the corners A and
B,

x = 2 m

Similarly distance between X-X axis and the corners A and D,

y = 1.5 m
We know that stress at A,

σA =
40 1.5 80 280

12 9 16
X Y

XX YY

M y M xP
A I I

⋅ ⋅ × ×+ − = + −  kN/m2

= 6.67 + 6.67 – 10 = 3.34 kN/m2 = 3.34 kPa        Ans.

Similarly,  σB =
40 1.5 80 280

12 9 16
X Y

XX YY

M y M xP
A I I

⋅ ⋅ × ×+ + = + +  kN/m2

= 6.67 + 6.67 + 10.0 = 23.34 kN/m2 = 23.34 kPa        Ans.

Fig. 17.10
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σC =
40 1.5 80 280

12 9 16
X Y

XX YY

M y M xP
A I I

⋅ ⋅ × ×− + = − +  kN/m2

= 6.67 – 6.67 + 10.0 = 10.0 kN/m2 = 10.0 kPa        Ans.

and σD =
40 1.5 80 280

12 9 16
X Y

XX YY

M y M xP
A I I

⋅ ⋅ × ×− − = − −  kN/m2

= 6.67 – 6.67 –10.0 = – 10.0 kN/m2 = 10 kPa (tension)        Ans.
(b) Additional load at the centre for no tension in the pier section

Let W = Additional load (in kN) that should be placed at the centre for no ten-
sion in the pier section.

We know that the compressive stress due to the load

=
12

W W
A

=  kN/m2

We also know that for no tension, in the pier section the compressive stress due to the load. W
should be equal to the tensile stress at D, i.e., 10.0 kN/m2.

 ∴
12
W

= 10.0

or W = 10.0 × 12 = 120 kN        Ans.
(c) Stresses at the corners with the additional load in the centre

We find that the stress due to the additional load

=
120
12

W
A

=  = 10.0 kN/m2

 ∴ Stress at A, σA = 3.34 + 10.0 = 13.34 kPa        Ans.
Similarly, σB = 23.34 + 10.0 = 33.34 kPa        Ans.

σC = 10.0 + 10.0 = 20.0 kPa        Ans.
and σD =  10.0 + 10.0 = 0        Ans.

17.6. Unsymmetrical Columns with Eccentric Loading
In the previous articles, we have discussed the symmetrical column sections subjected to eccen-

tric loading. But in an unsymmetrical column, first c.g. and then moment of inertia of the section is
found out. After that the distances between the c.g. of the section and its corners are calculated. The
stresses on the corners are then found out as usual, by using the respective values of moment of inertia
and distance of the corner from the c.g. of the section.

EXAMPLE 17.8. A hollow cylindrical shaft of 200 mm external diameter has got eccentric
bore of 140 mm diameter, such that the thickness varies from 20 mm at one end to 40 mm at the
other. Calculate the extreme stress intensities, if the shaft is subjected to a load of 400 kN along
the axis of the bore.

SOLUTION. Given: External diameter (D) = 200 mm ;  Internal diameter (d) = 140 mm and load
(P) = 400 kN = 400 × 103 N.

We know that net area of the shaft,

A =
2 2[(200) (140) ]

4
π −  = 5 100 π mm2

First of all, let find out the centre of gravity of the section. Let the left end A be the point of
reference.
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(i) Main circle

a1 =
2 2(200)

4
Dπ π× = ×

4  = 10 000 π mm2

x1 =
200

2
 = 100 mm

(ii) Bore

a2 =
2 2(140)

4
dπ π× = ×

4  = 4 900 π mm2

x2 =
14040

2
+  = 110 mm

We know that distance between the centre of gravity of the section and the
left end A,

x– = 1 1 2 2

1 2

(10000 100) (4900 100)
10000 4900

− π × − π ×=
− π × π

a x a x
a a

= 90.4 mm

From the geomety of the figure, we find that the eccentricity of the load,

e = 110 – 90.4 = 19.6 mm
∴ Moment due to eccenticity of load,

M = P · e = (400 × 103) × 19.6

= 7.84 × 106 N-mm
Distance of corner A from the centre of gravity of the section,

yA = 90.4 mm
Similarly, yB = 200 – 90.4 = 109.6 mm

We know that the moment of inertia of the main circle about
its centre of gravity,

IG1 =
4(200)π ×

64  = 25 × 106 π mm4

and distance between the centre of gravity of the main circle and
centre of gravity of the section,

h1 = 100 – 90.4 = 9.6 mm
∴ Moment of inertia of the main circle about the centre

of gravity of the section

= IG1 + a1 h1
2 = (25 × 106 π) + (10 000 π) (9.6)2 mm4

= 25.92 × 106 π mm4

Similarly, moment of inertia of the bore about its centre of gravity

IG2 =
4(140)π ×

64  = 6.0 × 106 π mm4

and distance between the centre of gravity of the bore and the centre of gravity of the section,

h2 = 110 – 90.4 = 19.6 mm

∴ Moment of inertia of the bore about the centre of gravity of the section
= IG2 + a2 h2

2 = (6.0 × 106 π) + (4 900 π) (19.6)2 mm4

= 7.88 × 106 π mm4

and net moment of inertia of the section about its centre of gravity,
I = (25.92 × 106 π) – (7.88 × 106 π) = 18.04 × 106 π mm4

Fig. 17.11

Fig. 17.12
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We know that maximum stress intensity,

σmax =
3 6

2
6

400 10 (7.84 10 ) 109.6
N/mm

5100 18.04 10
BM yP

A I
⋅ × × ×+ = +

π × π

= 24.97 + 15.16 = 40.13 N/mm2 = 0.13 MPa        Ans.

and minimum stress intensity,

σmin =
3 6

2
6

400 10 (7.84 10 ) 90.4
N/mm

5100 18.04 10

⋅ × × ×− = −
π × π

AM yP
A I

= 24.97 – 12.51 = 12.46 N/mm2 = 12.46 MPa        Ans.

EXAMPLE 17.9.  A short C.I. column has a rectangular section 160 mm  200 mm with a
circular hole of 80 mm diameter as shown in Fig. 17.13.

It carries an eccentric load of 100 kN, located as shown in
the figure. Determine the values of the stresses at the four
corners of the section.

SOLUTION. Given: Width (B) = 160 mm ;  Depth (D) = 200
mm; Diameter of circular hole (d) = 80 mm and load (P) = 100
kN = 100 × 103 N.

We know that area of the column section,

A = 2(200 160) (80)π⎛ ⎞× − ×⎜ ⎟4⎝ ⎠
 = 26 970 mm2

First of all, let us find out the centre of gravity of the section. Let AD be the line of reference.

(i) Outer rectangle
a1 = 200 × 160 = 32 000 mm2

x1 = 160/2 = 80 mm

(ii) Circular hole

a2 =
2(80)

4
π ×  = 5 027 mm2

x2 = 60 mm
We know that distance between the centre of gravity of the section and AD,

x– = 1 1 2 2

1 2

(32000 80) (5027 60)
(32000 5027)

− × − ×=
− −

a x a x
a a

 = 83.7 mm

From the geometry of the figure, we find that eccentricity of load about X-X axis

eX = 50 mm and eY = 83.7 – 60 = 23.7 mm
∴ Moment due to eccentricity of load along X-X axis,

MX = P · eX = (100 × 103) × 50 = 5 × 106 N-mm

Similarly MY = P · eY = (100 × 103) × 23.7 = 2.37 × 106 N-mm
and distance of the corner A from X-X axis passing through centre of gravity of the section,

yA = yB = yC = yD = 100 mm

Similarly, distance of corner A from Y-Y axis passing through centre of gravity of the section,
xA = xD = 83.7 mm

and xB = xC = 160 – 83.7 = 76.3 mm

Fig. 17.13
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We know that the moment of inertia of the main rectangle ABCD, passing through its centre of
gravity and parallel to X-X axis,

IG1 =
2160 (200)

12
×  = 106.7 × 106 mm4

and moment of inertia of the circular hole, passing through its centre of gravity and parallel to X-X
axis,

IG2 =
2(80)π ×

4  = 2.01 × 106 mm4

Since the centre of gravity of the rectangle and the circular hole coincides with the X-X axis,
therefore moment of inertia of the section about X-X axis,

IXX = (106.7 × 106) – (2.01 × 106) = 104.69 × 106 mm4  ...(i)

We also know that the moment of inertia of the main rectangle ABCD, passing through its centre
of gravity and parallel to Y-Y axis,

IG3 =
3200 (160)

12
×

 = 68.26 × 106 mm4

and distance between the centre of gravity of the rectangle from Y-Y axis,

h1 = 83.7 – 80 = 3.7 mm
∴ Moment of inertia of the rectangle through centre of gravity of the section and about Y-Y

axis
= IG3 + a1 h1

2 = (68.26 × 106) + 32 0000 × (3.7)2 mm4

= 68.7 × 106 mm4

Similarly, moment of inertia of the circular hole through
its centre of gravity and parallel to Y-Y axis,

IG4 =
4(80)π ×

64  = 2.01 × 106 mm4

and distance between the centre of gravity of the circular
section from Y-Y axis,

h2 = 83.7 – 60 = 23.7 mm
∴ Moment of inertia of the circular hole through centre of

gravity of the section and about Y-Y axis

= IG4 + a2h2
2 = (2.01 × 106) + 5 027 × (23.7)2 mm4

= 4.84 × 106 mm4

and net moment of inertia of the section about Y-Y axis,
IYY = (68.7 × 106) – (4.84 × 106) = 63.86 × 106 mm4  ...(ii)

Now from the geometry of the figure, we find that stress at A,

σA = X A Y A

XX YY

M y M xP
A I I

⋅ ⋅
+ +

=
3 6 6

6 6

100 10 (5 10 ) 100 (2.3 10 ) 83.7
26970 104.69 10 63.86 10

× × × × ×+ +
× ×

 N/mm2

= 11.5 N/mm2 = 11.5 MPa        Ans.

Similarly, σB = X B Y B

XX YY

M y M xP
A I I

⋅ ⋅
+ −

Fig. 17.14
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=
3 6 6

6 6

100 10 (5 10 ) 100 (2.3 10 ) 76.3
26970 104.69 10 63.86 10

× × × × ×+ −
× ×

 N/mm2

= 5.74 N/mm2 = 5.74 MPa        Ans.

σC =
⋅ ⋅

− −X C Y C

XX YY

M y M xP
A I I

=
3 6 6

6 6

100 10 (5 10 ) 100 (2.3 10 ) 76.3
26970 104.69 10 63.86 10

× × × × ×− −
× ×

 N/mm2

=  – 3.82 N/mm2 = 3.82 MPa (tensile)        Ans.

and σD = X D Y D

XX YY

M y M xP
A I I

⋅ ⋅
− +

=
3 6 6

6 6

100 10 (5 10 ) 100 (2.3 10 ) 83.7
26970 104.69 10 63.86 10

× × × × ×− +
× ×

 N/mm2

= 1.95 N/mm2 = 1.95 MPa        Ans.

17.7. Limit of Eccentricity
We have seen in Art. 17.2 and 17.3, that when an eccentric load is acting on a column, it produces

direct stress as well as bending stress. On one side of the neutral axis there is a maximum stress (equal
to the sum of direct and bending stress) and on the other side of the neutral axis there is a minimum
stress (equal to direct stress minus bending stress). A little consideration will show that so long as the
bending stress remains less than the direct stress, the resultant stress is compressive. If the bending
stress is equal to the direct stress, then there will be a zero stress on one side. But if the bending stress
exceeds the direct stress, then there will be a tensile stress on one side. Though cement concrete can
take up a small tensile stress, yet it is desirable that no tensile stress should come into play.

We have seen that if the tensile stress is not to be permitted to come into play, then bending stress
should be less than the direct stress, or maximum, it may be equal to the direct stress, i.e.,

σb ≤ p0

P e
Z
⋅ ≤ P

A
...(ä M = P · e)

or e ≤ Z
A

It means that for no tensile condition, the eccentricity e should be less than Z
A

 or equal to Z
A

.

Now we shall discuss the limit for eccentricity in the following cases :

1. For a rectangular section,
2. For a hollow rectangular section,

3. For a circular section and

4. For a hollow circular section.
(a) Limit of eccentricity for a rectangular section

Consider a rectangular section of width (b) and thickness (d) as shown in Fig. 17.15. We know
that the modulus of section,

Z =
21

6
bd ...(i)

and area of the section, A = bd ...(ii)
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We also know that for no tension condition,

e ≤ Z
A

≤
21

6
bd

bd

≤
1
6

d

It means that the load can be eccentric, on either side of the geometrical axes, by an amount equal
to d/6. Thus if the line of action of the load is within the middle third, as shown by the dotted area in
Fig. 17.15, then the stress will be compressive throughout.

(b) Limit of eccentricity for a hollow rectangular section
Consider a hollow rectangular section with B and D as outer width and thickness and b and d

internal dimensions respectively. We know that the modulus of section,

Z =
3 3( )
6

BD bd
D
−

 ...(i)

and area of the hollow rectangular section,
A = BD – bd  ...(ii)

We also know that for no tension condition,

e ≤
Z
A

≤

3 3( )
6

BD bd
D

BD bd

−

−

≤
3 3( )

6 ( )
BD bd
D BD bd

−
−

It means that the load can be eccentric, on either side of the geometrical axis, by an amount equal

to 
3 3( )

6 ( )
BD bd
D BD bd

−
−

.

(c) Limit of eccentricity of a circular section
Consider a circular section of diameter d as shown in Fig. 17.16. We know that the modulus of

section,

Z =
3

32
dπ ×  ...(i)

and area of circular section, A = 2

4
dπ × ...(ii)

We also know that for no tension condition,

e ≤ Z
A

≤

3

2

32
d

d

π ×

π ×
4

≤
8
d

Fig. 17.15

Fig. 17.16
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It means that the load can be eccentric, on any side of the geometrical centre, by an amount equal
to d/8. Thus, if the line of action of the load is within a circle of diameter equal to one-fourth of the
main circle as shown by the dotted area in Fig. 17.16, then the stress will be compressive throughout.
(d) Limit of eccentricity for hollow circular section

Consider a hollow circular section of external and internal diameters as D and d respectively. We
know that the modulus of section,

Z =
4 4( )

32
D d

D
−π ×  ...(i)

and area of hollow circular section,

A = 2 2( )
4

D dπ × − ...(ii)

We also know that for no tension condition,

e ≤ Z
A

≤

4 4

2 2

( )
32

( )
4

D d
D

D d

−π ×

π × −

≤
2 2( )
8

D d
D
−

...[ä (D4 – d4) = (D2 + d2)(D2 – d2)]

It means that the load can be eccentric, on any side of the geometrical centre, by an amount equal

to 
2 2( )
8

D d
D
− ⋅

EXERCISE 17.2

1. A rectangular pier is 1500 mm × 1000 mm is subjected to a compressive load of 450 kN as
shown in Fig. 17.17.

Fig. 17.17

Find the stress intensities on all the four corners of the pier.

[Ans. σA = – 4.5 kPa ;  σB = +1.5 kPa ;  σC = 10.5 kPa ;  σD = 4.5 kPa]
2. A hollow square column has 1.5 m outside length and 1 m inside length. The column is sub-

jected to a load of 7 kN located on a diagonal and at a distance of 0.8 m from the vertical axis
of the pier. Determine the stress intensities on the outside corners of the column.

[Ans. 23.15 kPa ;  5.6 kPa ;  11.95 kPa ;  5.6 kPa]
3. A short hollow cylindrical cast iron column of outside diameter 300 mm and inside diameter

200 mm was casted. On inspection, it was found the bore is eccentric in such a way that the
thickness on one side is 70 mm and 30 mm on the other. If the column is subjected to a load of
80 kN at the axis of the bore, find the extreme intensities of stresses in the base.

[Ans. 3.66 kPa ;  0.73 MPa]
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QUESTIONS

1. Distinguish clearly between direct stress and bending stress.

2. What is meant by eccentric loading? Explain its effects on a short column.
3. Derive the relation for the maximum and minimum stress intensities due to eccentric loading.

4. Obtain a relation for the maximum and minimum stresses at the base of a symmetrical column.
When it is subjected to

(a) an eccentric load about one axis and (b) an eccentric load about two axes.
5. Show that for no tension in the base of a short column, the line of action of the load should be

within the middle third.

6. Define the term limit of eccentricity. How will you find out this limit in case of a hollow circular
section?

OBJECTIVE TYPE QUESTIONS

1. The maximum stress intensity at the base of a square column of area A and side b subjected to
a load W at an eccentricity e is equal to

(a) 21W e
A b
⎛ ⎞+⎜ ⎟
⎝ ⎠

(b) 41W e
A b
⎛ ⎞−⎜ ⎟
⎝ ⎠

(c) 61W e
A b
⎛ ⎞+⎜ ⎟
⎝ ⎠

(d) 81W e
A b
⎛ ⎞+⎜ ⎟
⎝ ⎠

2. The minimum stress intensity in the above case is

(a) 1W e
A b
⎛ ⎞−⎜ ⎟
⎝ ⎠

(b) 21W e
A b
⎛ ⎞−⎜ ⎟
⎝ ⎠

(c) 31W e
A b
⎛ ⎞−⎜ ⎟
⎝ ⎠

(d) 61W e
A b
⎛ ⎞−⎜ ⎟
⎝ ⎠

3. The maximum eccentricity of a load on a circular section to have same type of stress is

(a) one-eighth of diameter (b) one-sixth of diameter

(c) one-fourth of diameter (d) one-third of diameter

ANSWERS

1. (c) 2. (d) 3. (c)
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2. Rectangular Dams.

3. Trapezoidal Dams with Water Face
Vertical.

4. Trapezoidal Dams with Water Face
Inclined.

5. Conditions for the Stability of a
Dam.

6. Condition to Avoid Tension in the
Masonry of the Dam at its Base.

7. Condition to Prevent the Overturn-
ing of the Dam.

8. Condition to Prevent the Sliding of
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9. Condition to Prevent the Crushing
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17. Rankine’s Theory for Active Earth
Pressure.

18. Coulomb’s Wedge Theory for
Active Earth Pressure.

19. Conditions for the Stability of
Retaining Wall.

18.1. Introduction
A dam* is constructed to store large quantity

of water, which is used for the purposes of
irrigation and power generation. A dam may be of
any cross-section, but the dams of trapezoidal
cross-section are very popular these days. A
retaining wall is generally constructed to retain
earth in hilly areas. Though there are many types
of dams, yet the following are important from the
subject point of view :

1. Rectangular dams.
2. Trapezoidal dams having water face vertical,

3. Trapezoidal dams having water face
inclined.

* A dam constructed with earth is called an earthen
dam; whereas a dam constructed with cement con-
crete is called a concrete dam or gravity dam.

18C h a p t e r
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We shall discuss the above three types of dams one by one.

18.2. Rectangular Dams
Consider a unit length of a rectangular dam, retaining water on one of its vertical sides as

shown in Fig. 18.1.

Let b = Width of the dam,

H = Height of he dam,
ρ = Specific weight of the dam masonry

h = Height of water reatined by the dam, and

w = *Specific weight of the water
∴ Weight of dam per unit length,

W = ρ · b · H

This weight will act through centre of gravity of the dam section.
We know that the intensity of water pressure will be zero at the water surface and will **increase

by a straight line law to wh at the bottom. Thus the average intensity of water pressure on the face of
the dam

=
2

wh
...(i)

∴ Total pressure per unit length of the dam,

P =
2

2 2
× =wh whh ...(ii)

Fig. 18.1

* Unless mentioned, otherwise, the specific weight of the water is taken as 9.8 kN/m3.
** Sometimes, the dam is subjected to two kinds of liquids (e.g., some insoluble oil over water). In such a

case, the pressure diagram will be zero at the top and will increase by a straight line law to (w1h1) up to
the depth of oil. It will further increase by a straight line law to (w1h1 + w2h2) at the bottom of the water;
where w1, w2 and h1, h2 are the specific weights and heights of the oil and water respectively. The total
pressure on the dam may be found out as usual.
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This water pressure acts at a height of h/3 from the bottom of the dam as shown in Fig. 18.1. Now
with P and W as adjacent sides complete the parallelogram. The resultant of water pressure (P) and
weight of the dam (W) will be given by the relation,

R = 2 2P W+ ...(iii)

Let x be the horizontal distance between the centre of gravity of the dam and the point through
which the resultant R cuts the base (i.e., the distance JK in Fig. 18.1). From similar triangles LNM and
LJK, we see that

JK
LJ

=
NM
LN

∴
/3
x

h
=

P
W

or x =
3

P h
W

× ...(iv)

Let d* be the distance between the toe of the dam A and the point, where the resultant R cuts the
base (i.e., the distance AK in Fig. 18.1)

∴ d = AJ + JK = 2 2 3
⎛ ⎞+ = + ×
⎝ ⎠

b b P h
x

W
and the eccentricity of the resultant,

e =
2
bd − ...(x in the case)

A little consideration will show that as a result of the eccentricity, some moment will come into
play, which will cause some bending stress at the base section of the dam. The magnitude of this
moment,

M = Weight of the dam × Eccentricity
= W · e

Now consider a unit length of the dam. We know that the moment of the inertia of the base
section about its c.g.,

I =
3 3 31

12 12 12
l b b b× ×= =

Now let y = Distance between the centre of gravity of the base section
and extreme fibre of the base (b/2 in this case)

and σb = Bending stress in the fibre at a distance (y) from the centre of
gravity of the base  section.

We also know that
M
I

=
b

y
σ

∴ σb = 3 2

62

12

bW eM y W e
I b b

⋅ ×⋅ ⋅= =

Now the distribution of direct stress at the base,

σ0 =
Weight of dam
Width of dam

W
b

=

* The distance d may also be found out by taking moments of (i) water pressure, (ii) weight of dam and (iii)
resultant force about A and equating the same, i.e.,

Wd = 3 2
h bP W⋅ + ⋅

(ä Vertical component of the resultant
force is W and is acting at a distance d
from A and its horizontal component is
acting through A.)
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Now a little consideration will show that the stress across the base at B will be maximum, whereas
the stress across the base at A will be minimum.

∴ σmax = σ0 + σb = 2

6 61
W eW W e

b b bb

⋅ ⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

and σmin = σ0 – σb = 2

6 61
W eW W e

b b bb

⋅ ⎛ ⎞− = −⎜ ⎟
⎝ ⎠

Notes. 1. When the reservoir is empty, there will be no water pressure on the dam. In this case, there will be
no eccentricity and thus the weight of the dam W will act through the c.g. of the base section, which
will cause direct stress only.

2. Sometimes, the value of σmin comes out to be negative. In such a case, there will be a tensile stress
at the base of the dam.

EXAMPLE 18.1. A water tank contains 1.3 m deep water. Find the pressure exerted by the
water per metre length of the tank. Take specific weight of water as 9.8 kN/m3.

SOLUTION. Given: Height of water (h) = 1.3 m and w = 9.8 kN/m3.

We know that pressure exerted by the water per metre length of the tank,

P =
22 9.8 (1.3)

2 2
wh ×=  = 8.28 kN      Ans.

EXAMPLE 18.2. Find the magnitude and line of action of the pressure exerted on the side of
a tank, which is 1.5 m square and 1 metre deep. The tank is filled half full with a liquid having
specific gravity of 2, while the remainder is filled with a liquid having a specific gravity of 1. Take
specific weight of water as 10 kN/m3.

SOLUTION. Given: Side of the square tank = 1.5 m; Depth of the tank = 1 m; Depth of liquid of
specific gravity 2 (h2) = 0.5 m; Depth of liquid of specific gravity 1 (h1) = 0.5 m and specific weight
of water (w) = 10 kN/m3.

Magnitude of the pressure
We know that intensity of pressure at D (or B) due to liquid of sp. gr. 1.

= DE = BF = w1h1

= (1 × 10) × 0.5 = 5 kN/m2

∴ Total pressure at D, due to liquid of sp. gr. 1,

P1 = Area of triangle ADE × Length of the tank wall

= 1 5.0 0.5 1.5
2

⎛ ⎞× × ×⎜ ⎟
⎝ ⎠

 = 1.875 kN ...(i)

Fig. 18.2
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and total pressure at B due to liquid of sp. gr. 1,
P2 = Area of rectangle BDFE × Length of the tank wall

= (5.0 × 0.5) × 1.5 = 3.75 kN ...(ii)

Similarly, intensity of pressure at B due to liquid of sp. gr. 2,
FC = w2h2 = (2 × 10) × 0.5 = 10 kN/m2

and total pressure from E to F or D to F (or B) due to liquid of sp. gr. 2,

P3 = Area of triangle EFC × Length of the tank wall

= 1 10 0.5
2

⎛ ⎞× ×⎜ ⎟
⎝ ⎠

 = 3.75 kN ...(iii)

∴ Magnitude of the pressure exerted on the side of the tank,
P = P1 + P2 + P3 = 1.875 + 3.75 + 3.75 = 9.375 kN        Ans.

Line of action of the resultant force (i.e., pressure)
Let h

–
= Depth of the line of action of the resultant pressure from A.

Taking moments of all the pressures about A and equating the same,

P × h
–

= 1 2 3
2 0.5 2 0.50.50.5 0.5

3 2 3
P P P

× ⎡ × ⎤⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞× + × + + × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎣ ⎦

9.375 × h
–

= 1 3 51.875 3.75 3.75
3 4 6

⎡ ⎤ ⎡ ⎤ ⎡ ⎤× + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= 0.625 + 2.81 + 3.125 = 6.56

∴ h
–

=
6.56

9.375
 = 0.7 m      Ans.

EXAMPLE 18.3.   A concrete dam of rectangular section 15 m high and 6 m wide contains
water up to a height of 13 m. Find

(a) total pressure per metre length of the dam,

(b) point, where the resultant cuts the base and

(c) maximum and minimum intensities of stress at the base.

Assume weight of water and concrete as 10 and 25 kN/m3 respectively.

SOLUTION. Given: Height of concrete dam (H) = 15 m; Width of dam (b) = 6 m; Height of water
in dam (h) = 13 m; Weight of water (w) = 10 kN/m3 and weight of concrete (ρ) = 25 kN/m3.

(a) Total pressure per metre length of the dam

We know that total pressure of water per metre length of the dam,

P =
22 10 (13)

2 2
wh ×=  = 845 kN      Ans.

(b) Point where the resultant cuts the base

Let the resultant (R) cut the base at K as shown in Fig.18.3.

We know that weight of the concrete per metre length,

W = ρ × b × H = 25 × 6 × 15 = 2250 kN

and horizontal distance between the centre of gravity of the dam section and the point where the
resultant cuts the base (i.e., distance JK),

x =
845 13

3 2250 3
P h
W

× = ×  = 1.63 m        Ans.
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Fig. 18.3

(c) Maximum and minimum intensities of stress at the base
We know that
*eccentricity of the resultant,

e = x = 1.63 m
∴ Maximum intensity of stress at the base,

σmax =
6 1.636 22501 1

6 6
W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 kN/m2

= 986.25 kN/m2 = 986.25 kPa (Compression)  Ans.
and minimum intensity of stress at the base,

σmin =
6 1.636 22501 1

6 6
W e
b b

×⎛ ⎞⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 kN/m2

= – 236.25   kN/m2 = 236.25 kPa (Tension)        Ans.

18.3. Trapezoidal Dams with Water Face Vertical
Consider a unit length of a trapezoidal dam having its water face vertical as shown in Fig. 18.4.

Let a = Top width of the dam,
b = Bottom width of the dam,

H = Height of the dam,

ρ = Specific weight of the dam masonry,
h = Height of water retained by the dam, and

w = Specific weight of the water.

* The Eccentricity (e) may also be found out by taking moments about A. Let d be the distance AK. Therefore

W · d = 3 2
h bP W× + ×

and d =
6 845 13

2 3 2 2250 3
b P h

W
⎛ ⎞+ × = + ×⎜ ⎟
⎝ ⎠

 = 4.63 m

∴ Eccentricity, e = 2
bd −  = 4.63 – 3.0 = 1.63 m
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Fig. 18.4

We know that the weight of the dam per unit length, ...(i)

W =
( )

2
a b

H
+ρ × × ...(ii)

Like a rectangular dam, the total pressure on a unit length of the trapezoidal dam,

P =
2

2
wh ...(iii)

and the horizontal distance between the centre of gravity of the dam and the point, where the resultant
R cuts the base,

x =
3

P h
W

× ...(iv)

The distance between the toe of the dam A and the point where the resultant R cuts the base (i.e.,
distance AK in Fig. 18.4),

d = AJ + JK = 
3

P hAJ
W

⎛ ⎞+ ×⎜ ⎟
⎝ ⎠

...(v)

Now the distance AJ* may be found out by splitting the dam section into a rectangle and a
triangle. Now taking their moments about A and equating the same with the moment of the dam
section about A.

∴ Eccentricity, e = −d AJ

* The distance AJ may also be found out from the relation,

AJ =
2 2

3 ( )
a ab b

a b
+ +

+
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The stress across the base at  will be maximum, whereas the stress across the base at A will be
minimum, such that

σmax =
61W e

b b
⎛ ⎞+⎜ ⎟
⎝ ⎠

and σmin =
61W e

b b
⎛ ⎞−⎜ ⎟
⎝ ⎠

Note. When the reservoir is empty, there will be no water pressure on the dam. In this case, the eccentricity of
the weight of the dam,

e = 2
b AJ−

Since the eccentricity in this case will be minus, therefore the total stress across the base at B will
be minimum, whereas the stress across the base at A, will be maximum, such that

σmin =
61W e

b b
⎛ ⎞−⎜ ⎟
⎝ ⎠

and σmax =
61W e

b b
⎛ ⎞+⎜ ⎟
⎝ ⎠

EXAMPLE 18.4. A concrete dam of trapezoidal section having water on vertical face is 16
m high. The base of the dam is 8 m wide and top 3 m wide. Find

(a) resultant thrust on the base per metre length of the dam,

(b) point, where the resultant thrust cuts the base and

(c) intensities of maximum and minimum stresses across the base.

Take weight of the concrete as 25 kN/m3 and the water level coinciding with the top of the dam.

SOLUTION. Given: Height of the dam (H) = 16 m ;  Height of water retained by the dam (h) = 16
m; Bottom width of the dam (b) = 8 m ;  Top width of the dam (a) = 3 m and weight of concrete (ρ)
= 25 kN/m3.

Dam
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(a) Resultant thrust on the base per metre
length
We know that total water pressure per metre

length of the dam,

P =
22 9.81 (16)

kN
2 2

wh ×=

= 1255.7 kN ...(i)

and weight of concrete per metre, length,

W = 2
a b

H
+⎛ ⎞ρ × ×⎜ ⎟

⎝ ⎠

=
3 8

25 16 kN
2
+⎛ ⎞× ×⎜ ⎟

⎝ ⎠

= 2200 kN ...(ii)

∴Resultant thrust per metre length,

R = 2 2 2 2(1255.7) (2200)P W+ = +
= 2533 kN       Ans.

(b) Point, where the resultant cuts the base
Let the resultant (R) cut the base at K as shown in Fig. 18.5. First of all, let us find out the

position* of the centre of gravity of the dam section. Now taking moment of the area about A and
equating the same,

16 5
(16 3)

2
AJ

⎡ × ⎤⎛ ⎞× + ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

=
3 5 516 3 16 3
2 2 3

⎡ ⎤⎛ ⎞ ⎛ ⎞× × + × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
88 × AJ = 72 + 186.7 = 258.7

or *AJ =
258.7

88   =  2.94 m

We know that horizontal distance between the centre of gravity of dam section and the point,
where the resultant cuts the base (i.e., distance JK),

x =
1255.7 16 3.04 m

3 2200 3
P h
W

× = × =

∴ Horizontal distance AK,
**   d = AJ + x = 2.94 + 3.04 = 5.98 m         Ans.

*      The horizontal distance may also be found out from the following relation.

AJ =
2 2 2 2(3) (3 8) (8)
3 ( ) 3 (3 8)

a ab b
a b

+ + + × +=
+ +

= 97 2.94
33

=  m

** The horizontal distance d may also be found out by taking moment about A and equating the same, i.e.,

W · d = ( )
3
h

P W AJ⎛ ⎞× + ×⎜ ⎟
⎝ ⎠

or d =
1255 162.94 5.98 m

3 2200 3
P h

AJ
W

⎛ ⎞+ × = + × =⎜ ⎟
⎝ ⎠

Fig. 18.5
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(c) Intensities of maximum and minimum stresses across the base
We know that eccentricity of the resultant,

e = 85.98 1.98 m
2 2
bd − = − =

∴ Intensity of maximum stress across the base,

σmax = 26 1.986 22001 1 kN/m
8 8

W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 683.3 kN/m2 = 683.3 kPa         Ans.
and intensity of minimum stress across the base,

σmin = 26 1.986 22001 1 kN/m
8 8

W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= – 133.4 kN/m2 = 133.4 kPa (tension)         Ans.

EXAMPLE 18.5. A masonry trapezoidal dam 4 m high, 1 m wide at its top and 3 m wide at its
bottom retains water on its vertical face. Determine the maximum and minimum stresses at the
base, (i) when the reservoir is full and (ii) when the reservoir is empty. Take weight of water as
10 kN/m3 and that of masonry as 24 kN/m3.

SOLUTION. Given: Height of the dam (H) = 4 m ;  Top width of the dam (a) = 1 m ;  Bottom width
of the dam (b) = 3 m ;  Weight of water (w) = 10 kN/m3 and weight of masonry (ρ) = 24 kN/m3.
(i) Maximum and minimum stresses at the base when the reservoir is full

Let the resultant (R) cut the base at K as shown in Fig. 18.6(a).

We know that the total pressure of water per metre length of the dam,

P =
22 10 (4)

80 kN
2 2

wh ×= = ... (i)

Fig. 18.6
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and weight of concrete per metre length,

W =
1 3

24 4 kN 192 kN
2 2

a b
H

+ +⎛ ⎞ ⎛ ⎞ρ × = × × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

... (ii)

Now let us find out the position* of the centre of gravity of the dam section. Taking moments of
the area about A and equating the same,

4 2
4 1

2
AJ

×⎛ ⎞× +⎜ ⎟
⎝ ⎠

=
4 21 24 1 1

2 2 3
AJ

×⎡ ⎤⎛ ⎞ ⎛ ⎞× × + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

8AJ = 2 + 6.67  =  8.67

or * AJ = 8.67 1.08
8

=  m

We know that horizontal distance between the centre of gravity of the dam section and the point,
where the resultant cuts the base (i.e., distance JK),

x = 80 4 0.56 m
3 192 3

P h
W

× = × =

∴ Horizontal distance AK,

d = AJ + x   =  1.08 + 0.56  =  1.64 m

and eccentricity, e = 31.64 0.14 m
2 2
bd − = − =

We also know that maximum stress at the base

σmax = 26 0.146 1921 1 kN/m
3 3

W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 81.92 kN/m2 = 81.92 kPa         Ans.
and mininum stress at the base,

σmin =
6 192 6 0.14

1 1
3 3

W e

b b

×⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 kN/m2

= 46.08 kN/m2 = 46.08 kPa        Ans.
(ii) Maximum and minimum stresses at the base when the reservoir is empty

In this case, there is no water pressure on the dam as shown in Fig. 18.6 (b). Therefore eccentricity,

e = 31.08 0.42 m
2 2
bd − = − = −

∴ (Minus sign indicates that the stress at A will be more than that at B).

* The distance AJ may also be found out from the following relation:

AJ =
2 2 2 2(1) (1 3) (3) 13 1.08 m
3 ( ) 3 (1 3) 12

a ab b
a b

+ + + × += = =
+ +
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We know that maximum stress at the base (A),

σmax = 26 0.426 1921 1 kN/m
3 3

W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 117.76 kN/m2  =  117.76 kPa       Ans.
and minimum stress at the base, (B)

σmin = 26 0.426 1921 1 kN/m
3 3

W e
b b

×⎛ ⎞⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 10.24 kN/m2  =  10.24 kPa       Ans.

EXAMPLE 18.6. A masonry dam as shown in Fig. 18.7 has a total height of 20 m with a top
width of 5 m and a free board of 2 m. Its upstream face is vertical while the downstream face has
a batter of 0.66 horizontal to 1.0 vertical. The specific gravity of masonry may be taken as 2.4.

Fig. 18.7

In addition to the hydrostatic pressure on the upstream face, there is an uplift pressure at the
foundation, which may be taken to vary linearly from a value equal to the hydrostatic pressure at
the upstream end, to zero at the downstream end.

Calculate the extreme values of the normal stresses on the foundation, when the reservoir is
full. Take specific weight of water as 10 kN/m3.

SOLUTION. Given: Height of the dam (H) = 20 m; Top width of the dam (a) = 5 m ;  Free board =
2 m;  Slope of downward face = 0.66 horizontal to 1.0 vertical ;  Specific gravity of masonry = 2.4 ;
Uplift pressure at the downstream point = 0 and specific weight of water (w) = 10 kN/m3.

We know that height of water, (h) = 20 –2 = 18 m

and bottom width (b) = 0.665 20 18.2 m
1.0

+ × =

From the geometry of the uplift pressure, we know that pressure at the upstream (A),
p = wh = 10 × 18 = 180 kN/m2

Let the resultant (R) cut the base at K as shown in Fig.18.8 Let d be the horizontal distance AK.
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We know that total water pressure per metre length of the dam,

Fig. 18.8

P =
22 10 (18)

1620 kN
2 2

wh ×= =

and net weight of the dam per metre length,

W = Weight of the dam section – Uplift pressure

=
10 18.2 180 18.2

2.4 10 20 kN
2 2

⎡ ⎤× ×⎛ ⎞ ⎛ ⎞× × × −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= 5568 – 1638 = 3930 kN

Now let us find out the point K, where the resultant cuts the base. Taking moments of the dam
section about A and equating the same,

W × d = [(1620 × 6)] + [(2.4 × 10) × (20 × 5 × 2.5)]

+ 
20 13.2 180 18.213.2 18.2(2.4 10) 5

2 3 2 3
× ×⎡ ⎤ ⎡ ⎤⎛ ⎞× × + − ×⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

3930 d = 9720 + 6000 + 29780 – 9937 = 35563

d = 35563 9.05 m
3930

=

and eccentricity, e = 18.29.05 0.05 m
2 2
bd − = − = −

(Minus sign indicates that the stress at A will be more than that at B).
∴ Maximum stress at the base point (A),

σmax = 26 0.056 39301 1 kN/m
18.2 18.2

W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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= 219.5 kN/m2 = 219.5 kPa        Ans.
and minimum stress at the base point (B),

σmin = 26 0.056 39301 1 kN/m
18.2 18.2

W e
b b

×⎛ ⎞⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 212.4 kN/m2 = 212.4 kPa        Ans.

18.4. Trapezoidal Dams with Water Face Inclined

Fig. 18.9

Consider a unit length of a trapezoidal dam, having its water surface inclined as shown in Fig. 18.9.

Let a = Top width of the dam,
b = Bottom width of the dam,

H = Height of the dam,

ρ = Specific weight of the dam masonry,
h = Height of water retained by the dam,

w = Specific weight of the water, and

θ = Inclination of the water face with the vertical.
∴ Length of the sloping side AE, which is subjected to water pressure,

l =
cos

h
θ

Now we see that the weight of the dam per unit length,

W =
( )

2
a b

H
+ρ × × ...(i)

The intensity of water pressure will be zero at the water surface and will increase by a straight
line law to wh at the bottom. Therefore the total pressure on a unit length of the dam,

P =
2 2

wh whll× = ...(ii)

This water pressure P will act at a height of h/3 from the bottom of the dam as shown in Fig. 18.9.
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∴ Horizontal component of this water pressure,

PH = P cos θ  =  
2

2 2
whl h wh

l
× = ...(iii)

and vertical component of this water pressure,

PV = P sin θ  =  
2 2

whl EF w EF h
l

× = × ×

= Weight of the wedge AEF of water

It is thus obvious that such a dam may be taken to have a horizontal water pressure equal to 
2

2
wh

on the imaginary vertical face AF. The weight of wedge AEF of water may be considered as a part of
the weight of dam, while finding out the c.g. of the dam section.

Now the distance between the centre of gravity of the dam section and the point, where the
resultant R cuts the base will be given by the relation.

x =
3

P h
W

× ... (As usual)

∴ Total stress across the base at B,

σmax =
61W e

b b
⎛ ⎞+⎜ ⎟
⎝ ⎠

... (As usual)

and total stress across the base at A,

σmin =
61W e

b b
⎛ ⎞−⎜ ⎟
⎝ ⎠

... (As usual)

Note: When the reservoir is empty, there will be neither water pressure on the dam nor there will be the weight
of wedge AEF of water. In this case the eccentricity of the weight of the dam,

e = 2
b AJ−

Since the eccentricity will be minus, therefore total stress across the base at B,

σmin =
61w e

b b
⎛ ⎞−⎜ ⎟
⎝ ⎠

and total stress across the base at A,

σmax =
61W e

b b
⎛ ⎞+⎜ ⎟
⎝ ⎠

EXAMPLE 18.7. An earthen dam of trapezoidal section is 10 m high. It has top width of 1 m
and bottom width 7 m. The face exposed to water has a slope of 1 horizontal to 10 vertical as shown
in Fig. 18.10.

Calculate the maximum and minimum stresses on the base, when the water level coincides
with the top of the dam. Take weight of the masonry as 20 kN/m3 and that of water as 10 kN/m3.

SOLUTION. Given: Height of the dam (H) = 10 m ;  Top width of the dam (a) = 1 m ;  Bottom width
of the dam (b) = 7 m ;  Height of water retained by the dam (h) = 10 m ;  Weight of masonry (ρ)
= 20 kN/m3 and weight of water (w) = 10 kN/m3.
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Fig. 18.10

Let the resultant (R) cut the base at K as shown in Fig. 18.11. We know that total water pressure
per metre length of the dam,

*P =
22 10 (10)

500 kN
2 2

wh ×= =

and weight of the dam per metre length (including wedge AED of water)

W = 2 2
a bhw H

+⎛ ⎞⎛ ⎞× + ρ × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 = 
1 71010 20 10 kN

2 2
+⎛ ⎞⎛ ⎞× + × ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= 50 + 800 = 850 kN

Fig. 18.11

* Strictly speaking, the total pressure is acting normally to the face AD of the dam. But here we shall assume
the pressure to act normally to the imaginary vertical plane AE as discussed in Art. 18.4.
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Now let us find out the centre of gravity of the dam section (including wedge AED of water).
Taking moments about A and equating the same,

W × AJ = 10 1 10 210 20
2 3 2 3

⎛ ⎞ ⎛ ⎞× × + × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ (20 × 10 × 1.5) + 
10 5 1120

2 3
×⎛ ⎞× ×⎜ ⎟

⎝ ⎠

850 AJ = 50 200 5500 6650300
3 3 3 3

+ + + =

∴ AJ = 6650 1 2.61 m
3 850

× =

We know that horizontal distance between the centre of gravity of the dam section and the points
where the resultant cuts the base (i.e., distance JK),

x = 500 10 1.96 m
3 850 3

P h
W

× = × =

∴ Horizontal distance AK = d = AJ + x = 2.61 + 1.96 = 4.57 m

and eccentricity, e = 74.57 1.07 m
2 2
bd − = − =

We also know that maximum stress at the base,

σmax = 26 1.076 8501 1 kN/m
7 7

W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 232.8 kN/m2 = 232.8 kPa        Ans.
and minimum stress at the base,

σmin = 26 1.076 8501 1 kN/m
7 7

W e
b b

×⎛ ⎞⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 10.06 kN/m2 = 10.06 kPa        Ans.

18.5. Conditions for the Stability of a Dam
In the previous articles, we used to derive a relation for the position of a point through which the

resultant R (of the water pressure P and the weight of dam W) cuts the base. The position of this point
helps us in finding out the total stresses across the base, at toe and heel of the dam. Apart from finding
out the total stresses, this point helps us in checking the stability of the dam. In general, a dam is
checked for the following conditions of stability:

1. To avoid tension in the masonry at the base of the dam,
2. To safeguard the dam from overturning,

3. To prevent the sliding of dam and

4. To prevent the crushing of masonry at the base of the dam.
Now we shall discuss all the above conditions of stability one by one.

18.6. Conditions to Avoid Tension in the Masonry of the Dam at its
Base

We have discussed in Art. 18.2. that the water pressure acting on one side of the dam, produces
bending stress; whereas the weight of the dam produces direct stress at the bottom of the dam. We
have also seen that on one side of the dam, there is a maximum stress (equal to sum of the direct and
bending stress); whereas on other side of the dam, there is a minimum stress (equal to direct stress
minus bending stress). A little consideration will show that so long as the bending stress remains less
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than the direct stress, the resultant stress is compressive. But when the bending stress is equal to the
direct stress, there will be zero stress on one side. But when the bending stress exceeds the direct
stress, there will be a tensile stress on one side. Though cement concrete can take up a small amount
of tensile stress, yet it is desirable to avoid tension in the masonry of the dam at its base.

It is thus obvious, that in order to avoid the tension in the masonry of the dam at its base, the
bending stress should be less than the direct stress or it may be equal to the direct stress, i.e.,

σb ≤ σ0

2

6 ·W e

b
≤ W

b

or e ≤
6
b

It means that the eccentricity of the resultant can be equal to b/6 on either side of geometrical axis
of base section. Thus the resultant must lie within the middle third of the base width in order to avoid
tension.

18.7. Condition to Prevent Overturning of the Dam
We have already discussed that when a dam is retaining water, it is subjected to some water

pressure. We can easily find out the resultant R of the water pressure P and the weight of dam W. Since
the dam is in equilibrium, therefore the resultant R must be balanced by equal and opposite reaction
acting at K. This reaction may be split up into two components viz., horizontal and vertical. The
horizontal component must be equal to the water pressure P, whereas the vertical component must be
equal to the weight W. Thus the following four forces acting on the dam, keep it in equilibrium:

1. Water pressure P,
2. Horizontal component of the reaction,

3. Weight of the dam W and
4. Vertical component of the reaction.

These four forces may be grouped into two sets or couples. The moment of a couple consisting of
the first two forces,

M1 = Force × Arm  =  
3
hP × ...(i)

Similarly, moment of a couple consisting of the last two forces,
M2 = W × JK  ...(ii)

A little consideration will show that the moment of the first two forces will tend to overturn the
dam about B; whereas the moment of the last two forces will tend to restore the dam. Since the dam is
in equilibrium and a couple can only be balanced by a couple, therefore overturning moment must be
equal to the restoring moment, i.e.,

3
hP × = W × JK

or JK = 3
P h
W

×

Incidentally, this equation is the same which we derived in Art. 18.6 and gives the position of the
point K, where the resultant cuts the base. Since the dam will tend to overturn about B, therefore
balancing moment about B,

M3 = W × JB
Now, we see that the dam is safe against overturning, so long as the balancing moment is more

than the overturning moment (or restoring moment, which is equal to overturning moment), i.e.,
W × JB > W × JK

or JB > JK
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It is thus obvious that the condition to prevent the dam from overturning, is that the point K
should be between J and B or more precisely between A and B.

As a matter of fact, this is a superfluous condition. We know that to avoid tension in the masonry
of a dam at its bottom, the resultant must lie within the middle third of the base width. Since we have
to check the stability of a dam for tension in the base masonry, therefore the stability of the dam for
overturning is automatically checked.

18.8. Condition to Prevent the Sliding of Dam
We have already discussed in Art. 18.7 that there are four forces which act on a dam and keep it

in equilibrium. Out of these four forces, two are vertical and the following two are horizontal:

(a) Water pressure P and

(b) Horizontal component of the reaction.

A little consideration will show that the horizontal component of the reaction will be given by the
frictional force at the base of the dam.

Let μ = Coefficient of friction between the base of  dam and the soil.

We know that the maximum available force of friction,

Fmax = μW

It is thus obvious that so long as Fmax is more* than the water pressure P, the dam is safe against
sliding.

18.9. Condition to Prevent Crushing of Masonry at the Base of the
Dam

We have already discussed in Art. 18.2 that whenever a dam is retaining water, the masonry of
dam at its bottom is subjected to some stress. This stress varies from σmax to σmin by a straight line law.
A little consideration will show that the condition to prevent the crushing of masonry at the base of the
dam, is that the maximum stress σmax should be less than the permissible stress in the masonry.

EXAMPLE 18.8. A masonry wall 5 metres high and 1.8 metre wide is containing water up to
a height of 4 metres. If the coefficient of friction
between the wall and the soil is 0.6, check the
stability of the wall. Take weight of the masonry
and water as 22 kN/m3 and 9.81 kN/m3.

SOLUTION. Given: Height of the wall (H) = 5 m ;
Width of the wall (b) = 1.8 m; Height of the water (h)
= 4 m ; Coefficient of friction between the wall and
the soil (μ) = 0.6 and weight of masonry (ρ) =
22 kN/m3.

Let the resultant (R) cut the base at K as shown
in Fig.18.12 We know that total water pressure per
metre length of the wall,

P =
22 9.81 (4)

78.48 kN
2 2

wh ×= =

* Some authorities feel that the dam will be safe, when the force of friction is at least 1.5 times the total

water  pressure per metre length. i.e.,
W
P

μ
= 1.5

Fig. 18.12
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and weight of the wall per metre length,
W = 22 × 5 × 1.8 = 198 kN

1. Check for tension in the masonary at the base
We know that horizontal distance between the centre of gravity of the wall and point, where the

resultant thrust  (R) cuts the base,

x = 78.48 4 0.53 m
3 198 3

P h
W

× = × =

∴ AK = AJ + x = 0.9 + 0.53 = 1.43 m

Since the resultant thrust lies beyond the middle third of the base width (i.e., from 0.6 to 1.2 m),
therefore the wall shall fail due to tension in its base.        Ans.
2. Check for overturning.

Since the resultant thrust is passing within the base as obtained above, therefore the wall is safe
against overturning.          Ans.
3. Check for sliding the wall.

We know that horizontal pressure due to water, (P) = 78.48 kN.
 And the frictional force = μW = 0.6 × 198 = 118.8 kN

Since the frictional force (118.8 kN) is *more than the horizontal pressure (78.48 kN), therefore
the wall is safe against sliding.          Ans.

EXAMPLE 18.9. A trapezoidal masonry dam having 3 m top width, 8 m bottom width and 12
m high is retaining water as shown in Fig. 18.13.

Fig. 18.13

Check the stability of the dam, when it is retaining water to a height of 11 m. The masonry
weighs 20 kN/m3 and coefficient of friction between the dam masonry and soil is 0.6. Take the
allowable compressive stress as 400 kN/m2.

SOLUTION. Given: Top width of the dam (a) = 3 m ;  Bottom width of the dam (b) = 8 m ;  Height
of the dam (H) = 12 m ;  Height of water retained by the dam (h) = 11 m ;  Weight of masonry (ρ) =
20 kN/m3 ;  Coefficient of friction between the dam masonry and soil (μ) = 0.6 and allowable com-
pressive stress (σmax) = 400 kN/m3.

* Certain authorities on the subject are of the opinion that magnitude of the weight should preferably be 1.5
times the horizontal pressure due to water.
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1. Check for tension in the masonry at its base
Let the resultant (R) cut the base at K as shown in Fig. 18.14.

We know that water pressure per metre length of the dam,

P =
22 (11)

10 605 kN
2 2

wh = × =

and weight of the dam per metre length (including the wedge AED of water),

W =
3 81 1110 11 20 12 kN

2 6 2
+⎛ ⎞⎛ ⎞× × × + × ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= 100.8 + 1320 = 1420.8 kN

Fig. 18.14

Now let us find out the position of the centre of gravity of the dam section. Taking moments of
the weight of the dam section about A and equating the same,

W × AJ =
12 211 11 2 410 20

2 6 3 2 3
+⎛ ⎞⎛ ⎞× × × + × ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+ 
12 3720 12 3 20 6

2 2
×⎛ ⎞⎛ ⎞× × × + × ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

1420.8 × AJ =
1210
18

 + 320 + 2520 + 2160 = 5067

∴ AJ =
5067 3.57 m

1420.8
=

We know that horizontal distance between the centre of gravity of the dam section and the point,
where the resultant cuts the base (i.e., distance JK),

x = 605 11 1.56 m
3 1420.8 3

P h
W

× = × =

Horizontal distance AK, d = AJ + x = 3.57 + 1.56 = 5.13 m
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Since the resultant force lies within the middle third of the base width (i.e., from 2.67 m to
5.33 m), therefore the dam is safe against the tension in its masonry at the base.        Ans.

2. Check for overturning

Since the resultant force lies within the base AB and obtained above, therefore the dam is safe
against overturning.        Ans.

3. Check for sliding of the dam

We know that the frictional force at the base

= μW = 0.6 × 1420.8 = 852.5 kN

Since the frictional force (852.5 kN) is more than the horizontal pressure (605 kN), therefore the
dam is safe against sliding.        Ans.

4. Check for crushing of the masonry at the base of the dam
We know that eccentricity,

e =
85.13 1.13 m

2 2
bd − = − =

and maximum stress, σmax =
26 1.136 1420.81 1 kN/m

8 8
×⎛ ⎞⎛ ⎞+ = +⎜ ⎟⎝ ⎠ ⎝ ⎠

W e
b b

= 328.1 kN/m2

Since the maximum stress (328.1 kN/m2) is less than the allowable stress (400 kN/m2), therefore
masonry of the dam is safe against crushing.         Ans.

18.10. Minimum Base Width of a Dam
We have already discussed in Arts. 18.6 to 18.9, the general conditions for the stability of a dam,

when the section is given. But sometimes, while designing a dam, we have to calculate its necessary
base width. This can be easily found out by studying the conditions for the stability of a dam. Thus the
base width (b) of a dam may be obtained from the following three conditions:

1. To avoid tension in the masonry at the base of the dam, the eccentricity (e) = 
6
b .

In this case, the maximum stress σmax = 2W
b

 = 5 and the minimum stress σmin = 0.

The stress diagram at the base will be a triangle.

2. To avoid the sliding of dam, the force of friction between the dam and soil, is at least 1.5 times
the total water pressure per metre length, i.e.,

W
P

μ
= 1.5

3. To prevent the crushing of masonry at the base of the dam, the maximum stress should be less
than the permissible stress of the soil.

Note. If complete data of a dam is given, then the base width for all the above three conditions should be found
out separately. The maximum value of the base width from the above three conditions will give the
necessary base width of the dam. But sometimes, sufficient data is not given to find out the values of
base width for all the above mentioned three conditions. In such a case, the value of minimum base
width may be found out, for any one of the above three conditions.
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EXAMPLE 18.10. A mass concrete dam shown in Fig. 18.15 has a trapezoidal cross-section.
The height above the foundation is 64 m and its water face is vertical. The width at the top is
4.5 m.

Fig. 18.15

Calculate the necessary minimum width of the dam at its bottom, to ensure that no tension
should be developed when water is stored up to 60 metres. Draw the pressure diagram at the base
of the dam, for this condition and indicate the maximum pressure developed.

Take density of concrete as 22.6 kN/m3 and density of water as 9.81 kN/m3.
SOLUTION. Given: Height of dam (H) = 64 m ;  Top width of dam (a) = 4.5 m ;  Height of water restored

by the dam (h) = 60 m; Density of concrete (ρ) = 22.6 kN/m3 and density of water (w) = 9.81 kN/m3.

Minimum width of the dam at its bottom

Fig. 18.16

Let b = Minimum width of the dam at its bottom in metres.

We see that the minimum width of the dam at its bottom is to be found out only for one condition
i.e., no tension shall be developed at the base.

Let the resultant (R) cut the base at K as shown in Fig. 18.16.
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We know that water pressure per metre length of the dam,

P =
22 9.81 (60)

17660 kN
2 2

wh ×= = ... (i)

and weight of the dam per metre length,

W =
( ) (4.5 )

22.6 64 kN
2 2

a b b
H

+ +ρ × × = × ×

= 723.2 (4.5 + b) kN ... (ii)
Now let us find out the position of the centre of gravity of the dam section. We know that the

distance AJ,

AJ =
2 2 2 2 2(4.5) 4.5 20.25 4.5
3 ( ) 3 (4.5 ) 3 (4.5 )

a ab b b b b b
a b b b

+ + + + + += =
+ + +

We know that horizontal distance between the centre of gravity of the dam section and the point,
where the resultant cuts the base (i.e., distance JK),

x =
17660 60 488

3 723.2 (4.5 ) 3 (4.5 )
P h
W b b

× = × =
+ +

∴ Horizontal distance AK,

d =
220.25 4.5 488

3 (4.5 ) 4.5
b b

AJ x
b b

+ ++ = +
+ +

=
2 220.25 4.5 1464 1484.25 4.5

3 (4.5 ) 3 (4.5 )
b b b b

b b
+ + + + +=

+ +
∴ Eccentricity of the resultant,

e =
21484.25 4.5

2 3 (4.5 ) 2
b bb bd
b

+ +− = −
+

We know that in order to avoid tension in the masonry at the base of the dam, the eccentricity,

e =
6
b

or
21484.25 4.5

3 (4.5 ) 2
b b b
b

+ + −
+

=
6
b

21484.25 4.5
3 (4.5 )

b b
b

+ +
+ =

2
6 2 3
b b b+ =

1484.25 + 4.5b + b2 = 2b (4.5 + b) = 9b + 2b2

or b2 + 4.5b – 1484.25 = 0

Solving this equation as a quadratic equation for b, we get

b =
24.5 (4.5) (4 1484.25)
2

− ± + ×
  =  36.35 m       Ans.

Pressure diagram
Substituting the value of b in equation (ii)

W = 723.2 (4.5 + 36.35) = 29 540 kN

Since no tension should be developed at the base, therefore pressure diagram will be a triangle
with zero pressure stress at B. Therefore pressure at the base
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σmax =
2 295402

36.35
×=W

b
 = 1625 kPa       Ans.

= 1625 kPa       Ans.
σmin = 0

The pressure diagram at the base of the dam is shown in Fig. 18.16 (b).        Ans.
EXAMPLE 18.11.  A concrete dam has its upstream face vertical and a top width of 3 m. Its

downstream face has a uniform batter. It stores water to a depth of 15 m with a free board of 2 m
as shown in Fig. 18.17.

Fig. 18.17

The weights of water and concrete may be taken as 10 kN/m3 and 25 kN/m3. Calculate
(a) the minimum dam width at the bottom for no tension in concrete. Neglect uplift.
(b) the extreme intensities of pressure on the foundation, when the reservoir is empty.
SOLUTION. Given: Top width of the dam (a) = 3 m ;  Height of water retained by the dam (h)

= 15 m ;  Height of the dam (H ) = 15 + 2 = 17 m ;  Weight of water (w) = 10 kN/m3 and weight
of concrete (ρ) = 25 kN/m3.

Minimum dam width at the bottom

Let b = Minimum dam width at bottom

We see that the minimum dam width at the bot-
tom is to be found out only for one condition i.e., no
tension should be developed at the base.

We also know that total pressure on the dam per
metre length,

P =
22 10 (15)

1125 kN
2 2

wh ×= =
...(i)

and weight of concrete of the dam per metre length

W =
( ) (3 )

25 17
2 2

a b b
H

+ +ρ × × = × ×

= 212.5 (3 + b) kN
Fig. 18.18
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Now, let us find out the position of the centre of gravity of the dam section. We know that the
distance AJ

=
2 2 2 2 2(3) 3 9 3
3 ( ) 3 (3 ) 3 (3 )

a ab b b b b b
a b b b

+ + + + + += =
+ + +

We know that horizontal distance between the centre of gravity of the dam section and the point,
where the resultant cuts the base (i.e., distance JK),

x =
1125 15 26.5

3 212.5 (3 ) 3 (3 )
P h
W b b

× = × =
+ +

∴ Horizontal distance AK,

d = AJ + x  =  
29 3 26.5

3 (3 ) (3 )
b b

b b
+ + +

+ +

=
2 29 3 79.5 88.5 3

3 (3 ) 3 (3 )
b b b b

b b
+ + + + +=

+ +
and eccentricity of the resultant,

e =
288.5 3

2 3 (3 ) 2
b bb bd
b

+ +− = −
+

We know that in order to avoid tension in the concrete at the dam base, the eccentricity,

e =
6
b

or
288.5 3

3 (3 ) 2
b b b
b

+ + −
+

=
6
b

∴
288.5 3

3 (3 )
b b

b
+ +

+
= 2

6 2 3
b b b+ =

88.5 + 3b + b2 = 2b (3 + b) = 6b + 2b2

b2 + 3b – 88.5 = 0
Solving this equation, as a quadratic equation for b, we get

b =
23 (3) (4 88.5) 3 19
2 2

− ± + × − ±=
= 8 m        Ans.

Extreme intensities of pressure on the foundation when
the reservoir is empty

We know that the weight of dam per metre length,

W =
(3 8)

25 17 kN
2
+× ×

= 2337.5 kN

We also know that distance AJ,

d =
2 2

3 ( )
a ab b

a b
+ +

+

=
2 2(3) (3 8) (8)

3 (3 8)
+ × +

+
= 2.94 m

Fig. 18.19
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and eccentricity,

e = 82.94 1.06 m
2 2
bd − = − = −

(Minus sign indicates that the pressure at point  will be more than that at point B).

We also know that maximum intensity of pressure at point A,

σmax = 26 1.066 2337.51 1 kN/m
8 8

W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 524.5 kN/m2  =  524.5 kPa        Ans.
and minimum intensity of pressure at point B,

σmin = 26 1.066 2337.51 1 kN/m
8 8

W e
b b

×⎛ ⎞⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 59.9 kN/m2 = 59.9 kPa        Ans.

18.11. Maximum Height of a Dam
We have already discussed in Art. 18.10, the various conditions for the minimum base width of a

dam. The same conditions also hold good for the maximum height of a dam.

EXAMPLE 18.12. Assuming uniformly varying stress across the base, find the limit of height of
a triangular masonry dam, with water upto the top of the vertical face, in order that the vertical
compressive stress across the base shall not exceed 1 MPa. the masonry weighs 20 kN/m3.

SOLUTION. Given: Maximum compressive stress (σmax) = 1 MPa = 1000 kPa = 1000 kN/m2 and
Weight of masonry (ρ) = 20 kN/m3.

Let e = Eccentricity of the resultant,

H = Height of the dam in metres, and

b = Bottom width of the dam in metres.
and weight of dam per metre length,

W = 20 10
2

bH bH× =

We know that eccentricity of the resultant for maximum stress,

e =
6
b

We also know that maximum stress across the base (σmax),

1000 =
6106 61 1

b
bHW e

b b b b

⎛ ⎞×⎜ ⎟⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

= 10 H (1 + 1) = 20 H

H = 1000
20

  =  50 m       Ans.
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EXERCISE 18.1

1. A wall 5 m long contains 3 m deep water. What is the total pressure on the wall? Take specific
weight of water as 10 kN/m3. [Ans. 225 kN]

2. A rectangular masonry dam 6 m high and 3 m wide has water level with its top. Find (i) total pressure
per metre length of the dam, (ii) Point at which the resultant cuts the base and (iii) maximum and
minimum intensities of stresses at the bottom of the dam. Assume the weight of water and masonry
as 10 kN/m3 and 20 kN/m3 respectively. [Ans. 180 kN ;  1.0 m ;  360 kPa ;  – 120 kPa]

3. A masonry trapezoidal dam 1 m wide at top, 4 m at its base and 6 m high is retaining water on
its vertical face to a height equal to the top of the dam. Determine the maximum and minimum
intensities of stress. Take density of masonry as 22.5 kN/m3. [Ans. 143.9 kPa ;  24.9 kPa]

4. A concrete trapezoidal dam 2.5 m wide at the top and 10 m wide at the bottom is 25 m high. It
contains water on its vertical side. Check the stability of the dam, when it contains water for a
depth of 20 m. Take coefficients of friction between the wall and soil as 0.6 and weight of the
concrete as 24 kN/m3.

[Ans. 1. The dam shall fail due to tension. 2. Safe against overturning. 3. Safe against sliding]

5. A masonry dam 12 metres high trapezoidal in section has top width 1 metre and bottom width
7.2 metres. The face exposed to water has a slope of 1 horizontal to 10 vertical. Check the
stability of the dam, when the water level rises 10 m high. The coefficient of friction between
the bottom of the dam and the soil as 0.6. Take the weight of the masonry as 22 kN/m3.

[Ans. Safe against tension; Safe against overturning; Safe against sliding]

6. A trapezoidal dam 4 m high has top width of 1 m with vertical face exposed to water. Find
minimum bottom width of the dam, if no tension is to develop at the base. [Ans. 2.55 m]

18.12. Retaining Walls
We have already discussed in Art. 18.1 that a retaining wall is generally, constructed to retain

earth in hilly areas. The analysis of a retaining wall is, somewhat like a dam. The retaining wall is
subjected to pressure, produced by the retained earth in a similar manner, as the dam is subjected to
water pressure.

18.13. Earth Pressure on a Retaining Wall
It has been established since long that the earth particles lack in cohesion and hence have a

definite *angle of repose. These earth particles always exert some lateral pressure on the walls, which
retain or support them. The magnitude of this lateral pressure depends upon type of earth particles
and the manner, in which they have been deposited on the back of the retaining wall. It has been
experimentally found that the lateral pressure is minimum, when the earth particles have been loosely
dumped, whereas the pressure is relatively high, when the same particles have been compacted by
tamping or rolling. The earth pressures may be classified into the following two types:

1. Active earth pressure and 2. Passive earth pressure.

18.14. Active Earth Pressure
The pressure, exerted by the retained material called backfill, on the retaining wall is known as

active earth pressure. As a result of the active pressure, the retaining wall tends to slide away from the
retained earth. It has been observed that the active pressure of the retained earth, acts on the retaining
wall, in the same way as the pressure of the stored water on the dam.

* It may be defined as the maximum natural slope, at which the soil particles will rest due to their internal
friction, if left unsupported for a sufficient length of time.
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18.15. Passive Earth Pressure
Sometimes, the retaining wall moves laterally against the retained earth, which gets compressed.

As a result of the movement of the retaining wall, the compressed earth is subjected to a pressure
(which is in the opposite direction of the active pressure) known as passive earth pressure.

It may be noted that the active pressure is the practical pressure, which acts on the retaining
walls; whereas the passive earth pressure is a theoretical pressure, which rarely comes into play.

18.16. Theories for Active Earth Pressure
There are many theories and hypothesis for the active earth pressure, on the retaining walls. But

none of these gives the exact value of the active pressure. The following two theories are considered
to give a fairly reliable values:

1. Rankine’s theory and 2. Coulomb’s wedge theory.

18.17. *Rankine’s Theory for Active Earth Pressure
It is one of the most acceptable theories, for the determination of active earth pressure on the

retaining wall. This theory is based on the following assumptions:

Fig. 18.20

1. The retained material is homogeneous and cohesionless.
2. The back of the wall is smooth, i.e., the frictional resistance between the retaining wall and the

retained material is neglected.

3. The failure of the retained material takes place along a plane, called rupture plane.

Consider a trapezoidal retaining wall ABCD, retaining earth up to a height of h on its vertical
face AD. Let the retained earth be levelled with the top of the wall CD. Draw AE at an angle φ with AK
(where φ is the angle of repose of the retained earth). A little consideration will show that if retaining
wall is removed, the retained earth will be subjected to tension and will slide down along certain
plane, whose inclination will be more than that of the angle of repose with AK. Let such a plane AF be
inclined at an angle θ with AK as shown in Fig. 18.20. Now consider a horizontal force P offered by
the retaining wall, which will keep the wedge AFD of the retained earth in equilibrium.

We see that, the wedge AFD of the retained earth is in equilibrium, under the action of the
following forces.**

* This theory was given by Prof. W.J. Rankine, a British Engineer in 1857.
** The frictional force, along the face AD of the retaining wall, is neglected.
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1. Weight of the wedge AFD,

W = 
21 cot

2 2
× × = θwh

w AD DF

  where    w = Specific weight of the material.

2. Horizontal thrust P offered by the retaining wall on the re-
tained material.

3. Normal reaction R acting at right angle to the plane AF.
4. The frictional force, F = μR acting on the opposite direction

of the motion of the retained earth (where μ is the coefficient
of friction of the retained material).

The above condition is similar to the equilibrium of a body of a weight W on a rough inclined
plane, when it is subjected to a horizontal force P as shown in Fig. 18.21. From the geometry of the
figure, we find that

R = W cos θ + P sin θ
and P cos θ = W sin θ – μR

= W sin θ – μ (W cos θ + P sin θ)

= W sin θ – μW cos θ – μP sin θ
or P cos θ + μP sin θ = W sin θ – μW cos θ

P (cos θ + μ sin θ) = W (sin θ – μ cos θ)

∴ P =
(sin cos )

(cos sin )
W θ − μ θ

θ + μ θ

Substituting the value of μ = tan φ in the above equation,

P =
(sin tan cos )

(cos tan sin )
W θ − φ θ

θ + φ θ

Multiplyying the numerator and denominator by cos φ,

P =
(sin cos sin cos )

(cos cos sin sin )
W θ φ − φ θ

θ φ + φ θ

=
sin ( )

tan ( )
cos ( )

W W
θ − φ = θ − φ
θ − φ

Substituting the value of W in the above equation,

P =
2

cot · tan ( )
2

wh θ θ − φ

A little consideration will show that if the retaining wall is removed, the retained earth will
immediately slide down across a plane, where the tendency for the material to slide down is greatest.
Let such a plane be AH. Therefore maximum value of the force P is required to retain the wedge AHD
of the earth. In order to locate the plane AH (i.e., the plane of rupture), differentiate the equation for
P and equal to zero i.e.,

2

[cot tan ( ]
2

dP wh
d

⎡ ⎤
θ θ − φ⎢ ⎥θ ⎣ ⎦

= 0

or
2

2 2[cot sec ( cos ec tan ( )]
2

wh θ θ − φ − θ θ − φ = 0

∴ cot θ sec2 (θ – φ) – (cosec2 θ tan (θ – φ) = 0

Fig. 18.21
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Substituting tan θ = t and tan (θ – φ) = t1 in the above equation,

( )2
1 12

1 11 1t t
t t

⎛ ⎞× + − + ×⎜ ⎟
⎝ ⎠

= 0

2
1

1 2

1 11
t

t
t t

+ ⎛ ⎞− +⎜ ⎟
⎝ ⎠

= 0

2
21 1

2

1
( 1)

t t
r

t t

+
− + = 0

t (1 + t1
2) – t1 (1 + t2) = 0

t + tt1
2 – t1 – t1t

2 = 0
t – t1 + tt1

2– t1t
2 = 0

(t – t1) – tt1 (t – t1) = 0

(t – t1) (1 – tt1) = 0
Therefore either t = t1 or 1 – tt1 = 0. Since tan θ cannot be equal to tan (θ – φ), therefore 1 – tt1 = 0

or 1 – tan θ · tan (θ – φ) = 0

This statement is possible, only if

θ + (θ – φ) =
2
π

           or           θ  =  
4 2

φπ +

Thus the plane of rupture is inclined at 
4 2

φπ +  with the horizontal. We also see that

∠HAE = ∠HAK – ∠KAE

=
1

4 2 4 2 2 2
φ φπ π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − φ = + = − φ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

= 1
2

 ∠DAE

Now substituting the values in the equation for P,

              P =
2 2

cot tan ( ) cot tan
2 2 4 2 4 2

wh wh φ φπ π⎛ ⎞ ⎛ ⎞θ θ − φ = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
2 tan

4 2
2

tan
4 2

wh
φπ⎛ ⎞−⎜ ⎟

⎝ ⎠×
φπ⎛ ⎞+⎜ ⎟

⎝ ⎠

or P
2 1 sin

2 1 sin
wh − φ= ×

+ φ
Notes: 1. Similarly, it can be proved that if the retained material is surcharged (i.e., the angle of surcharge is α

with the horizontal), the total pressure on the retaining wall per unit length,

P =
2 22

2 2

cos cos cos
cos ·

2 cos cos cos

wh α − α − φ
α

α + α − φ
This pressure may now be resolved into horizontal and vertical components. The horizontal compo-
nent PH = P cos α will act at a height h/3 from the base and vertical component PV = P sin α. It will
act along DA.

2. If the retained material is subjected to some superimposed or surcharged load (i.e., the pressure due
to traffic etc.) it will cause a constant pressure on the retaining wall from top to bottom. The total
horizontal pressure due to surcharged load,

P =
1 sin
1 sin

p
− φ×
+ φ

where p is the intensity of the surcharged load.
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EXAMPLE 18.13. Find the resultant lateral pressure and the distance of the point of applica-
tion from the bottom in the case of retaining wall as shown in Fig. 18.22.

Fig. 18.22

Take weight of upper soil as 20 kN/m3 and φ = 30° and weight of lower soil as 24 kN/m3 and φ = 30°

SOLUTION. Given: Surcharge = 18 kN/m2 ;  Weight of upper soil (w1) = 20 kN/m3 ;  Depth of
upper soil (h1)= 3 m ;  Weight of lower soil (w2) = 24 kN/m3; Depth of lower soil (h2) = 2 m and angle
of repose for both the soils φ = 30°.

Resultant lateral pressure per metre length of the wall
The pressure diagram on the retaining wall is shown in Fig. 18.23. In this figure, the pressure HA

or GC is due to surcharge. Pressure BD is due to upper soil and pressure EF is due to lower soil.
We know that pressure HA or GC due to surcharge

=
21 sin 1 sin 30 1 0.5

18 18 18 kN/m
1 sin 1 sin 30 1 0.5

− φ − ° −× = × = ×
+ φ + ° +

= 6 kN/m2

Fig. 18.23

∴ Total pressure due to surcharge per metre length of the wall,

P1 = Area of rectangle HGCA × length of the wall

= (6 × 5) × 1  =  30 kN ...(i)
Similarly, pressure BD due to upper soil

= 1 1
1 sin 1 sin 30 1 0.5

20 3 60
1 sin 1 sin 30 1 0.5

w h
− φ − ° −× = × × = ×
+ φ + ° +

= 20 kN/m2

∴ Total pressure due to upper soil per metre length of the wall

P2 = Area of tiangle ABD × Length of wall
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=
20 3

30 kN
2
×⎛ ⎞ =⎜ ⎟

⎝ ⎠
...(ii)

and pressure EF due to lower soil

= 2 2
1 sin 1 sin 30 1 0.5

24 2 48
1 sin 1 sin 30 1 0.5

w h
− φ − ° −× = × × = ×
+ φ + ° +

= 16 kN/m2

∴ Total pressure due to lower soil per metre length of the wall,
P3 = Area of figure BDFC × Length of wall

= (Area of rectangle BCED × Length of wall)
+ (area of triangle DEF × Length of wall)

=
16 2

[(120 2) 1] 1 40 16
2

⎡ × ⎤⎛ ⎞× × + × = +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 = 56 kN ...(iii)

and total pressure per metre length of the wall,
P = P1 + P2 + P3 = 30 + 30 + 56 = 116 kN        Ans.

Point of application of the resultant pressure
Let y = Height of the point of application of the resultant pressure

from the bottom of the wall.
Taking moments of all pressures about G and equating the same,

P × y = 5 3Pressure Pressure 2
2 3

ACGH ABD⎡ ⎤⎡ ⎤ ⎛ ⎞× + × +⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

+ 
2 2Pressure Pressure
2 3

BCDE DEF⎡ ⎤ ⎡ ⎤× + ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

116 × y = 5 230 (60 3) (40 1) 16
2 3

⎛ ⎞ ⎛ ⎞× + × + × + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 75 + 180 + 40 + 10.67 = 305.67

y = 305.67
116

 = 2.64 m       Ans.

EXAMPLE 18.14. A masonry retaining wall of trapezoidal section with a vertical face on the
earth side is 1 m wide at the top, 3 m wide at the bottom and 6 m high. It retains sand over the entire
height with an angle of surcharge of 20°. Determine the distribution of pressure at the base of the
wall. The sand weighs 18 kN/m3 and has an angle of repose of 30°. The masonry weighs 24 kN/m3.

Fig. 18.24
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SOLUTION. Given: Top width (a) = 1 m ;  Bottom width (b) = 3 m ;  Height of the wall (h) = 6 m;
Angle of surcharge (α) = 20° ;  Specific weight of sand (w) = 18 kN/m3 ;  Angle of repose (φ) = 30°
and specific weight of masonry (ρ) = 24 kN/m3.

Let the resultant (R) cut the base at K as shown in Fig. 18.24. We know that total pressure per
metre length of the wall,

P =
2 22

2 2

cos cos cos
cos

2 cos cos cos

wh α − α − α
α ×

α + α − α

=
2 22

2 2

cos 20 cos 20 cos 3018 (6)
cos 20 kN

2 cos 20 cos 20 cos 30

° − ° − °× ° ×
° + ° − °

=
2

2 2

0.9397 (0.9397) (0.866)2
324 0.9397 kN

0.9397 (0.9397) (0.866)

− −
× ×

+ −

= 0.575304.5
1.3044

×  = 134.2 kN

∴ Horizontal component of the pressure,

PH = 134.2 cos 20° = 134.2 × 0.9397 = 126.1 kN
and vertical component of the pressure,

PV = 134.2 sin 20° = 134.2 × 0.3420 = 45.9 kN

We also know that weight of the retaining wall

= (1 3)
24 6 288 kN

2
+× × =

∴ Total weight acting vertically down,

W = 45.9 + 288 = 333.9 kN

Now let us find out the position of the c.g. of the vertical load. Taking moments of the vertical
loads about A and equating the same,

W × AJ = (PV × 0) + (24 × 1 × 6 × 0.5) + 
(6 2)

24 2
2
×⎛ ⎞× ×⎜ ⎟⎝ ⎠

333.9 AJ = 72 + 288 = 360

∴ AJ = 360 1.08 m
333.9

=

We know that the horizontal distance between the centre of gravity of wall section and the point
where the resultant cuts the base (i.e., distance JK),

x =
126.1 6 0.75 m

3 333.9 3
HP h

W
× = × =

∴ *Horizontal distance AK,
d = AJ + JK = 1.08 + 0.75 = 1.83 m

* The horizontal distance d may also be found out by taking moments about A and equating the same,

W · d =
6 2

(24 1 6 0.5) 24 2
3 2H
hP

×⎛ ⎞⎛ ⎞× + × × × + × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

333.9 × d =
6126.1 72 288 612.2
3

⎛ ⎞× + + =⎜ ⎟
⎝ ⎠

      or       d = 
612.2 1.8 m
339.9

=
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and eccentricity, e = 31.83 0.33 m
2 2
bd − = − =

We also know that maximum intensity of pressure at the base,

σmax =
6 0.336 333.91 1

3 3
W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

kN/m2

= 184.8 kN/m2 = 184.8 kPa        Ans.
and minimum intensity of pressure at the base,

σmin = 6 0.336 333.91 1
3 3

W e
b b

×⎛ ⎞⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 kN/m2

= 37.84 kN/m2 = 37.84 kPa        Ans.

18.18. *Coulomb’s Wedge Theory for Active Earth Pressure
In Rankine’s theory for active earth pressure, we considered the equilibrium of an element within

the mass of the retained material. But in this theory, the equilibrium of the whole material supported
by the retaining wall is considered, when the wall is at the point of slipping away from the retained
material.

This theory is based on the concept of sliding wedge, which is torn off from the backfill on the
movement of the wall and is based on the following assumptions:

1. The retained material is homogeneous and cohesionless.

2. The sliding wedge itself acts as a rigid body and the earth pressure is obtained by considering
the limiting equilibrium of the sliding wedge as a whole.

3. The position and direction of the earth pressure is known i.e., the pressure acts on the back of
the wall and at a height of one-third of the wall height from the base. The pressure is inclined at
an angle δ (called the angle of wall friction) to the normal to the back.

Consider a trapezoidal retaining wall ABCD retaining surcharged earth up to a height of h on the
inclined face AD as shown in Fig. 18.25.

Fig. 18.25

Let h = Height of the wall,

w = Specific weight of the retained earth,

* This theory was given by Prof. C.A. Coulomb a French scientist in 1876.
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φ = Angle of repose of the retained earth,
α = Angle of surcharge,

θ = Angle, which the inclined face AD makes with the vertical and

δ = Angle of friction between the retaining wall and the retained
earth.

In this case, the earth pressure is given by the relation,

P =
22

2
2

cos ( θ)
2 sin (δ ) sin ( α)

cos θ cos (δ θ) 1
cos (δ θ) cos (θ α)

−×
⎡ ⎤+ −+ +⎢ ⎥+ −⎣ ⎦

wh φ

φ φ

18.19. Conditions for the Stability of a Retaining Wall
The conditions, for the stability of a retaining wall are the same as those for the stability of a dam.

In general, a retaining wall is checked for the following conditions of stability:

1. To avoid tension in the masonry at the base of the wall.

2. To safeguard the wall from overturning.
3. To prevent the sliding of wall.

4. To prevent the crushing of masonry at the base of the wall.

EXAMPLE 18.15.  Find the stability of the retaining wall shown in Fig. 18.26.

Also find the extreme stresses at the base of the wall, taking the densities of soil retained and
masonry of the wall as 16 kN/m3 and 22 kN/m3 respectively. Assume angle of internal friction of
the soil as 30°.

Fig. 18.26

SOLUTION. Given: Top width (a) = 1 m ;  Bottom width (b) = 3 m ;  Height of wall (h) = 6 m ;
Density of soil (w) = 16 kN/m3 ;  Density of masonry (ρ) = 22 kN/m3 ;  and angle of internal friction
(φ) = 30°

Check for tension in the masonry
Let the resultant (R) cut the base at K as shown in Fig. 18.27. We know that earth pressure per

metre length of the wall,

P =
22 1 sin 16 (6) 1 sin 30

2 1 sin 2 1 sin 30
wh − φ × − °× = ×

+ φ + °
 kN
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=
1 0.5 0.5288 288 96
1 0.5 1.5

−× = × =
+

 kN

and weight of the wall per metre length,

W =
( ) (1 3)

22 6 264
2 2
+ +ρ × × = × × =a b

h  kN

Now let us find out the centre of gravity of the wall
section. Taking moments of the wall section about A and
equating the same, i.e.,

6 2
6 1

2
AJ

×⎛ ⎞× +⎜ ⎟
⎝ ⎠

 = 
1 2 26 1 6 1
2 2 3

⎡ ⎤⎛ ⎞ ⎛ ⎞× × + × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
12 AJ = 3 + 10 = 13

∴ * AJ = 13
12

 = 1.08 m

We know that horizontal distance between the centre
of gravity of the wall section and the point, where the re-
sultant cuts the base (i.e., distance JK),

x =
96 6 0.73 m

3 264 3
P h
W

× = × =

∴ Horizontal distance AK,      d = AJ + x = 1.08 + 0.73 = 1.81 m
Since the resultant force lies within the middle third of the base width (i.e., from 1.0 m to 2.0 m),

therefore the wall is safe against the tension in its masonry at the base.        Ans.
Check for overturning

Since the resultant force lies within the base AB as obtained above, therefore the wall is safe
against overturning also.        Ans.
Check for sliding of the dam

Let coefficient of friction, (μ) = 0.6
We know that the frictional force at the base

= μW = 0.6 × 264 = 158.4 kN
Since the frictional force is more than the horizontal pressure, therefore the wall is safe against

sliding.       Ans.
Extreme stresses at the base of the wall
We know that the eccentricity of the resultant,

e = 1.81 1.5 0.31 m
2
bd − = − =

∴ Maximum stress at the base of the wall,

σmax =
6 0.316 2641 1

3 3
W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 kN/m2

= 142.6 kN/m2 = 142.6 kPa         Ans.
and minimum stress at the base of the wall,

σmin =
6 0.316 2641 1

3 3
W e
b b

×⎛ ⎞⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

kN/m2

= 33.4 kN/m2 = 33.4 kPa        Ans.

Fig. 18.27

* The distance AJ may also be found out from the following relation :

AJ =
2 2 2 2(1) (1 3) (3) 13 1.08 m
3 ( ) 3 (1 3) 12

a ab b
a b

+ + + × += = =
+ +
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EXAMPLE 18.16. A masonry retaining wall 4 m high above ground level as shown in Fig.
18.28 sustains earth with a positive surcharge of 10°. The width of the wall at top is 0.75 m and
at the base 2.5 m. The earth face of the wall makes an angle of 20° with the vertical.

Fig. 18.28

Determine the thrust on the wall and examine the safety of the wall for no tension, overturning
and sliding.

Given the weight of earth = 16 kN/m3, masonry = 20 kN/m3. Maximum pressure allowable on
soil 120 kPa; angle of repose of the soil = 30°; angle of friction between the soil and wall = 20°
and angle of surcharge = 10°.

SOLUTION. Given: Height of wall (h) = 4 m ;  Angle of surcharge (α) = 10° ;  Top width (a) = 0.75
m; Bottom width (b) = 2.5 m ;  Angle of AD with vertical (θ) = 20° ;  Weight of earth (w) = 16 kN/m3;
Weight of masonry (ρ) = 20 kN/m3 ;  Maximum allowable pressure (σmax) = 120 kPa = 120 kN/m2 ;
Angle of repose (φ) = 30° and angle of friction (δ) = 20°.

Check for tension
We know that active earth pressure on the wall per metre length,

P =
22

2
2

cos ( )
2 sin ( ) sin ( )

cos cos ( ) 1
cos ( ) cos ( )

wh φ − θ×
⎡ ⎤δ + φ φ − αθ δ + θ +⎢ ⎥δ + θ θ − α⎣ ⎦

=
2 2

2
2

16 (4) cos (30 20 )
2 sin 50 sin 20

cos 20 cos 40 1
cos 40 cos 10

× ° − °×
⎡ ⎤° × °° ° +⎢ ⎥° × °⎣ ⎦

=
2

2
2 0.766

cos 10
128

0.766 0.342
(0.9397) 1

0.766 0.9848
×

°×
⎡ ⎤×+⎢ ⎥×⎣ ⎦

=
2

2 2
(0.9848)

128 72.7 kN
(0.9397) 0.766 (1.5893)

× =
× ×

∴ Horizontal component of the pressure,

PH = P cos θ = 72.7 cos 10° = 72.7 × 0.9848 = 71.6 kN
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and vertical component of the pressure,
PV = P sin θ = 72.7 sin 10° = 772.7 × 0.1736 = 12.6 kN

We also know that the weight of the wall per metre length

= Weight of wall ABCD +  Weight of wedge ADE of earth

=
(0.75 2.5) 1.4620 4 16 4

2 2
+⎡ ⎤ ⎡ ⎤× × + × ×⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

= 130 + 46.7 = 176.7  kN

Therefore total downward weight of the wall per metre length,
W = 12.6 + 176.7 = 189.3 kN

Now let us find out the centre of gravity of the wall section. Taking moments of the wall section
about A, and equating the same,

W  × AJ =
1.46 4 1.46 4 1.46 21.4616 20

2 3 2 3
× × ×⎡ ⎤ ⎡ ⎤× × + × ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ 
0.29 40.75 0.2920 0.75 4 1.46 20 2.21

2 2 2
×⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞× × + + × +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

189.3 × AJ = 216.9

AJ =
216.9

1.14 m
189.3

=

We know that horizontal distance between the centre of gravity of the wall section and the point,
where the resultant cut the base (i.e., distance JK),

x =
71.6 0.5 m

3 189.3
HP h

W
× = =

Horizontal distance AK, d = AJ + x = 1.14 + 0.5 = 1.64 m
Since the resultant force lies at a point, which is at a distance of 2/3 from A, therefore the wall is

safe against the tension in its masonry at the base.        Ans.
Check for overturning

Since the resultant force lies within the base AB as obtained above, therefore the wall is safe
against overturning also.        Ans.

Fig. 18.29
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Check for sliding of the wall
Let coefficient of friction, (μ) = 0.6

We know that the frictional force at the base

= μW = 0.6 × 189.3 = 113.6 kN
Since the frictional force is more than the horizontal component of the pressure, therefore the

wall is safe against sliding.       Ans.
Check for maximum stress at the base

We know that eccentricity of the resultant,

e = 2.51.64 0.39 m
2 2
bd − = − =

∴ Maximum stress at the base

σmax = 26 0.396 189.31 1 kN/m
2.5 2.5

W e
b b

×⎛ ⎞⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 146.6 kN/m2 = 146.6 kPa
Since the maximum stress is more than the permissible stress (120 kN/m2), therefore the wall is

not safe against maximum stress at the base.        Ans.

EXERCISE 18.2

1. A trapezoidal masonry retaining wall 1 m wide at top, 3 m wide at its bottom is 8 m high. It is
retaining earth having level with the top of the wall on its vertical face. Find the maximum and
minimum intensities of stress at the base of the wall, if the weight of masonry and earth is 24
kN/m3 and 18 kN/m3. Angle of repose of the earth is 40° [Ans. 244 kPa ;  12 kPa]

2. A trapezoidal masonry retaining wall 1 m wide at top, 3 m wide at its bottom is 6 m high. The
vertical face is retaining earth with angle of repose 30° at surcharge of 20° with the horizontal.
Determine the maximum and minimum intensities of stress at the base of the dam. Take the
densities of earth and masonry as 20 kN/m3 and 24 kN/m3. [Ans. 169.5 kPa ;  56.9 kPa]

3. A masonry wall 8 m high and 3 m wide contains water for a height of 7 m. Check the stability of
the wall, if the coefficient of friction between the wall and the soil is 0.55. Take weight of
masonry as 22.2 kN/m3.

[Ans. 1. The wall shall fail due to tension. 2. Safe for overturning. 3. Safe against sliding]

QUESTIONS

1. What do you understand by the term dam? Name the various types of dams commonly used
these days.

2. Derive an equation for the maximum and minimum intensities of stress at the base of a trapezoidal
dam.

3. Name the various conditions for the stability of a dam. Describe any two of them.
4. How will you find out the (i) minimum base width and (ii) maximum height of a dam?

5. What is a retaining wall? Discuss its uses.

6. Explain what do you understand by active and passive earth pressures of soil?
7. What are the assumptions made in Rankine’s theory for calculating the magnitude of earth

pressure behind retaining walls.

8. State and explain Rankine’s theory of earth pressure.
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OBJECTIVE TYPE QUESTIONS

1. The water pressure per metre length on a vertical wall is

(a) wh (b)
2

wh
(c)

2

2
wh (d)

2

4
wh

where w = Specific weight of water and h = Height of the water

2. The maximum and minimum stress intensities at the base of a dam containing water are

(a)
61w e

b b
⎛ ⎞+⎜ ⎟
⎝ ⎠

 and 
61w e

b b
⎛ ⎞−⎜ ⎟
⎝ ⎠

(b) 61
2
w e
b b
⎛ ⎞+⎜ ⎟
⎝ ⎠

 and 
61

2
W e

b b
⎛ ⎞−⎜ ⎟
⎝ ⎠

(c)
2 61W e
b b

⎛ ⎞+⎜ ⎟
⎝ ⎠

 and 2 61W e
b b

⎛ ⎞−⎜ ⎟
⎝ ⎠

(d)
3 61
2
W e
b b
⎛ ⎞+⎜ ⎟
⎝ ⎠

 and  
3 61
2
W e
b b
⎛ ⎞−⎜ ⎟
⎝ ⎠

3. The stability of a dam is checked for
(a) tension at the base (b) overturning of the dam

(c) sliding of the dam (d) all of these

4.  Total pressure per unit length of a retaining wall is given by

(a)
1 sin

2 1 sin
wh − φ×

+ φ (b)
2 1 sin

2 1 sin
wh − φ×

+ φ (c)
1 sin

2 1 sin
wh + φ×

− φ (d)
2 1 sin

2 1 sin
wh + φ×

− φ

ANSWERS

1. (c) 2. (a) 3. (d) 4. (b)
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Deflection.

11. Beams of Composite Section.

19.1. Introduction
We see that whenever a cantilever or a beam

is loaded, it deflects from its original position. The
amount, by which a beam deflects, depends upon
its cross-section and the bending moment. In
modern design offices, following are the two
design criteria for the deflection of a cantilever or
a beam:

1. Strength 2. Stiffness.
As per the strength criterion of the beam

design, it should be strong enough to resist bending
moment and shear force. Or in other words, the
beam should be strong enough to resist the bending
stresses and shear stresses. And as per the stiffness
criterion of the beam design, which is equally
important, it should be stiff enough to resist the
deflection of the beam. Or in other words, the beam

19C h a p t e r
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should be stiff enough not to deflect more than the permissible limit* under the action of the loading.
In actual practice, some specifications are always laid to limit the maximum deflection of a cantilever
or a beam to a small fraction of its span.

In this chapter, we shall discuss the slope and deflection of the centre line of beams under the
different types of loadings.

19.2. Curvature of the Bending Beam
Consider a beam AB subjected to a bending moment. As a result of loading, let the beam deflect

from ABC to ADB into a circular arc as shown in Fig. 19.1.

Let l = Length of the beam  AB,
M = Bending moment,

R = Radius of curvature of the bent up beam,

I = Moment of inertia of the beam section,
E = Modulus of elasticity of beam material,

y = Deflection of the beam (i.e., CD) and

i = Slope of the beam (i.e angle which the
tangent at A makes with AB).

From the geometry of a circle, we know that

AC × CB = EC × CD

or
1 1
2 2

× = (2R – y) × y

∴
2

4
l

= 2Ry – y2 = 2Ry

...(Neglecting y2)

or y =
2

8
l
R

...(i)

We have already discussed in Art. 14.6 that for a loaded beam,

M
I

=
E
R

          or          R   =  
EI
M

Now substituting this value of R in equation (i),

y =
2

8

l
EI
M

×
 = 

2

8
El

EI

From the geometry of the figure, we find that the slope of the beam i at A or B is also equal to
angle AOC.

∴ sin i =
AC
OA

 = 2
l
R

Since the angle i is very small, therefore, sin i may be taken equal to i (in radians).

∴ i =
2
l
R

 radians ...(ii)

Again substituting the value of R in equation (ii),

i =
2 22

= =
×

l l Ml
EIR El
M

 radians ...(iii)

* As per Indian Standard Specifications, this limit is Span/325.

Fig. 19.1. Curvature of the beam.
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NOTES: 1. The above equations for deflection (y) and slope (i) have been derived from the bending moment
only i.e., the effect of shear force has been neglected. This is due to the reason that the effect of shear
force is extremely small as compared to the effect of bending moment.

2. In actual practice the beams bend into an arc of a circle only in a few cases. A little consideration will
show that a beam will bend to an arc of a circle only if (i) the beam is of uniform section and (ii) the
beam is subjected to a constant moment throughout its length or the beam is of uniform strength.

19.3. Relation between Slope, Deflection and Radius of Curvature
Consider a small portion PQ of a beam, bent into an arc as shown in Fig. 19.2.
Let ds = Length of the beam PQ,

R = Radius of the arc, into which the beam has been bent,

C = Centre of the arc,
Ψ = Angle, which the tangent at P makes with x-x axis and

Ψ + dΨ = Angle which the tangent at Q makes with x-x axis.

From the geometry of the figure, we find that

∠PCQ = dΨ
and ds = R . dΨ

∴ R = =
Ψ Ψ

ds dx
d d

... (Considering ds = dx)

Fig. 19.2. Beam bent into an arc.

or
1
R

=
Ψd

dx
...(i)

We know that if x and y be the co-ordinates of point P, then

tan Ψ =
dy
dx

Since Ψ is a very small angle, therefore taking tan Ψ = Ψ,

∴ Ψd
dx

=
2

2

d y

dx
...

1

d

Ψ⎛ ⎞=⎜ ⎟⎝ ⎠
∵

d

R x
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We also know that

M
I

=
E
R

    or    M   =   EI × I
R

∴ M = EI × 
2

2

d y

dx
... 1Substituting value of

R
⎛ ⎞
⎜ ⎟
⎝ ⎠

NOTE. The above equation is also based only on the bending moment. The effect of shear force, being very small
as compared to the bending moment, is neglected.

19.4. Methods for Slope and Deflection at a Section
Though there are many methods to find out the slope and deflection at a section in a loaded

beam, yet the following two methods are important from the subject point of view:

1. Double integration method.

2. Macaulay’s method.
It will be interesting to know that the first method is suitable for a single load, whereas the second

method is suitable for several loads.

19.5. Double Integration Method for Slope and Deflection
We have already discussed in Art. 19.3 that the bending moment at a point,

M =
2

2

d y
EI

dx
Integrating the above equation,

dy
EI

dx
= M∫ ... (i)

and integrating the above equation once again,

EI . y = M∫∫ ... (ii)

It is thus obvious that after first integration the original differential equation, we get the value of
slope at any point. On further integrating, we get the value of deflection at any point.
NOTE. While integrating twice the original differential equation, we will get two constants C1 and C2. The values

of these constants may be found out by using the end conditions.

19.6. Simply Supported Beam with a Central Point Load

Fig. 19.3. Simply supported beam with a central point load.

Consider a simply supported beam AB of length l and carrying a point load W at the centre of
beam C as shown in Fig. 19.3. From the geometry of the figure, we find that the reaction at A,

RA = RB = 
2

W
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Consider a section X at a distance x from B. We know that the bending moment at this section,

MX = RB . x = 
2 2

W Wxx = ... (Plus sign due to sagging)

∴
2

2

d y
EI

dx
=

2
Wx

...(i)

Integrating the above equation,

dy
EI

dx
=

2

14
Wx C+ ...(ii)

where C1 is the first constant of integration. We know that when x = 
2
l , then 0

dy
dx

= . Substituting

these values in equation (ii),

0 =
2

116
Wl C+          or       C1   =   – 

2

16
Wl

Substituting this value of C1 in equation (ii),

dy
El

dx
=

2 2

4 16
Wx Wl− ...(iii)

This is the required equation for the slope, at any section. It will be interesting to know that the
maximum slope occurs at A and B. Thus for maximum slope at B, substituting x = 0 in equation (iii),

El . iB = – 
2

16
Wl

∴ iB = – 
2

16
Wl

El

or iB =
2

16
Wl

El
 radians

By symmetry, iA =
2

16
Wl

El
 radians

Integrating the equation (iii) once again,

∴ E I.y =
3 2

212 16
Wx Wl x C− + ...(iv)

where C2 is the second constant of integration. We know that when x = 0, then y = 0, Substituting these
values in equation (iv), we get C2 = 0.

∴ E I.y =
3 2

12 16
Wx Wl x− ...(v)

This is the required equation for the deflection, at any section. A little consideration will show

that maximum deflection occurs at the mid-point C. Thus for maximum deflection, substituting x = 
2
l

in equation (v),

EIyC =
3 2

12 2 16 2
W l Wl l⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=
3 3 3

96 32 48
Wl Wl Wl− = −

or yC = – 
3

48
Wl

EI

=
3

48
Wl

EI

...(Minus sign means that the tangent
   at B makes an angle with AB in the
     negative or anticlockwise direction)

... (Minus sign means that the
deflection is downwards)
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EXAMPLE 19.1. A simply supported beam of span 3 m is subjected to a central load of 10 kN.
Find the maximum slope and deflection of the beam. Take I = 12 × 106 mm4 and E = 200 GPa.

SOLUTION. Given: Span (l) = 3 m = 3 × 103 mm ;  Central load (W) = 10 kN = 10 × 103 N ;
Moment of inertia (I) = 12 × 106 mm4 and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Maximum slope of the beam

We know that maximum slope of the beam,

iA =
3 3 22

3 6

(10 10 ) (3 10 )
16 16 (200 10 ) (12 10 )

× × ×=
× × × ×

Wl
EI

 = 0.0023  rad        Ans.

Maximum deflection of the beam

We also know that maximum deflection of the beam,

yC =
3 3 33

3 6

(10 10 ) (3 10 )
48 48 (200 10 ) (12 10 )

× × ×=
× × × ×

Wl
EI  = 2.3  mm          Ans.

EXAMPLE 19.2.  A wooden beam 140 mm wide and 240 mm deep has a span of 4 m. Determine
the load, that can be placed at its centre to cause the beam a deflection of 10 mm. Take E as
6 GPa.

SOLUTION. Given: Width (b) = 140 mm ;  Depth (d) = 240 mm ;  Span (l) = 4 m = 4 × 103 mm ;
Central deflection (yC) = 10 mm and modulus of elasticity (E) = 6 GPa = 6 × 103 N/mm2.

Let W = Magnitude of the load,

We know that moment of inertia of the beam section,

I =
33

6 4140 (240)
161.3 10 mm

12 12
bd ×= = ×

and deflection of the beam at its centre (yC),

10 =

3 33

3 6

(4 10 )
48 48 (6 10 ) (161.3 10 )

× ×=
× × × ×

WWl
EI

∴ W = 3
10

1.38 10−×
 = 7.25 × 103 N =  7.25 kN  Ans.

19.7. Simply Supported Beam with an Eccentric Point Load

Fig. 19.4. Section X in CB.

Consider a simply supported beam AB of length l and carrying an eccentric point load W at C as
shown in Fig. 19.4. From the geometry of the figure, we find that the reaction at A,

RA =
Wb

l
    and    RB  =  

Wa
l
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Now consider a section X in CB at a distance x from B, such that x is less than b (i.e., x < b). We
know that the bending moment at this section,

MX = RB · x  =  
Wax

l
...(Plus sign due to saging)

∴ E l. 
2

2

d y

dx
=

Wax
l

Integrating the above equation,

.
dy

E l
dx

=
2

12
Wax C

l
+ ...(i)

where C1 is the first constant of integration. We know that at C, x = b and C
dy

i
dx

= .

∴ E liC =
2

12
Wab C

l
+

or C1 = (El · iC) – 
2

2
Wab

l
Substituting this value of C1 in equation (i),

dy
El

dx
=

2 2

( · )
2 2C

Wax WabEl i
l l

+ − ...(ii)

Integrating the above equation once again,

El . y =
3 2

2( · · )
6 2C

Wax Wab xEl i x C
l l

+ − + ...(iii)

where C2is the second constant of integration. We know that when x = 0, then y = 0. Substituting these
values in equation (iii), we get C2= 0.

∴ El . y =
3 2

( · )
6 2C

Wax Wab xEl i x
l l

+ − ...(iv)

The equations (ii) and (iv) are the required equations for slope and deflection at any point in the
section AC. A little consideration will show that these equations are useful, only if the value of iC is known.

Fig. 19.5. Section X in AC.

Now consider a section X in AC, at a distance x from B such that x is greater than b (i.e., x > b) as
shown in Fig. 19.5. We know that bending moment at this section,

MX = ( )Wax W x b
l

− −

∴
2

2

d y
El

dx
= ( )Wax W x b

l
− − ...(v)

Integrating the above equation,

·
dy

El
dx

=
22

3
( )

2 2
W x bWax C

l
−− + ...(vi)
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where C3 is the third constant of integration. We know that at C, x = b and C
dy

i
dx

= .

∴ EI · iC =
2

32
Wab C

l
+

or C3 = (EI · iC) – 
2

2
Wab

l
Substituting this value of C3 in equation (vi),

·
dy

EI
dx

=
22 2( )

( . )
2 2 2C

W x bWax WabEI i
l l

−− + − ...(vii)

Integrating the above equation once again,

EI · y =
33 2

4
( )

( · )
6 6 2

−− + − +C
W x bWax Wab

EI i x x C
l l

...(viii)

where C4 is the fourth constant of integration. We know that when x = l, then y = 0. Substituting these
values in the above equation,

0 =
2 3 2

4( · · )
6 6 2 C

Wal Wa Wab EI l Ci− − + +

C4 =
2 3 2

( · ) ·
2 6 6

+ − − C
Wab Wa Wal EI i l ... [∵   (x – b) = a]

∴ =
2

2 2( ) ( · · )
2 6 C

Wab Wa a l EI i l+ − −

=
2

[( ) ( )] ( · · )
2 6 C

Wab Wa l a l a EI i l+ + − −

... [∵   l2 – a2 = (l + a) (l – ay)]

=
2

( ) ( · · )
2 6 C

Wab Wab l a EI i l− + − [∵   (l – a) = b]

= [3 ( )] ( · · )
6

− + − C
Wab b l a EI i l

= [3 ( )] ( · )
6 C

Wab b a b a EI li− + + − (∵   l = a + b)

= (2 2 ) ( · · )
6 C

Wab b a EI i l− −

= ( ) ( · · )
3 C

Wab b a EI i l− −

Substituting this value of C4 in equation (viii),

EI . y =
33 2( )

( · · )
6 6 2C

W x bWax Wab xEI i x
l l

−− + −

    ( ) ( · · )
3 C

Wab b a EI i l+ − − ...(ix)

The equations (vii) and (ix) are the required equations for the slope and deflection at any point in
the section AC. A little consideration will show that these equations are useful, only if the value of iC
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is known. Now to obtain the value of iC, let us first find out the deflection at C from the equations for
sections AC and CB.

Now substituting x = b in equation (iv) and equating the same with equation (ix),

3 3

( · · )
6 2C

Wab WabEI i b
l l

+ − =
33 3( )

( · · )
6 6 2

−− + −C
W b bWab Wab

EI i b
l l

( ) ( · · )
3 C

Wab b a EI i l+ − −

∴ EI . iC = ( )
3

Wab b a
l

−

Substituting the value of EI . iC in equation (ii)

dy
EI

dx
=

2 2

( )
2 3 2

Wax Wab Wabb a
l l l

+ − −

=
2 2[3 2 ( ) 3 ]

6
Wa x b b a b

l
+ − −

= 2 2(3 2 )
6

Wa x b ab
l

+ −

This is required equation for slope at any section in BC. We know that the slope is maximum at
B. Thus for maximum slope, substituting x = 0 in equation (x),

EI . iB =
2( 2 )

6
Wa b ab

l
− −

=
2( 2 )

6
Wa b ab

l
− + ...(Taking minus sign outside)

= ( 2 )
6

Wab b a
l

− +

= ( ) ( )
6

Wa l a l a
l

− − + ...(∵   a = l – b and a + b = l)

= 2 2( )
6

− −Wa
l a

l

or iB = –
2 2( )

6
Wa l a
EIl

−

=
2 2( )

6
Wa l a
EIl

−

Similarly, iA =
2 2( )

6
Wb l b
EIl

− ...(Substituting b for a)

For deflection at any point in AC, substituting the value of EI . iC in equation (iv),

EI · y =
3 2

( )
6 3 2

Wax Wab Wab xb a x
l l l

+ − −

=
2 2[ 2 ( ) 3 ]

6
Wax x b b a b

l
+ − −

=
2 2 2( 2 2 3 )

6
Wax x b ab b

l
+ − −

[Minus sign means that the tangent
at B, makes an angle with AB in the
negative or anticlockwise direction.]
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=
2 2( 2 )

6
Wax x b ab

l
− −

= 2[ ( 2 ) ]
6

Wax b b a x
l

− + −

=
2[( ) ]

6
Wax l a x

l
− − − ...(∵   b = l – a and a + b = l)

= 2 2 2[ ]
6

Wax l a x
l

− − −

or y =
2 2 2[ ]

6
Wax l a x
lEI

− − −

=
2 2 2( )

6
Wax l a x

EIl
− − − ...(xi)

For deflection at C (i.e., under the load) substituting x = b in the above equation,

yC =
2 2 2( )

6
Wab l a b

EIl
− − − ...(xii)

We know that maximum deflection will occur in CB since b > a. Now for maximum deflection,

let us substitute 0
dy

dx
= . Therefore equating the equation (x) to zero,

2 2(3 2 )
6

Wa x b ab
l

− − = 0

or 3x2 – b (b + 2a) = 0
3x2 – (l – a) (l + a) = 0 ...(∵   b = l – a and a + b = l)

3x2 – (l2 – a2) = 0
3x2 = l2 – a2

∴ x =
2 2

3
l a−

For maximum deflection, substituting this value of x in equation (xi),

ymax =
2 2 2 2

2 2

6 3 3
l a l aWa l a

EIl

⎡ ⎤⎛ ⎞− −× − −⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 =
2 2

2 22
( )

6 3 3
l aWa

l a
EIl

− ⎡ ⎤× −⎢ ⎥⎣ ⎦

ymax 2 2 3/ 2( )
9 3 ·

Wa
l a

EIl
= −

EXAMPLE 19.3. A beam of uniform section of span l is simply supported at its ends. It is
carrying a point load of W at a distance of l/3 from one end. Find the deflection of the beam
under the load.

SOLUTION. Given: Span = l ;  Point load = W and distance between the point load and left end (a)
= l/3 or distance between point load and right end (b) = l – l/3 = 2l/3.

We know that deflection under the load

=
2 2

2 2 2 2

2
23 3( )

6 6 3 3

l lWWab l ll a b l
EIl EIl

× × ⎡ ⎤⎛ ⎞ ⎛ ⎞− − = × − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

= 0.0165 
3Wl

EI
        Ans.

... (Minus sign means that the
deflection is downwards)
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EXAMPLE 19.4.  A steel joist, simply supported over a span of 6 m carries a point load of
50 kN at 1.2 m from the left hand support. Find the position and magnitude of the maximum
deflection. Take EI = 14 × 1012 N-mm2.

SOLUTION. Given: Span (l) = 6 m = 6 × 103 mm ;  Point load = (W) = 50 kN = 50 × 103 N ;
Distance between point load and left end (a) = 1.2 m = 1.2 × 103 mm and flexural rigidity (EI) =
14 × 1012 N-mm2.
Position of the maximum deflection

We know that position of the maximum deflection (or distance between the point of maximum
deflection and left hand support),

x =
2 2 3 3 2(6 10 ) (1.2 10 )

3 3
l a− × − ×=  mm

= 3.39 × 103 mm = 3.39 m        Ans.
Magnitude of the maximum deflection

We also know that magnitude of the maximum deflection,

ymax = 2 2 3/ 2( )
9 3 ·

Wa l a
EIl

−

=
3 3

12 3

(50 10 ) (1.2 10 )

9 3 (14 10 ) (6 10 )

× × ×
× × × ×

× [(6 × 103)2 – (1.2 × 103)2]3/2 mm

= (0.0458 × 10–9) × (2.052 × 1011) = 9.4  mm        Ans.

EXAMPLE 19.5. A simply supported beam AB of span 5 metres is carrying a point load of 30
kN at a distance 3.75 m from the left end A. Calculate the slopes at A and B and deflection under
the load. Take EI = 26 × 1012 N-mm2.

SOLUTION. Given: Span (l) = 5 m = 5 × 103 mm ;  Point load (W) = 30 kN = 30 × 103 N ;  Distance
between point load and left end (a) = 3.75 m = 3.75 × 103 mm ; Distance between point load and right
end (b) = 5 – 3.75 = 1.25 m = 1.25 × 103 mm and flexural rigidity (EI) = 26 × 1012  N-mm2.

Slope at A
We know that slope at A,

iA = 2 2( )
6
Wb l b
EIl

−

=
3 3

3 2 3 2
12 3

(30 10 ) (1.25 10 )
[(5 10 ) (1.25 10 )

6 (26 10 ) (5 10 )

× × × × × − ×
× × ×

  rad

= (0.0481 × 10–9) × (23.4375 × 106) = 0.00113  rad        Ans.
Slope at B

We also know that slope at B,

iB = 2 2( )
6

−Wa
l a

EIl

=
3 3

3 2 3 2
12 3

(30 10 ) (3.75 10 )
[(5 10 ) (3.75 10 ) ]

6 (26 10 ) (5 10 )

× × × × × − ×
× × ×

= (0.1442 × 10–9) × (10.9375 × 106) = 0.00158  rad        Ans.
Deflection under the load

We also know that deflection under the load,

yC = 2 2 2( )
6
Wb l a b
EIl

− −
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=
3 3 3

12 3

(30 10 ) (3.75 10 ) (1.25 10 )

6 (26 10 ) (5 10 )

× × × × ×
× × ×

× [(15 × 103)2 – (3.75 × 103)2 – (1.25 × 103)2]  mm

= (0.18 × 10–6) × (9.375 × 106) = 1.69 mm        Ans.

19.8. Simply Supported Beam with a Uniformly Distributed Load

Fig. 19.6. Uniformly distributed load.

Consider a simply supported beam  of length  and carrying a uniformly distributed load of  per
unit length as shown in Fig. 19.6. From the geometry of the figure, we know that the reaction at A,

RA = RB = 
2

wl

Consider a section X at a distance x from B. We know that the bending moment at this section,

MX =
2

2 2
wlx wx− ...(Plus sign due to sagging)

∴
2

2

d y
EI

dx
=

2

2 2
wlx wx− ...(i)

Integrating the above equation,

dy
EI

dx
=

2 2

14 6
wlx wx C− + ...(ii)

where C1 is the first constant of integration. We know when x = 
2
l , then 0

dy
dx

=

Substituting these values in the above equation,

0 =
2 3 3 3

14 2 6 2 16 48
wl l w l wl wlC⎛ ⎞ ⎛ ⎞− + = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
+ C1

or C1 =
3

24
wl−

Substituting this value of C1 in equation (ii),

∴
dy

EI
dx

=
2 3 3

4 6 24
wlx wx wl− − + C1 ...(iii)

This is the required equation for the slope at any section. We know that maximum slope occurs at
A and B. Thus for maximum slope, substituting x = 0 in equation (iii),

EI · iB = –
3

24
wl

∴ iB =
3

24
wl

EI
−

... (Minus sign means that the tangent at
     A makes an angle with AB in the
    negative or anticlockwise direction)
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or iB =
3

24
wl

EI

By symmetry, iA =
3

24
wl

EI
Integrating the equation (iii) once again,

EI · y =
3 4 3

212 24 24
wlx wx wl x C− − + ...(iv)

where C2 is the second constant of integration. We know when x = 0, then y = 0. Substituting these
values in equation (iv), we get C2 = 0

∴ EI · y =
3 4 3

12 24 24
wlx wx wl x− − ...(v)

This is the required equation for the deflection at any section. We know that maximum
deflection occurs at the mid-point C. Thus maximum deflection, substituting x = l/2 in equation (v),

EI · yC =
3 4 3 4 4 4 45

12 2 24 2 24 2 96 384 48 384
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − = − − = −
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

wl l w l wl l wl wl wl wl

or yC =
45

384
wl

EI
−

=
45

384
wl

EI
NOTE. The above expression for slope and deflection may also be expressed in terms of total load. Such that

W = wl.

∴ iB = iA = 
3 2

24 24
wl wl

EI EI
=

and yC =
35

384
wl

EI

EXAMPLE 19.6.  A simply supported beam of span 4 m is carrying a uniformly distributed
load of 2 kN/m over the entire span. Find the maximum slope and deflection of the beam. Take EI
for the beam as 80 × 109 N-mm2.

SOLUTION. Given: Span (l) = 4 m = 4 × 103 mm ;  Uniformly distributed load (w) = 2 kN/m =
2 N/mm and flexural rigidity (E) = 80 × 109 N-mm2.

Maximum slope of the beam

We know that maximum slope of the beam,

iA =
3 33

9

2 (4 10 )
24 34 (80 10 )

wl
EI

× ×=
× ×

 = 0.067  rad        Ans.

Maximum deflection of the beam
We also know that maximum deflection of the beam,

yC =
3 44

9

5 2 (4 10 )5
384 384 (80 10 )

wl
EI

× × ×=
× ×

 = 83.3  mm        Ans.

...(Minus sign means that the
deflection is downwards)
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EXAMPLE 19.7.  A simply supported beam of span 6 m is subjected to a uniformly distributed
load over the entire span. If the deflection at the centre of the beam is not to exceed 4 mm, find the
value of the load. Take E = 200 GPa and I = 300 × 106 mm4.

SOLUTION. Given: Span (l) = 6 m = 6 × 103 mm ;  Deflection at the centre (yC) = 4 mm ;  modulus
of elasticity (E) = 200 GPa = 200 × 103 N/mm2 and moment of inertia (I) = 300 × 106 mm4.

Let w = Value of uniformly distributed load in N/mm or kN/m.
We know that deflection at the centre of the beam (yC),

4 =
3 44

3 6

5 (6 10 )5 0.281
384 384 (200 10 ) (300 10 )

wwl w
EI

× × ×= =
× × × ×

∴ w =
4

0.281
 = 14.2 kN/m        Ans.

EXAMPLE 19.8. A timber beam of rectangular section has a span of 4.8 metres and is
simply supported at its ends. It is required to carry a total load of 45 kN uniformly distributed
over the whole span. Find the values of the breadth (b) and depth (d) of the beam, if maximum
bending stress is not to exceed 7 MPa and maximum deflection is limited to 9.5 mm. Take E for
timber as 10.5 GPa.

SOLUTION. Given: Span (l) = 4.8 m = 4.8 × 103 mm ;  Total load (W) = (wl) = 45 kN = 45 ×103 N;
Maximum bending stress σb (max) = 7 MPa = 7 N/mm2 ;  Maximum deflection (yC) = 9.5 mm and
modulus of elasticity (E) = 10.5 GPa = 10.5 × 103 N/mm2.

Let b = Breadth of the beam and

d = Depth of the beam.
We know that in a simply supported beam, carrying a uniformly distributed load, the maximum

bending moment,

M =
2 45 4.8

8 8 8 8
× × ×= = =wl l W lwl

= 27 kN-m = 27 × 106 N-mm

and moment of inertia of a rectangular section,

I =
3

12
bd

We also know that distance between the neutral axis of the section and extreme fibre,

y =
2
d

∴ Maximum bending stress [σb (max)],

7 =
6 6

3 2

27 10 162 10
2

12

M dy
I bd bd

× ×× = × =

or bd2 =
6

6162 10
23.14 10

7
× = ×

We know that maximum deflection (yC),

9.5 =
3 3 3 3 94

3 3
3

5 ( ) 5 (45 10 ) (4.8 10 ) 74.1 105
384 384

384 (10.5 10 )
12

wl lwl
EI EI bd bd

× × × ×= = =
× × ×
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∴ bd3 =
9

974.1 10
7.8 10

9.5
× = ×

Dividing equation (ii) by equation (i),

d =
9

6

7.8 10

23.14 10

×
×

 = 337  mm        Ans.

Substituting this value of d in equation (i),
b × (337)2 = 23.14 × 106

∴ b =
6

2

23.14 10

(337)

×
 = 204  mm        Ans.

19.9. Simply Supported Beam with a Gradually Varying Load

Fig. 19.7

Consider a simply supported beam AB of length l and carrying a gradually varying load from
zero at B to w per unit length at A as shown in Fig. 19.7. From the geometry of the figure, we find that
the reaction at A,

RA =
3
wl

          and          RB  =  
6
wl

Now consider a section X at a distance x from B. We know that the bending moment at this
section,

MX =
3

·
2 3 6 6B

wx x x wlx wxR x
l l

⎛ ⎞− × × = −⎜ ⎟
⎝ ⎠

∴
2

2

d y
EI

dx
=

3

6 6
wlx wx

l
− ...(i)

Integrating the above equation,

dy
EI

dx
=

2 4

112 24
wlx wx C

l
− + ...(ii)

where C1 is the first constant of integration. Integrating the equation (ii) once again,

EI · y =
3 5

1 236 120
wlx wx C x C

l
− + + ...(iii)

where C2 is the second constant of integration. We know that when x = 0, then y = 0. Therefore C2 =
0. We also know that when x = l, then y = 0. Substituting these values in equation (iii),

0 =
4 4

3 5
1 136 120 36 120

× − × + = − +wl w wl wll l C l C l
l

∴ C1 =
3 3 37

36 120 360
wl wl wl+ = −
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Now substituting this value of C1 in equation (ii),

dy
EI

dx
=

2 4 37
12 23 360

wlx wx wl
l

− − ...(iv)

This is the required equation for slope at any section, by which we can get the slope at any section
on the beam. A little consideration will show that the maximum slope will be either at the support A or
B. Thus for slope at A, substituting x = l in equation (iv),

EI · iA =
3 3

2 4 7
12 24 360 45
wl w wl wll l

l
× − × − =

∴ iA =
3

45
wl

EI
Now for slope at B, substituting x = 0 in equation (iv),

EI · iB =
37

360
wl−

∴ iB =
37

360
wl

EI
−

=
37

360
wl

EI
−   radians

Now substituting the value of C1 in equation (iii),

EI · y =
3 5 37

36 120 360
wlx wx wl x

l
− − −

∴ y =
3 5 31 7

36 120 360
wlx wx wl x

EI l

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

This is the required equation for the deflection at any section, by which we can get deflection at
any section on the beam. For deflection at the centre of the beam, substituting x = l/2 in equation (v),

yC =
3 31 7

36 2 120 2 360 2

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎣ ⎦

wl l w l wl l
EI l

=
40.00651wl

EI
−

=
40.00651wl

EI
We know that the maximum deflection will occur, where slope of the beam is zero. Therefore

equating the equation (iv) to zero,
2 4 37

12 24 360
− −wlx wx wl

l
= 0

∴ x = 0.519 l

Now substituting this value of x in equation (v),

ymax =
3

3 51 7(0.519 ) (0.519 ) (0.519 )
36 120 360

⎡ ⎤
− −⎢ ⎥

⎣ ⎦

wl w wl
l l l

EI l

= –
40.006 52wl

EI

... (Minus sign means that the tangent
at B makes an angle with AB in the

negative or anticlockwise direction)

... (Minus sign means that the
deflection is downwards)

... (Minus sign means that the
deflection is downwards)
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EXAMPLE 19.9. A simply supported beam AB of span 4 metres is carrying a triangular load
varying from zero at A to 5 kN/m at B. Determine the maximum deflection of the beam. Take
rigidity of the beam as 1.25 × 1012N-mm2.

SOLUTION. Given: Span (l) = 4 m = 4 × 103 mm ;  Load at A = (w) = 5 kN/m = 5 N/mm and flexural
rigidity (EI) = 1.25 × 1012 N-mm2.

We know that maximum deflection of the beam

ymax =
4 3 4

12

0.006 52 0.006 52 5 (4 10 )

1.25 10

× × ×=
×

wl
EI

 = 6.68  mm        Ans.

EXERCISE 19.1

1. A simply supported beam of span 2.4 m is subjected to a central point load of 15 kN. What is
the maximum slope and deflection at the centre of the beam? Take EI for the beam as 6 × 1010

N-mm2. [Ans. 0.09 rad ;  72 mm]

2. A beam 3 m long, simply supported at its ends, is carrying a point load at its centre. If the slope at the
ends of the beam is not to exceed l°, find the deflection at the centre of the beam. [Ans. 17.5 mm]

Hint: yC =
3 2

48 16 3 3A
wl wl l li

EI EI
= × = × = 

3
31 3 10

0.0175 10 17.5 mm
180 3
× π ×× = × =

3. A rolled steel beam simply supported over a span of 6 m carries a point load of 40 kN at a
distance of 4 m from left end supports. What is the position of the maximum deflection of the
beam. Take E as 200 GPa and I = 70 × 106. [Ans. 2.58 m from the left end]

4. A simply supported beam of 3 m span is subjected to a point load of 40 kN at a distance of 1 m
from the left end. Determine the deflection of the beam under the load. Take EI for the beam as
12 × 109 N-mm2. [Ans. 1.5 mm]

5. A simply supported beam AB of span 4 m is subjected to a point load of 40 kN at a distance of
1 m from A. Determine the slopes at both the ends A and B. Take EI = 500 × 1012 N-mm2.

[Ans. 0.07 rad ;  0.05 rad]
6. A beam simply supported at its both ends carries a uniformly distributed load of 16 kN/m. If the

deflection of the beam at its centre is limited to 2.5 mm, find the span of the beam. Take EI for
the beam as 9 × 1012 N-mm2. [Ans. 3.22 m]

19.10. Macaulay’s Method* for Slope and Deflection
We have seen in the previous articles and examples that the problems of deflections in beams are

bit tedious and laburious, specially when the beam is carrying some point loads. Mr. W.H. Macaulay
devised a method, a continuous expression, for bending moment and integrating it in such a way, that
the constants of integration are valid for all sections of the beam ; even though the law of bending
moment varies from section to section. Now we shall discuss the application of Macaulay’s method
for finding out the slopes and deflection of a few types of beams:

NOTES. The following rules are observed while using Macaulay’s method:

1. Always take origin on the extreme left of the beam.

2. Take left clockwise moment as negative and left anticlockwise moment as positive.

3. While calculating the slopes and deflections, it is convenient to use the values first in terms of kN and
metres.

* This method was original proposed by Mr. A. Clebsch, which was further developed by Mr. W.H. Macaulay.
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(i) Simply supported beam with a central point load.
Consider a simply supported beam AB of length l and carrying a point load W at the centre of the

beam C as shown in Fig. 19.8.

Fig. 19.8

Take A as the origin. We know that bending moment at any point, in section AC at a distance x
from A,

MX =
2

W x−  ....(Minus sign due to left clockwise)

and the bending moment at any point in section CB and at a distance x from A,

MX =
1

2 2
W x W x⎛ ⎞− + −⎜ ⎟

⎝ ⎠
...(i)

Thus we can express the bending moment, for all the sections of the beam in a single equation,
i.e.,

MX =
1

2 2
W x W x⎛ ⎞− + −⎜ ⎟

⎝ ⎠

�

�

�

�

For any point in section AC, stop at the dotted line, and for any point in section CB add the
expression beyond the dotted line also.

Now re-writing the above equation,

2

2

d y
EI

dx
=

1
2 2

Wx W x⎛ ⎞− + −⎜ ⎟
⎝ ⎠

�

�

�

�

...(ii)

Integrating the above equation,

dy
EI

dx
=

2

1
1

4 2 2
Wx WC x⎛ ⎞− + + −⎜ ⎟

⎝ ⎠

�

�

�

�

...(iii)

It may be noted that the integration of 
2
l

x⎛ ⎞−⎜ ⎟
⎝ ⎠

 has been made as a whole and not for individual

terms for the expression. This is only due to this simple integration that the Macaulay’s method is
more effective. This type of integration is also justified as the constant of integration C1 is not only
valid for the section AC, but also for section CB.

Integrating the equation (iii) once again,

EI · y =
33

1 212 6 2
Wx W lC x C x⎛ ⎞− + + + −⎜ ⎟

⎝ ⎠

�

�

�

�

...(iv)
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It may again be noted that the integration of 
2

2
l

x⎛ ⎞−⎜ ⎟
⎝ ⎠

 has again been made as a whole and not for

individual terms. We know that when x = 0, then y = 0. Substituting these values in equation (iv), we
find C2 = 0. We also know that when x = l, then y = 0. Substituting these values of x and y and C2 = 0
in equation (iv),

0 =
33

112 6 2
Wl W lC l ⎛ ⎞− + + ⎜ ⎟

⎝ ⎠

∴ C1 l =
3 3 3 33

12 48 48 16
Wl Wl Wl Wl− − = =

or C1 =
2

16
Wl

Now substituting this value of C1 in equation (iii),

∴ dy
EI

dx
=

22 2

4 16 2 2
Wx Wl W lx⎛ ⎞+ + −⎜ ⎟

⎝ ⎠

�

�

�

�

This is the required equation for slope at any section. We know that maximum slope occurs at A
and B. Thus for maximum slope at A, substituting x = 0 in equation (v) upto the dotted line only,

EI · iA =
2

16
WL

∴ iA =
2

16
Wl

EI
...(As before)

By symmetry, iB =
2

16
Wl

EI
...(As before)

Substituting the value of C1 again in equations (iv) and C2 = 0,

EI · y =
33 2

12 16 6 2
Wx Wl x W lx⎛ ⎞− + + + −⎜ ⎟

⎝ ⎠

�

�

�

�

...(vi)

This is required equation for deflection at any section. We know that maximum deflection occurs
at C. Thus for maximum deflection, substituting x = l/2 in equation (vi) for the portion AC only
(remembering that C lies in AC),

EI · yC =
3 2 3

12 2 16 2 48
W l Wl l Wl⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

�

�

�

�

or yC =
3

48
Wl

EI
...(As before)

(ii) Simply supported beam with aneccentric point load.

Fig. 19.9
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Consider a simply supported beam AB of length l and carrying an eccentric point load W at C
such that AC = a and CB = b as shown in Fig. 19.9. Take A as the origin. The bending moment at any
point in section AC at a distance x from A,

MX = Wb x
l

− (Minus sign due to left clockwise)

Bending moment at any point in section CB at a distance x from A,

MX = ( )Wbx W x a
l

− + −
�

�

�

�

...(i)

or
2

2

d y
EI

dx
= ( )Wbx W x a

l
+ −

�

�

�

�

...(ii)

Integrating the above equation,

dy
EI

dx
=

22

1
( )

2 2
W x aWbx C

l
−− + +

�

�

�

�

...(iii)

Integrating the above equation once again,

EIy =
33

1 2
( )

6 6
W x aWbx C x C

l
−− + + +

�

�

�

�

....(iv)

We know that when x = 0, then y = 0. Substituting these values in equation (iv) upto the dotted
line only. Therefore C2 = 0. We also know that when x = l, then y = 0. Substituting these values again
in equation (iv) and C2 = 0.

EI · y =
3

3
1

( )
( )

6 6
W l aWb l C l

l
−− + +

�

�

�

�

=
2 3

16 6
Wbl WbC l− + +

�

�

�

�

...[∵   (l – a) = b]

∴ C1l =
2 3

2 2( )
6 6 6

Wbl Wb Wb l b+ = −

or C1 = 2 2( )
6

Wb l b
l

−

Now substituting this value of C1 in equation (iii),

dy
EI

dx
=

22
2 2 ( )

( )
2 6 2

−− + − +
�

�

�

�

W x aWbx Wb l b
l l ...(v)

This is the required equation for slope at any point. We know that slope is maximum at A or B.
Substituting x = 0 upto dotted line only (remembering that C lies in AC),

EI · iA = 2 2( )
6

Wb l b
l

−

or iA =
2 2( )

6
Wb l b
EIl

− ...(As before)

Similarly, iB = 2 2( )
6
Wa l a
EIl

−
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Substituting the value of C1 again in equation (iv) and C2 = 0,

EI · y =
33

2 2 ( )
( )

6 6 6
W x aWbx Wbx l b

l l
−− + − +

�

�

�

�

This is the required equation for deflection at any point. For deflection in AC, consider the
equation up to the dotted line only,

EI · y =
3

2 2 2 2 2( ) ( )
6 6 6

Wbx Wbx Wbxl b l b x
l l l

− + − = − −

∴ y =
2 2 2( )

6
Wbx l b x

EIl
− − ... (As before)

NOTE. The Macaulay’s method may also be used for cantilever beams or for beams subjected to some
moment.

EXAMPLE 19.10. A horizontal steel girder having uniform cross-section is 14 m long and is
simply supported at its ends. It carries two concentrated loads as shown in Fig. 19.10.

Fig. 19.10

Calculate the deflections of the beam under the loads C and D. Take E = 200 GPa and I =
160 × 106 mm4.

SOLUTION. Given: Span (l) = 14 m = 14 × 103 mm ;  Load at C (W1) = 12 kN = 12 × 103 N ;  Load
at D (W2) = 8 kN = 8 × 103 N ;  Modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2and moment
of inertia (I) = 160 × 106 mm4.

Taking moments about A and equating the same,

RB × 14 = (12 × 3) + (8 × 9.5) = 112

∴ RB =
112
14

 = 8 kN = 8 × 103 N

and RA = (12 + 8) – 8 = 12 kN = 12 × 103 N

Now taking A as the origin and using Macaulay’s method, the bending moment at any section X
at a distance x from A,

2

2

d y
EI

dx
= – (12 × 103) x + 

�

�

�

�

 (12 × 103) × [x – (3 × 103)]

+ (8 × 103) × [x – (9.5 × 103)]
Integrating the above equation,

dy
EI

dx
=

3 22
3 3

1
[ (3 10 )]

(12 10 ) (12 10 )
2 2

xxt C
− ×− + + × ×

�

�

�

�

3 2
3 [ (9.5 10 )]

(8 10 )
2

x − ×+ × ×
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= – (6 × 103) x2 + C1  
�

�

�

�

  + (6 × 103) × [x – (3 × 103)]2

  
�

�

�

�

  + (4 × 103) × [x – (9.5 × 103)] ...(i)

Integrating the above equation once again,

EI · y =
3 33

3 3
1 2

[ (3 10 )]
(6 10 ) (6 10 )

3 3
xx C x C

− ×− × × + + + × ×
�

�

�

�

 
�

�

�

�

3 3
3 [ (9.5 10 )]

(4 10 )
3

x − ×+ × ×

= (2 × 103) x3 + C1 x + C2  
�

�

�

�

  + (2 × 103) [x – (3 × 103)]3

3
3 34 10

( (9.5 10 )]
3

x
×+ × − ×

�

�

�

�

...(ii)

We know that when x = 0, then y = 0. Therefore C2 = 0. And when x = (14 × 103) mm, then y = 0.
Therefore

0 = – (2 × 103) × (14 × 103)3 + C1 × (14 × 103)

+ (2 × 103) × [(14 × 103) – (3 × 103)]3

    
3

3 3 34 10
[(14 10 ) (9.5 10 )]

3
×+ × × ×

= – (5488 × 1012) + (14 × 103) C1 + (2662 × 1012) + 121.5 × 1012

= – (2704.5 × 1012) + (14 × 103) C1

∴ C1 =
12

3

2704.5 10

14 10

×
×

 = 193.2 × 109

Substituting the value of C1 equal to 193.2 × 109 and C2 = 0 in equation (ii),

EIy = – 2 × 103 x3  + 193.2 × 109 x  

�

�

�

�

  + 2 × 103 [x – (3 × 103)]3

3
3 34 10

[ (9.5 10 )]
3

x
×+ × − ×

�

�

�

�

...(iii)

Now for deflection under the 12 kN load, substituting x = 3 m ( or 3 × 103 mm) in equation (iii)
up to the first dotted line only,

EIyC = – 2 × 103 × (3 × 103)3 + 193.2 × 109 × (3 × 103)
= – (54 × 1012) + (579.6 × 1012) = 525.6 × 1012

∴ yC =
12 12

3 6

525.6 10 525.6 10

(200 10 ) (160 10 )EI
× ×=

× × ×
 = 16.4  mm         Ans.
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Similarly, for deflection under the 8 kN load, substituting x = 9.5 m (or 9.5 × 103 mm) in equation
(iii) up to the second dotted line only,

EI yD = – 2 × 103 × (9.5 × 103)3 + 193.2 × 109 × (9.5 × 103)

+ 2 × 103 × [(9.5 × 103) – (3 × 103)]3

= – (1714.75 × 1012) + (1835.4 × 1012) + (549.25 × 1012)
= 669.9 × 1012

∴ yD =
12 12

3 6

669.9 10 669.9 10

(200 10 ) (160 10 )EI
× ×=

× × ×
 = 20.9  mm         Ans.

EXAMPLE 19.11. A horizontal beam AB is freely supported at A and B, 8 m apart and carries
a uniformly distributed load of 15 kN/m run (including its own weight). A clockwise moment of
160 kN-m is applied to the beam at a point C, 3 m from the left hand support A. Calculate the
slope of the beam at C, if EI = 40 × 103 kN-m2.

Fig. 19.11

SOLUTION. Given: Span (l) = 8 m ; Uniformly distributed load (w) = 15 kN/m ;  Moment at C (μ)
= 160 kN-m (clockwise) and flexural rigidity (EI) = 40 × 103 kN-m2.

Taking moments about A and equating the same,

RB × 8 = (15 × 8 × 4) + 160 = 640 kN-m

∴ RB = 640
8

 = 80 kN

and RA = (15 × 8) – 80 = 40 kN

Let iC = Slope at C.
Taking A as origin and using Macaulay’s method, the bending moment at any section X at a

distance x from A,

2

2

d y
EI

dx
= – 40x 15 160 ( 3)

2
xx x+ × − −

�

�

�

�

= – 40x 
215 160 ( 3)

2
x x− −

�

�

�

�

Integrating the above equation,

dy
EI

dx
=

2 3

1
1540 160 ( 3)

2 6
x xC x− + + − −

� �

� �

� �

� �

=
3

2
1

520 160 ( 3)
2
xx C x− + + − −

� �

� �

� �

� �

...(i)

Integrating the above equation once again,

EI · y =
23 4

1 2
160 ( 3)20 5

3 8 2
xx xC x C

−− + + + −
�

�

�

�

...(ii)
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We know that when x = 0, then y = 0. Therefore C2 = 0 and when x = 8, then y = 0. Therefore

0 =
3 4 2

1
20 (8) 5 (8) 160 (5)

( 8)
3 8 2

C
− × × ×+ × + −

= 8C1 – 2853.3

∴ C1 = 2853.3 356.7
8

=

Substituting the values of C1 = 356.7 and C2 = 0 in equation (i),

dy
EI

dx
=

3
2 520 356.7 160 ( 3)

2
xx x− + + − −

� �

� �

� �

� �

Now for the slope at C, substituting x = 3 m in the above equation up to C i.e., neglecting the *last
term.

EI · iC =
3

2 5 3
20 3 356.7 244.2

2
×− × + + =

∴ iC =
3

244.2

40 10×
 = 0.0061  rad        Ans.

19.11. Beams of Composite Section
It is a beam made up of two or more different materials, joined together in such a manner, that

they behave like a single piece, and the deflection of each piece is equal.

The slope and deflection of such a beam, is found out by algebraically adding the flexural
rigidities of the two or more different materials, in the application of the respective relation.
Mathematically,

Σ EI = E1 I1 + E2 I2

NOTE. The moment of inertia of the composite section is to be found out about the c.g. of the section.

EXAMPLE 19.12. A composite beam of span 8 m consists of a timber section 180 mm wide
and 300 mm deep. Two steel plates 180 mm long and 20 mm thick are fixed at the top and bottom
of the timber section. The composite beam in subjected to a point load of 100 kN at middle of the
beam. Determine the deflection of the beam under the load. Take E for steel and timber as 200 GPa
and 10 GPa respectively.

SOLUTION. Given: Span (l) = 8 m = 8 × 103 mm ;  Timber section
= 180 mm wide and 300 mm deep ;  Steel plates = 180 mm × 20 mm;
Point load (W) = 100 kN = 100 × 103 N ;  E for steel (Es) = 200 GPa
= 200 × 103 N-mm2 and E for timber (Et) = 10 GPa = 10 × 103

N-mm2.

From the geometry of the composite beam, we find that the centre
of gravity of the composite section coincides with the centre of gravity
of the timber section. Therefor flexural rigidity for the timber section
about its centre of gravity,

EI(timber) =
3

3 180 (300)
(10 10 )

12

⎡ ⎤×× × ⎢ ⎥
⎢ ⎥⎣ ⎦

 N-mm2

= 4050 × 109 N-mm2

* If, however, it is included by mistake, its value will be zero.

Fig. 19.12
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Similarly, E(steel) =
3

3 2180 (20)
(200 10 ) 2 12 (180 20) (160)

12

⎡ ⎤×× × × + × ×⎢ ⎥
⎢ ⎥⎣ ⎦

N-mm2

= (200 × 103) × [(0.24 × 106) + (184.3) × 106] N-mm2

= 36910 × 109 N-mm2

∴ Total flexural rigidity for the composite section about its centre of gravity

Σ EI = (4050 × 109) + (36910 × 109 ) = 40962 × 109 N-mm2

We know that deflection at the centre of the beam,

yC =
3 3 33

9

(100 10 ) (8 10 )
48 48 (40960 10 )

Wl
EI

× × ×=
∑ × ×

 = 26 mm        Ans.

EXAMPLE 19.13. A flitched beam consists of two timber joists 120 mm wide and 300 mm
deep with a steel plate 250 mm deep and 12 mm thick fixed
symmetrically between the timber joists. The beam carries a
uniformly distributed load of 5 kN per metre and is simply supported
over a span of 6 metres. If Es and Et are 200 GPa and 10 GPa
respectively, find the slopes at the supports and deflection of the
beam at its centre.

SOLUTION. Given: Timber joists = 120 mm wide and 300 mm
deep ;  Steel plate = 250 mm deep and 12 mm thick ;  Uniformly
distributed load (w) = 5 kN/m = 5 N/mm ;  Span (l) = 6 m = 6 × 103

mm E for steel (Es) = 200 GPa = 200 × 103 N/mm2 and E for timber
(Et) = 10 GPa = 10 × 103 N/mm2.

From the geometry of the flitched beam, we find that the centre
of gravity of the beam section coincides with the centre of gravity of the steel plate. Therefore flexural
rigidity for the timber joists,

EI(timber) = (10 × 103) 
3120 (300)

2
12

⎛ ⎞××⎜ ⎟⎜ ⎟
⎝ ⎠

= 5400 × 109 N-mm2

Similarly,

EI(steel) =
3

3 12 (250)
200 10

12

⎛ ⎞×× ⎜ ⎟⎜ ⎟
⎝ ⎠

= 3125 × 109 N-mm2

∴ Total flexural rigidity of the flitched beam about its centre of gravity,

Σ EI = 5400 × 109 + 3125 × 109 = 8525 × 109 N-mm2

Slope at the supports
We know that slope at the support,

iA =
3 33

9

5 (6 10 )
24 24 (8525 10 )

× ×=
∑ × ×

wl
EI

 = 0.0053  rad        Ans.

Deflection of the beam at its centre
We also know that deflection of the beam at its centre,

yC =
3 44

9

5 5 (6 10 )5
384 384 (8525 10 )

× × ×=
∑ × ×

wl
EI

 = 9.9  mm        Ans.

Fig. 19.13
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EXERCISE 19.2

1. A horizontal beam of uniform section and 6 m long is simply supported at its ends. Two vertical
concentrated loads of 48 kN and 40 kN act at 1 m and 3 m respectively from the left hand
support. Determine the position and magnitude of the maximum deflection, if E = 200 GPa and
EI = 85 × 106 mm4. [Ans. 16.75 mm]

2. An overhanging beam ABC is loaded as shown in Fig. 19.14.

Fig. 19.14

Determine the deflection of the beam at point C in terms of E, I, W and L. ⎡
⎢⎣

Ans.
339

48.
Wl
EI

⎤
⎥⎦

3. A composite beam consisting of two timber sections and centrally embedded steel plate, is
supported over a span of 4 metres. It carries two concentrated loads of 20 kN each at points 1 m
from each support. Find the deflection of the beam under each load. Take flexural rigidity of the
beam as 13 × 1012 N-mm2. [Ans. 2.04 mm]

QUESTIONS

1. What is the relation between slope, deflection and radius of curvature of a simply supported
beam?

2. A simply supported beam AB of span l and stiffness EI carries a concentrated load P at its
centre. Find the expression for slope of the beam at the support A and deflection of the beam at
its centre.

3. Derive a relation for the slope and deflection of a simply supported beam subjected to a uni-
formly distributed load of w/m length.

4. What is Macaulay’s method for finding the slope and deflection of a beam? Discuss the cases,
where it is of a particular use.

5. Explain the procedure for finding out the deflection of a beam of composite section.

OBJECTIVE TYPE QUESTIONS

1. A simply supported beam carriers a point load at its centre. The slope at its supports is

(a)
2

16
Wl

EI
(b)

3

16
Wl

EI
(c)

2

48
Wl

EI
(d)

3

48
Wl

EI
where W = Magnitude of the point load,

l = Span of the beam and

EI = Rigidity of the beam.
2. A simply supported beam AB of span (l) carriers a point load (W) at C at a distance (a) from the

left end A, such that a < b. The maximum deflection will be

(a) at C (b) between A and C

(c) between C and B (d) any where between A and B
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3. A simply supported beam of span (l) is subjected to a uniformly distributed load of (w) per unit
length over the whole span. The maximum deflections at the centre of the beam is

(a)  
55

48
wl
EI

(b)
45

96
wl
EI

(c)
45

192
wl

EI
(d)

35
384

wl
EI

4. Two simply supported beams of the same span carry the same load. If the first beam carries the
total load as a point load at its centre and the other uniformly distributed over the whole span,
then ratio of maximum slopes of first beam to the second will be
(a) 1 : 1 (b) 1 : 1.5 (c) 1.5 : 1 (d) 2 : 1

ANSWERS

1. (a) 2. (c) 3. (d) 4. (c)
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3. Area and Position of the Centre of
Gravity of Parabolas.

4. Simply Supported Beam with a
Central Point Load.

5. Simply Supported Beam with an
Eccentric Point Load.

6. Simply Supported Beam with a
Uniformly Distributed Load.

7. Simply Supported Beam with a
Gradually Varying Load.

8. Cantilever with a Point Load at
the Free end.

9. Cantilever with a Point Load at
any Point.

10. Cantilever with a Uniformly
Distributed Load.

11. Cantilever with a Gradually
Varying Load.

21.1. Introduction
In the last chapters, we have discussed the

slope and deflection of various types of beams
and cantilevers. But the derivations of the
relations are difficult and lengthy. But in this
chapter, we shall discuss a graphical method for
the slope and deflection of beams and cantilevers.
This method is simple and enables us quicker
solutions. It is popularly known as moment area
method and is based on Mohr’s theorems which
are stated below:

21.2. Mohr’s Theorems
The deflection of beams and cantilevers by

moment area method is based on the following
two theorems, which were stated by Mohr.

21C h a p t e r

Note :
Important Results related to this
chapter are given at the end of this
book See Appendix Table 2
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Mohr’s Theorem – I
It states, “The change of slope between any two points, on an elastic curve is equal to the net

area of B.M. diagram between these points divided by EI.”

Mohr’s Theorem – II
It states, “The intercept taken on a vertical reference line of tangents at any two points on an

elastic curve, is equal to the moment of the B.M. diagram between these points about the reference
line divided by EI.”

21.3. Area and Position of the Centre of Gravity of Parabolas
A parabola is defined as a figure having at

least one of its sides a parabolic curve. In Fig. 21.1,
the side  is a parabolic curve, whereas  and  are
straight lines.

A parabolic curve is generally, expressed as ,
where  is the degree of parabolic curve. In this
chapter, we have to find the areas and positions of
the centre of gravity of various parabolas. The
following table gives these two values for various
degrees of concave parabolic curves:

Table 21.1.
S. No. Value of n Area (A) Distance between B and G (x)

1 2
1( )
3

l h× × 3
4

l ×

2 3
1( )
4

l h× × 4
5

l ×

3 4
1( )
5

l h× × 5
6

l ×

The above values of area (A) and distance (x) may also be expressed as given below:

Area (A) =
1( )

1
l h

n
× ×

+

and distance (x) =
1
2

n
l

n
+×
+

21.4. Simply Supported Beam with a Central Point Load
Consider a simply supported beam AB of length l and carrying a point load W at  i.e., the centre

of the beam as shown in Fig. 21.2 (a). We know that the reaction at A,

RA =
2B

WR =

∴ Bending moment at A due to reaction RB,

M1 =
2

Wl+

Similarly, bending moment at A due to the load W,

M2 = 1– –
2 2

WlW × =

Fig. 21.1. Concave parabola
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Fig. 21.2. Simply supported beam with a central point load

Now draw the bending moment diagram with the above two moments. The positive bending
moment is drawn above the reference line, where negative is below it as shown in Fig. 21.2 (b). Such
a bending moment diagram is called component bending moment diagram.

Now in order to find the slope at B, let us consider the bending moment diagram from C to B.
∴ Area of bending moment diagram from C to B,

* A =
21

2 2 2 16
Wl l Wl× × =

and distance of centre of gravity of the bending moment diagram from B,

x =
2
3 2 3

l l× =

∴ iB =
2

16
A Wl

EI EI
= ...(As before)

By symmetry, iA =
2

16
Wl

EI
...(As before)

and yC =

2

3
16 3

48

Wl l
Ax Wl
EI EI EI

×
= = ...(As before)

* It may also be found out by studying the component bending moment diagram A to C. Area of bending
moment digram from A to C.

A = ( ) 21 1–
2 2 4 2 2 2 2 16

Wl Wl l Wl l Wl⎡ ⎤ ⎡ ⎤+ × × × =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

and Ax =
2 2

1 1 2 2
3 2– –
16 9 8 6
Wl l Wl lA x A x

⎛ ⎞ ⎛ ⎞
= × ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
3 3

–
24 48 48
Wl Wl Wl=
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Alternative method
We know that bending moment will be zero at A and B and will increase by a straight line law to

4
Wl

 at C. Therefore area of the bending moment diagram from C to B,

A =
21

2 4 2 16
Wl l Wl× × =

EXAMPLE 21.1. A simply supported beam of 2 m span carries a point load of 20 kN at its
mid-point. Determine the maximum slope and deflection of the beam. Take flexural rigidity of the
beam as 500 × 109 N-mm2.

SOLUTION. Given :  Span (l) = 2 m = 2 × 103 mm ;  Point load (W) = 20 kN = 20 × 103 N and
flexural rigidity (EI) = 500 × 109  N-mm2.

Maximum slope of the beam
We know that maximum slope of the beam,

iB =

3 3 22

9

(20 10 ) (2 10 )
16 16 (500 10 )
Wl

EI
× × ×=

× ×  = 0.01 rad       Ans.

Maximum deflection of the beam
We also know that maximum defection of the beam at its centre,

yC =

3 3 33

9

(20 10 ) (2 10 )
48 48 (500 10 )
Wl

EI
× × ×=

× ×  = 6.67 mm       Ans.

21.5. Simply supported Beam with an Eccentric Point Load

Fig. 21.3. Eccentric point load.
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Consider a simply supported beam AB of length l and carrying a point load W at C, such that AC
= a and CB = b as shown in Fig. 21.3 (a). We know that the reaction at A,

RA =
Wb

l        and       RB  =  
Wa

l
and bending moment at A due to reaction RB,

M1 =
Wa l

l
+ ×  = + Wa

Similarly, bending moment at A due to the load W,
M2 = – Wa

Now draw the compound bending moment Diagram as shown in Fig. 21.3 (b). We know that area
of the positive bending moment Diagram,

A1 =
1
2 2

WalWa l× × =

and area of negative bending moment diagram.

A2 =
21

2 2
WaWa a× × =

From the geometry of the loading, we see that the slope at any section is not known. It is thus
obvious that the slope and deflection cannot be found out directly. Now draw vertical lines through A
and B. Let AA1 and BB1 be equal to intercepts of the tangents at A and B as shown in Fig. 21.3 (c). We
see that,

AA1 = iB × l

But AA1 = ( ) 2
2 21 1 2 2–

– ( )
2 3 2 3 6

A x A x I Wal l Wa a Wa l a
EI EI EI

⎡ ⎤⎛ ⎞
= × × = −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∴ iB = 2 21 ( )
6

AA Wa l a
l EIl

= − ...(As before)

Similarly, iA =
2 2( )

6
Wb l a
EIl

− ...(As before)

Now consider any section X at a distance x from B. We find that the area of bending moment
diagram between X and B,

A =
21

2 2
Wax Waxx

l l
× × = ...(ii)

∴ Change of slope between X and B

=
2

2
A Wax

WI lEI
=

...(iii)
Now for maximum deflection, the slope at X should be equal to zero. Or in other words, the

change of slope between B and X should be equal to the slope at B. i.e.,

2 2( )
6
Wa l a
lEI

− =
2

2
Wax

lEI

∴ x2 =
2 2

3
l a−

          or          
2

3
l a

x
2 −=

...(Plus sign due to anti-
clockwise on the right)

...(Minus sign due to
clockwise on the right)
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We have seen in equation (ii) that the area of bending moment diagram between X and B,

A =
2

2
Wax

l
and distance of centre of gravity of bending moment diagram from B,

x =
2
3
x

∴ yx =

2

3
2

2 3
3

Wax x
lAx Wax

EI EI EIl

×
= = ...(iv)

Now for maximum deflection, substituting the value of x = 
2 2–

3
l a

 in equation (iv),

ymax = ( )
3

32 2
2 2 2

3 3 9 3

l aWa Wa l a
lEI lEI

⎛ ⎞−⎜ ⎟ = −
⎜ ⎟
⎝ ⎠

...(As before)

EXAMPLE 21.2.  A simply supported beam AB of 2.8 m span carries a point load of 60 kN at
a distance of 1 m from the left hand support A. What is the position of the maximum deflection of
the beam? Also find the magnitude of the deflection under the load. Take EI for the beam section
as 4 × 1012 N-mm2.

SOLUTION. Given: Span (l ) = 2.8 m = 2.8 × 103 mm ;  Point load (W) = 60 kN = 60 × 103 N ;
Distance between the point load and the left hand support (a) = 1 m = 1 × 103 mm and flexural rigidity
of the beam section (EI) = 4 × 1012 N-mm2.

Position of the maximum deflection
We know that position of the maximum deflection (or distance between the point of maximum

deflection and left hand support A).

x =
2 2 3 2 3 2(2.8 10 ) (1 10 )

3 3
l a− × − ×=  mm

= 1.51 × 103 mm = 1.51 m       Ans.
Magnitude of deflection under the load

We know that distance between the point load and right hand support B,

b = l – a = (2.8 × 103) – (1 × 103) = 1.8 × 103 m
and magnitude of deflection under the load

=
2 2 2( )

6
Wab l a b

EIl
− −

=

3 3 3

12 3

(60 10 ) (1 10 ) (1.8 10 )

6 (4 10 ) (2.8 10 )

× × × × ×
× × × × ×[(2.8 × 103)2 – (1 × 103) – (1.8 × 103)2]

= (1.61 × 10–6) × (3.6 × 106) = 5.8 mm       Ans.

21.6. Simply Supported Beam with a Uniformly Distributed Load
Consider a simply supported beam AB of length l and carrying a uniformly distributed load of

w per unit length as shown in Fig. 21.4 (a). We know that the reaction at A,

RA =
2B

wlR =
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Fig. 21.4. Uniformly distributed load.

and bending moment at A due to reaction RB,

M1 =
2

2 2
wl wll× =

Similarly, bending moment at A due to load w,

M2 = –
21

2 2
wlwl × =

Now draw the compound bending moment diagram as shown in Fig. 21.4 (b). We know that area
of the positive bending moment diagram between C and B,

A1 =
2 31

2 4 2 16
wl l wl+ × × =

and area of the negative bending moment diagram between C and B,

A2 =
2 31

3 8 2 48
wl l wl× × =

∴ Net area bending moment diagram from C to B,

A =
3 3 3

1 2 16 48 24
wl wl wlA A− = − =

and distance of centre gravity of the positive bending moment diaram on CB from B,

x1 =
2
3 2 3

l l× =

Similarly, distance of the negative bending moment diagram on CB from B,

x =
3 1 3
4 2 8

l× =

∴ iB =
3

24
A wl

EI EI
= ...(As before)

...(Plus sign due to anti-
clock wise on the right)

...(Minus sign due to
clock wise on the right)
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By symmetry, iA =
3

24
wl

EI

and yC =

3 3

1 1 2 2

3
16 3 48 8
wl l wl l

A x A xAx
EI EI EI

⎛ ⎞ ⎛ ⎞
× − ×⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠= =

=
45

384
wl

EI ...(As before)

EXAMPLE 21.3. A simply supported beam of 2.4 m span is subjected to a uniformly distrib-
uted load of 6 kN/m over the entire span. Calculate the maximum slope and deflection of the
beam, if its flexural rigidity is 8 × 1012 N-mm2.

SOLUTION. Given: Span (l ) = 2.4 m = 2.4 × 103 mm ;  Uniformly distributed load (w) = 6 kN/m =
6 N/mm and flexural rigidity of the beam (EI) =  N-mm2.
Slope of the beam

We know that slope of the beam,

iA =
3 33

12

6 (2.4 10 )
24 24 (8 10 )
wl

EI
× ×=

× ×
 = 0.00043 rad       Ans.

Deflection of the beam
We also know that maximum deflection of the beam,

yC =
4 3 4

12

5 5 6 (2.4 10 )
384 384 (8 10 )

wl
EI

× × ×=
× ×

 = 0.324 mm       Ans.

EXAMPLE 21.4 A beam AB of length l is loaded with a uniformly distributed load as shown
in Fig. 21.5.

Fig. 21.5

Determine by moment area method, the central deflection of the beam.

SOLUTION. Given: Span = l ; Uniformly distributed load = w / unit length and loaded portion of
the beam = a.

For the sake of convenience, let us assume another load of w / unit length, to act for a length of a
in CB as shown in Fig. 21.6 (a). We know that the reaction at A,

RA = RB = wa

∴ Bending moment at A due to reaction RB,

M1 = wal

Similarly, bending moment at A due to load,

M2 =
2
lwa− ×  = – wal
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Fig. 21.6

Now draw the compound bending moment diagram as shown in Fig. 21.6 (b).

∴ Area of the positive bending moment diagram from C to B,

A1 =
21

2 2 2 8
wal l wal× × =

and area of the negative bending moment as diagram from C to B,

A2 = – 
2 31

3 2 6
wa waa× × = −

We know that the distance of centre of gravity of the bending moment diagram on CB from B,

1x =
2
3 2 3

l l× =

Similarly, 2x = ( )3
2 4 2 4
l a l aa− + = −

∴ 2yC =
( )2 3

1 1 2 2
8 3 6 2 4

⎡ ⎤ ⎡ ⎤
× + − × −⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦= =

wal l wa l a
A x A xAx

EI EI EI

=

3 3
(2 )

24 24
24

wal wa l a wa
EI EI

− −
= (l3 – 2la2 + a3)

or yC = 48
wa

EI  (l3 – 2la2 + a3)       Ans.

21.7. Simply Supported Beam with a Gradually Varying Load
Consider a simply supported beam AB of length l and carrying a gradually varying load from

zero at B to w per unit length at A as shown in Fig. 21.7 (a). We know that the reaction at A,

RA = 3
wl

          and          6B
wlR =
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Fig. 21.7

∴ Bending moment at A due to reaction RB ,

M1 =
2

6 6
wl wll× = +

Similarly, bending moment at A due to the load,

M2 =
2

2 3 6
wl l wl− × = −

Now draw the compound bending moment diagram as shown in Fig. 21.7 (b),

∴ Area of the positive bending moment diagram,

A1 =
2 31

2 6 12
wl wll× × =

and area of the negative bending moment diagram,

A2 =
2 31

4 6 24
wl wll× × =

From the geometry of the loading, we see that the slope at any section is not known. It is thus
obvious that the slope and deflection cannot be found out directly. Now draw vertical lines
through A and B. Let AA1 and BB1 be equal to the intercepts of the tangents at A and B as shown
in Fig. 14.7 (c).
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We see that AA1 = iB × l           and          BB1 = iA × l

But AA1 =
43 3

1 1 2 2 7
12 3 24 5 360

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= × − × =⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

A x A x wlI wl l wl l
EI EI EI

∴ iB =
47

360
wl

EI
 radians ...(As before)

Similarly BB1 =
3 3 4

1 1 2 2 1 2 4
12 3 24 5 45

A x A x wl l wl l wl
EI EI EI

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= × − × =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∴ iA =
4

45
wl

EI
 radians ...(As before)

Now consider any section X, at a distance x from B. We find that the area of bending moment
diagram between X and B,

A = ( ) 3 2 41 1
2 6 4 6 12 24

wlx wx wlx wxx x
l l

⎛ ⎞
× × − × × = −⎜ ⎟

⎝ ⎠

∴ Slope at X, iX =
2 4

12 24
A I wlx wx

EI EI l
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

Now for maximum deflection, the slope at X should be equal to zero, or in other words the
change of slope between B and x should be equal to the slope at X,

∴
47

360
xl

EI =
2 41

12 24
wlx wx

EI l
⎛ ⎞

−⎜ ⎟
⎝ ⎠

7 l 4 =
4

2 1530 xlx
l

−

or x = 0.519 l
We know that deflection of the beam at X (considering the portion XB of the beam),

yX =
2 4

1 1 2 2 1 2 4
12 3 24 5

A x A x wlx x wx x
EI EI l

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= × − ×⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

=
3 51

18 30
wlx wx

EI l
⎡ ⎤

−⎢ ⎥
⎣ ⎦

Now for the deflection at the centre substituting x = l / 2 in the above equation,

yC =
40.00651 wl

EI
...(As before)

For maximum deflection, substituting the value of x = 0.519 l and the above equation,

ymax =
40.00652 wl

EI
...(As before)

EXAMPLE 21.5. A beam of span 3.6 m is simply supported over its both ends. If the beam is
subjected to a triangular load of 3 kN/m at A to zero at B, find the values of slopes at A and B.
Take flexural rigidity for the beam section as 6 × 1012 N-mm2.
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SOLUTION. Given: Span (l) = 3.6 m = 3.6 × 103 mm ;  Load at A (w) = 3 kN/m = 3 N/mm and
flexural rigidity (EI) = 6 × 1012 N-mm2.

We know that slope at A,

iA =
3 33

12

3 (3.6 10 )
45 45 (6 10 )
wl

EI
× ×=

× ×
 = 0.00052 rad        Ans.

and slope at B, iB =
3 3 3

12

7 7 3 (3.6 10 )
360 360 (6 10 )

wl
EI

× × ×=
× ×

 = 0.00045 rad        Ans.

EXERCISE 21.1

1. A simply supported beam 2.4 m span is subjected to a central point load of 15 kN. Determine
the maximum slope and deflection of the beam at its centre. Take EI for the beam section as 6 ×
1010 N-mm2. [Ans. 0.09 rad ;  7.2 mm]

2. A simply supported beam of span 6 meters is subjected a point load of 40 kN at a distance 4 m
from the left hand support. Calculate the position of maximum deflection of the beam.

[Ans. 2.58 m from the left end support]

3. A simply supported beam of span 3 m is carrying a uniformly distributed load of 10 kN/m. Find
the values of maximum slope and deflection of the beam. Take modulus of rigidity for the beam
section as 10 × 109 N-mm2. [Ans. 0.0113 rad ;  10.5 mm]

4. A simply supported beam of span 2.5 m carries a gradually varying load from zero to 10
kN/m. What is the maximum deflection of the beam? Take EI for the beam section as 1.2 ×
1012 N-mm2. [Ans. 2.1 mm]

21.8. Cantilever with a Point Load at the Free End

Fig. 21.8.  Point load at the free end.

Consider a cantilever AB of length l and carrying a point load W at the free end as shown in Fig.
21.8 (a). We know that the bending moment will be zero at B and will increase by a straight line law
to Wl at A as shown in Fig. 21.8 (b).

∴ Area of bending moment diagram,

A =
21 ·

2 2
WlWl l× =

and distance between the centre of gravity of bending moment diagram and B,

x =
2
3
l
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∴ iB =
2

2
A Wl

EI EI
=  radians ...(As before)

and yB =

2

3
2

2 3
3

Wl l
Ax Wl
EI EI EI

×
= = ...(As before)

EXAMPLE 21.6. A cantilever beam of 2.0 m span is subjected to a point load of 30 kN at its
free end. Find the slope and deflection of the free end. Take EI for the beam as 8 × 1012 N-mm2.

SOLUTION. Given :  Span (l) = 2 m = 2 × 103 mm ;  Point load (W) = 30 kN = 30 × 103 N and
flexural rigidity (EI) = 8 × 1012 N-mm2.

Slope at the free end
We know that slope of the free end,

iB =
3 3 22

12

(30 10 ) (2 10 )
2 2 (8 10 )
Wl

EI
× × ×=

× ×
 = 0.0075 rad        Ans.

Deflection of the free end
We also know that deflection of the free end,

yB =
3 3 33

12

(30 10 ) (2 10 )
3 3 (8 10 )
Wl

EI
× × ×=

× ×
 = 10 mm        Ans.

21.9. Cantilever with a Point Load at Any Point

Fig. 21.9.  Point load not at the face end.

Consider a cantilever AB of length l and carrying a point load W at a distance l1 from the fixed
end as shown in Fig. 21.9 (a). We know that the bending moment will be zero at B and C, and will
increase by a straight line law to Wl1 and A as shown in Fig. 21.9 (b).

Therefore area of bending moment diagram,

A =
2
1

1 1
1
2 2

Wl
Wl l× × =

and distance between the centre of gravity of bending moment diagram and B,

x = 1
1

2
( )

3
l

l l+ −
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∴ iB =
2
1

2
WlA

EI EI
=  radians ...(As before)

and yB =

2 1
1 1

2
( )

3
l

Wl l l
Ax
EI EI

⎡ ⎤× + −⎢ ⎥
⎣ ⎦=

=
3 2
1 1

1( )
3 2
Wl Wl

l l
EI EI

+ − ....(As before)

EXAMPLE 21.7. A cantilever beam of span 2.4 m carries a point load of 15 kN at a distance
of 1.8 m from the fixed end. What are the values of slope and deflection at the free end of the
cantilever, if the flexural rigidity for the beam section is 9 × 1012 N-mm2.

SOLUTION. Given :  Span (l) = 2.4 m = 2.4 × 103 mm ;  Point load (W) = 15 kN = 15 × 103 N ;
Distance of the load from the fixed end (l1) = 1.8 m = 1.8 × 103 mm and flexural rigidity (EI) = 9 ×
1012 N-mm2.

Value of slope at the free end
We know that value of slope at the free end,

iB =

2 3 3 3
1

12

(15 10 ) 1.8 10 )
2 2 (9 10 )

Wl
EI

× × ×=
× ×  = 0.0027 rad        Ans.

Value of deflection at the free end
We also know that value of deflection at the free end,

yB =
3 2
1 1

1( )
3 2
Wl Wl

l l
EI EI

+ −

=
3 3 3 3 3 2

12 12
(15 10 ) (1.8 10 ) (15 10 ) (1.8 10 )

3 (9 10 ) 2 (9 10 )

× × × × × ×+
× × × × × [(2.4 × 103)– (1.8 × 103)] mm

= 3.2 + 1.6 = 4.8 mm        Ans.

EXAMPLE 21.8. A cantilever of length 2a is carrying a load of W at the free end, and an-
other load of W at its centre. Determine, by moment area method, the slope and deflection of the
cantilever at the free end.

SOLUTION. Given :  Span (l) = 2a and loads = W

The cantilever AB of length 2a and carrying point loads of W each at C and B is shown in Fig.
21.10 (a).

Fig. 21.10
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Slope at the free end
We know that the bending moment at B,

MB = 0
MC = – Wa
MA = – (W × 2a) – (Wa) = – 3Wa

Now draw the bending moment diagram as shown in Fig. 21.10 (b).
We know that area of bending moment diagram 1,

A1 =
21

2 2
WaWa a× × =

Similarly, area of the bending moment diagram 2,
A2 = Wa × a = Wa2

and area of bending moment 3,

A3 =
21 2

2
Wa a Wa× × =

∴ Total area of bending moment diagram,

A = A1 + A2 + A3 = 
22

2 2 5
2 2

WaWa Wa Wa+ + =

and slope of the cantilever at the free end B,

iB =
A

EI
=

25
2
Wa
EI         Ans.

Deflection at the free end
We also know that total moment of the bending moment diagram about B,

Ax = 1 1 2 2 3 3A x A x A x+ +

= ( ) ( ) 32
2 2 72 3 5

2 3 2 3 2
WaWa a a aWa Wa

⎛ ⎞
× + × + × =⎜ ⎟

⎝ ⎠
∴ Deflection of the cantilever at the free end B,

yB =
37

2
= WaAx

EI EI

21.10. Cantilever with a Uniformly Distributed Load

Fig. 21.11.  Uniformly distributed load.
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Consider a cantilever AB of length l, and carrying a uniformly distributed load of w per unit
length as shown in Fig. 21.11 (a).

We know that the bending moment will be zero at  and will increase in the form of a parabola to

2

2
wl  at A as shown in Fig. 21.11 (b). Therefore area of bending moment diagram,

A =
2 31

2 3 6
wl Wll× × =

and distance between the centre of gravity of bending moment diagram and B,

x =
3
4
l

∴ iB =
3

6
A wl

EI EI
=  radians ...(As before)

and yB =

3

4
3

6 4
8

lwl
Ax wl
EI EI EI

×
= = ...(As before)

EXAMPLE 21.9. A cantilever beam 120 mm wide and 150 mm deep carries a uniformly
distributed load of 10 kN/m over its entire length of 2.4 meters. Find the slope and deflection of
the beam at its free end. Take E = 180 GPa.

SOLUTION. Given :  Width (b) = 120 mm ;  Depth (d) = 150 mm ;  Uniformly distributed load (w)
= 10 kN/m = 10 N/mm ; Length (l) = 2.4 m = 2.4 × 103 mm and modulus of elasticity (E) = 180 GPa
= 180 × 103 N-mm2.
Slope at the free end of the beam

We know that moment of inertia of the cantilever beam section,

I =  
33 120 (150)

12 12
bd ×=  = 33.75 × 106 mm4

and slope at the free end,

iB =

3 33

3 6

10 (2.4 10 )
6 6 (180 10 ) (33.75 10 )

× ×=
× × × ×

wl
EI  = 0.0038 rad        Ans.

Deflection at the free end of the beam
We also know that deflection at the free end,

yB =
3 44

3 6

10 (2.4 10 )
8 8 (180 10 ) 33.75 10 )
wl

EI
× ×=

× × × ×  = 6.83 mm        Ans.

21.11. Cantilever with a Gradually Varying Load
Consider a cantilever AB of length l and carrying a gradually varying load from zero at B to w per

unit length at A as shown in Fig. 21.12 (a).
We know that the bending moment will be zero at B and will increase in the form of a cubic

parabola to 
2

6
wl  at A as shown in Fig. 21.12 (b). Therefore area of bending moment diagram,

A =
2 31

6 4 24
wl wll× × =
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Fig. 21.12

and distance between centre of gravity of the bending moment diagram and B,

x =
4
5

l ×

∴ iB =
3

24
A wl

EI EI
= ...(As before)

and yB =

3

4
4

24 5
30

wl l
Ax wl
EI EI EI

× ×
= = ...(As before)

EXAMPLE 21.10. A cantilever beam of span 2.8 m metres carries a gradually varying load
from zero at free end to 20 kN/m at the fixed end. Find the value of slope and deflection at the free
end, if the flexural rigidity for the beam section is.

SOLUTION. Given :  Span (l ) = 2.8 m = 2.8 × 103 mm ;  Load at the fixed end (w) = 20 kN/m = 20
N/mm and flexural rigidity (EI) = 8 × 1012 N-mm2.
Value of slope at the free end

We know that value of slope at the free end,

iB =
3 33

12

20 (2.8 10 )
24 24 (8 10 )
wl

EI
× ×=
× ×

 = 0.0023 rad        Ans.

Value of deflection at the free end
We also know that value of deflection at the free end,

yB =
3 44

12

20 (2.8 10 )
30 30 (8 10 )
wl

EI
× ×=
× ×

 = 5.1 mm        Ans.

EXERCISE 21.2

1. A cantilever 2.4 m long carries a point load of 37.5 kN at its free end. Find the slope and
deflection under the load. Take flexural rigidity for the beam section as 20 × 1012 N-mm2.

[Ans. 0.0054 rad ;  8.64 mm]
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2. A cantilever beam 3 m long is subjected to a point load of 20 kN at a distance of 1 m from the
free end. Calculate the slope and deflection at the free end of the cantilever. Take EI = 8 ×
1012 N-mm2. [Ans. 0.005 rad ;  11.7 mm]

3. A cantilever beam 1.8 m long is subjected to a uniformly distributed load of 5 kN/m over its
whole span. Find the slope and deflection of the beam at its free end, if its flexural rigidity is 6.4
× 1012 N-mm2. [Ans. 0.00076 rad ;  1.025 mm]

4. A cantilever beam of span 2.5 m is subjected to a gradually varying load from zero at the free
end 40 kN/m over the fixed end. What is the deflection of the beam at its free end. Take EI for
the cantilever beam as 13 × 1012 N-mm2. [Ans. 4 mm]

QUESTIONS

1. What is moment area method for the slope and deflection of a simply supported beam?
2. What are the uses of moment area method in finding out the slope and deflection of beams?

3. Derive with the help of moment area method a relation for the deflection of a simply supported
beam carrying a gradually varying load of zero intensity from one end to w per. metre on the
other?

4. With the help of moment area method obtain a relation for the slope of a cantilever of span l
subjected to a uniformly distributed load of w per unit length?

OBJECTIVE TYPE QUESTIONS

1. A simply supported beam of span l is carrying a point load W at its centre. The deflection of the
beam at its centre is

(a)
2

12
Wl

EI (b)
2

16
Wl

EI (c)
2

24
Wl

EI (d)
2

48
Wl

EI

2. A beam of length l is simply supported over its both ends. If it is carrying a uniformly distrib-
uted load of w per unit length, then its slope at the ends is

(a)
3

24
Wl

EI (b)
4

24
Wl

EI (c)
25

24
wl
EI (d)

35
24

wl
EI

3. A cantilever beam of span l carries a uniformly distributed load of w per unit length over its
entire span. If its span is halved, then its slope will become
(a) half (b) one-fourth (c) one-eight (d) one-sixteenth

4. A cantilever beam of span l is carrying a triangular load of zero intensity at its free end to w per
unit length at its fixed end. The deflection at its free end will be

(a)
4

30
wl

EI (b)
4

24
wl

EI (c)
4

16
wl

EI (d)
4

12
wl

EI

ANSWERS

1. (b) 2. (a) 3. (c) 4. (a)
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20.1. Introduction
In the previous chapter, we have discussed

the slope and deflection of beams, subjected to
various types of loadings. The same formulae may
also be used for finding out the slope and
deflection of cantilevers.

20.2. Methods for Slope and
Deflection at a Section

Though there are many methods for the slope
and deflection at a section in a loaded cantilever,
yet the following are important from the subject
point of view:

1. Double integration method and

2. Moment area method.

20C h a p t e r
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20.3. Double Integration Method for Slope and Deflection
We have already discussed in the previous chapter, the double integration method for finding out

the slope and deflection at any section of a beam. We shall use the same method for finding out the
slope and deflection in cantilever also.

20.4. Cantilever with a Point Load at its Free End

Fig. 20.1. Point load at the free end.

Consider a cantilever AB of length l and carrying a point load W at the free end as shown in Fig.
20.1. Consider a section X, at a distance x from the free end B.

We know that bending moment at this section,
MX = – W · x ...(Minus sign due to hogging)

∴
2

2

d y
EI

dx
= – W · x ...(i)

Integrating the above equation,

dy
EI

dx
= – 

2

12
Wx C+ ...(ii)

where C1 is the first constant of integration. We know that when x = l, 
dy
dx

 = 0. Substituting these

values in the above equation,

0 =
2

12
Wl C− +           or          C1  =  

2

2
Wl−

Now substituting this value of C1 in equation (ii),

dy
EI

dx
= – 

2 2

2 2
Wx Wl+ ...(iii)

This is the required equation for the slope, at any section by which we can get the slope at any
point on the cantilever. We know that maximum slope occurs at the free end. Now let us see the
abbreviation  i for the angle of inclination (in radian) and considering i = tan i, for very small angles.
Thus for maximum slope, substituting x = 0 in equation (iii),

EI · iB =
2

2
Wl

∴ IB =
2

2
Wl

EI  radians

Plus sign means that the tangent at B makes an angle with AB in the positive or clockwise direction.
Integrating the equation (iii) once again,

EI · y =
3 2

26 2
Wx Wl x C+ + ...(iv)
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where C2 is the second constant of integration. We know that when x = l, y = 0. Substituting these
values in the above equation,

0 =
3 3 3

2 26 2 3
Wl Wl WlC C− + + = +

or C2 =
3

3
Wl−

Substituting this value of C2 in equation (iv),

EI · y =
3 2 3

6 2 3
Wx Wl x Wl− + −

=
2 3 3

2 6 3
Wl x Wx Wl− = ...(v)

This is the required equation for the deflection, at any section. We know that maximum deflection
occurs at the free end. Therefore for maximum deflection, substituting x = 0 in equation (vi),

EI · yB =
3

3
Wl−

or yB =
3

3
Wl

EI
−

=
3

3
Wl

EI

EXAMPLE 20.1. A cantilever beam 120 mm wide and 150 mm deep is 1.8 m long. Determine
the slope and deflection at the free end of the beam, when it carries a point load of 20 kN at its
free end. Take E for the cantilever beam as 200 GPa.

SOLUTION. Given: Width (b) = 120 mm; Depth (d) = 150 mm ;   Span (l ) = 1.8 m = 1.8 × 103  mm
;  Point load (W) = 20 kN = 20 × 103 N and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.
Slope at the free end

We know that moment of inertia of the beam section,

I =
33

6 4120 (150)
33.75 10 mm

12 12
bd ×= = ×

and slope at the free end, iB =
3 3 22

3 6

(20 10 ) (1.8 10 )
2 2 (200 10 ) (33.75 10 )

Wl
EI

× × ×=
× × × ×

 = 0.0048 rad        Ans.

Deflection at the free end
We also know that deflection at the free end,

yB =
3 3 33

3 6

(20 10 ) (1.8 10 )
3 3 (200 10 ) (33.75 10 )

Wl
EI

× × ×=
× × × ×

 = 5.76 mm        Ans.

EXAMPLE 20.2. A cantilever beam of 160 mm width and 240 mm depth is 1.75 m long. What
load can be placed at the free end of the cantilever, if its deflection under the load is not to exceed
4.5 mm. Take E for the beam material as 180 GPa.

SOLUTION. Given: Width (b) = 160 mm; Depth (d) = 240 mm ;  Span (l) = 1.75 m = 1.75 × 103

mm ; Deflection under the load (yB) = 4.5 mm and modulus of elasticity (E) = 180 GPa = 180 × 103

N/mm2.

Let W = Load, which can be placed at the free end of the cantilever.

...(Minus sign means that the
deflection is downwards)
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We know that moment of inertia of the beam section,

I =
33

6 4160 (240)
184.32 10 mm

12 12
×= = ×bd

and deflection of the cantilever under the load (yB),

4.5 =

3 33

3 6

(1.75 10 )
3 18571.723 (180 10 ) (184.32 10 )

× ×= =
× × × ×

WWl W
EI

∴ W = 4.5 ×  18571.72 = 83572.74 N = 83.57 kN        Ans.

20.5. Cantilever with a Point Load not at the Free End
Consider a cantilever AB of length l and carrying a point load W at  at a distance l1 from the fixed

end as shown in Fig. 20.2.

Fig. 20.2. Point load not at the free end.

A little consideration will show that the portion AC of the cantilever will bend into AC′, while the
portion CB will remain straight and displaced to C′ B′, as shown in Fig. 20.2. The portion AC of the
cantilever may be taken as similar to a cantilever in Art. 20.4 (i.e., load at the free end).

iC =
2
1

2
Wl

EI
Since the portion  of the cantilever is straight, therefore

iB = iC  =  
2
1

2
Wl

EI

and yC =
3
1

3
Wl

EI

From the geometry of the figure, we find that

yB = yC + iC (l – l1)  =  
3 2
1 1

1( )
3 2
Wl Wl

l l
EI EI

+ −

Cor.  If l1 =
2
l

,  yB = 
3 2 31 1 5

3 2 2 2 2 48
W W l Wl
EI EI EI

⎛ ⎞ ⎛ ⎞+ × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

EXAMPLE 20.3. A cantilever beam 3 m long carries a point load of 20 kN at a distance of 2 m
from the fixed end. Determine the slope and deflection at the free end of the cantilever. Take EI = 8 ×
1012 N-mm2.

SOLUTION. Given: Span (l) = 3 m = 3 × 103 mm ;  Point load (W) = 20 kN = 20 × 103 N ;  Distance
of the load from the fixed end (I1) = 2 m = 2 × 103 mm and flexural rigidity (EI) = 8 × 1012 N-mm2.

Slope at the free end of the cantilever
We know that slope at the free end of the contilever

iB =
2 3 3 2
1

12

(20 10 ) (2 10 )
2 2 (8 10 )

Wl
EI

× × ×=
× ×

 = 0.005 rad        Ans.
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Deflection at the free end of the cantilever
We also know that deflection at the free end of the cantilever,

yB =
3 2
1 1

1( )
3 2
Wl Wl

l l
EI EI

+ −

=
3 3 3

3 3
12

(20 10 ) (2 10 )
(3 10 ) (2 10 )

3 (8 10 )

⎡ ⎤× × × ⎡ ⎤× − ×⎢ ⎥ ⎣ ⎦× ×⎢ ⎥⎣ ⎦
 mm

3 3 2
3 3

12

(20 10 ) (2 10 )
[(3 10 ) (2 10 )

2 (8 10 )

× × ×+ × − ×
× ×

mm

= 6.7 + 5.0 = 11.7 mm        Ans.

20.6. Cantilever with a Uniformly Distributed Load
Consider a cantilever AB of length l and carrying a uniformly distributed load of w per unit length

as shown in Fig. 20.3. Consider a section X at a distance x from the free end B.

Fig. 20.3. Uniformly distributed load.

We know that bending moment at the section,

MX =
2

2
wx

...(Minus sign due to hogging)

∴
2

2

d y
EI

dx
=

2

2
wx

...(i)

Integrating the above equation,

dy
EI

dx
=

3

16
wx C+ ...(ii)

where C1 is the first constant of integration. We know that when x = l, then 
dy
dx

 = 0. Substituting these

values in equation (ii),

0 =
3

16
wl C− +     or    C1  =  

3

6
wl

Substituting this value of C1 in equation (ii),

dy
EI

dx
=

3 3

6 6
wx wl− + ...(iii)

This is the required equation for the slope at any section. We know that maximum slope occurs at
the free end B. Therefore for maximum slope, substituting x = 0 in equation (iii),

El · iB =
3

6
wl
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or iB =
3

6
wl
EI

 radians

Integrating the equation (iii) once again,

EI · y =
4 3

224 6
wx wl x C− + +

where C2 is the second constant of integration. We know that when x = l, then y = 0. Substituting these
values in the above equation,

0 =
4 4

224 6
wl wl C− + +     or    C2  =  

4

8
wl−

Substituting this value of C2 is equation (iv),

EI · y =
4 3 4 3 4 4

24 6 8 6 24 8
wx wl x wl wl x wx wl− + − = − − ...(v)

This is the required equation for the deflection at any section. We know that maximum deflection
occurs at the free end.

Therefore for maximum slope, substituting x = 0 in equation (v),

EI · yB =
4

8
wl

or yB =
4

8
wl
EI

−

=
4

8
wl
EI

NOTE. The above expression for slope and deflecion may also be expressed in terms of total load. Such that
W = wl.

iB = iA  =  
3 2

6 6
wl wl
EI EI

=    and   yB  =  
4 3

8 8
wl wl
EI EI

=

EXAMPLE 20.4.  A cantilever beam 2 m long is subjected to a uniformly distributed load of
5 kN/m over its entire length. Find the slope and deflection of the cantilever beam at its free end.
Take EI = 2.5 × 1012 mm2.

SOLUTION. Given: Span (l) = 2 m = 2 × 103 mm ;  Uniformly distributed load (w) = 5 kN/m =
5N/mm and flexural rigidity (EI) = 2.5 × 1012 N-mm2.

Slope of the cantilever beam at its free end
We know that slope of the cantilever at its free end,

iB =
3 33

12

5 (2 10 )
6 6 (2.5 10 )

× ×=
× ×

wl
EI

 = 0.0027  rad        Ans.

Deflection of the cantilever beam at its free end
We also know that deflection of the cantilever at its free end,

y =
3 44

12

5 (2 10 )
8 8 (2.5 10 )

wl
EI

× ×=
× ×

 = 4.0  mm        Ans.

EXAMPLE 20.5.  A cantilever beam 100 mm wide and 180 mm deep is projecting 2 m from a
wall. Calculate the uniformly distributed load, which the beam should carry, if the deflection of
the free end should not exceed 3.5 mm. Take E as 200 GPa.

...(Plus sign means that the tangent at
B makes an angle with AB in the
positive or clockwise direction)

...(Minus sign means that the
      deflection is downwards)
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SOLUTION. Given: Width (b) = 100 mm ; Depth (d) = 180 mm ;  Span (l) = 2 m = 2 × 103 mm ;
Deflection at the free end (yB) = 3.5 mm and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Let w = Uniformly distributed load, which the beam should carry.

We know that moment of inertia of the beam reaction,

I =
33

6 4100 (180)
48.6 10 mm

12 12
bd ×= = ×

and deflection of the free end of the beam (yB),

3.5 =
3 44

3 6

(2 10 )
8 8 (200 10 ) (48.6 10 )

wwl
EI

× ×=
× × × ×

 = 0.206 w

∴ w = 3.5/0.206  =  17 N/mm  =  17 kN/m        Ans.

EXAMPLE 20.6.  A cantilever beam of length 3 m is carrying a uniformly distributed load of
w kN/m. Assuming rectangular cross-section with depth (d) equal to twice the width (b), determine
the dimensions of the beam, so that vertical deflection at the free end does not exceed 8 mm. Take
maximum bending stress = 100 MPa and E = 200 GPa.

SOLUTION. Given: Span (l) = 3 m = 3 × 103 mm ;  Uniformly distributed load = w kN/m = w N/mm;
Depth (d) = 2 b ;  Deflection at the free end (yB) = 8 mm ;  Maximum bending stress (σmax) = 100 MPa
= 100 N/mm2 and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

We know that moment of inertia of the beam section,

I =
33 4

4(2 ) 2 mm
12 12 3

b bbd b= =

and deflection at the free end of the cantilever (yB),

8 =
3 4 64

3 4 4

(3 10 ) 75.9 10
8 8 (200 10 ) 2 / 3

w wwl
EI b b

× × × ×= =
× × ×

∴ b4 =
6(75.9 10 )

8
w×

 = 9.5 × 106 w ...(i)

We also know that moment at the fixed end of the cantilever,

M =
3 22 (3 10 )

2 2
wwl × ×=  = 4.5 × 106 w  N-mm

and from the bending stress equation,

M
I

= b

y
σ

          or          
6

4

4.5 10

2 / 3

w

b

×
  =  

100
b

or 13.5 × 106 w = 100 × 2b3 ... 2
2 2
d by b⎛ ⎞= = =⎜ ⎟

⎝ ⎠
∵

b3 =
613.5 10

200
w× ×

 = 67.5 × 103 w ... (ii)

Dividing equation (i) by (ii),

b =
6

3

(9.5 10 )

(67.5 10 )

w

w

×
×

 = 141  mm       Ans.

and d = 2b = 2 × 141  =  282  mm       Ans.
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20.7. Cantilever Partially Loaded with a Uniformly Distributed
Load

Consider a cantilever AB of length l and carrying a uniformly distributed load w per unit length
for a length of l from the fixed end as shown in Fig. 20.4.

Fig. 20.4. Partially uniformly distributed load.

A little consideration will show that the portion AC of the cantilever will bend into AC′, while the
portion CB will remain straight, but will displace to C′ B′ as shown in the figure. The portion AC of the
cantilever may be taken as similar to a cantilever in Art. 20.6 (i.e., Cantilever with uniformly distributed
load).

∴ IC =
3
1

6
wl
EI

 rad

Since the portion CB of the cantilever is straight, therefore

IB = IC  =  
3
1

6
wl
EI

and yC =
4
1

8
wl
EI

From the geometry of the figure, we find that

yB = yC + iC (l – l1)  =  
4 3
1 1

1[ ]
8 6
wl wl

l l
EI EI

+ −

Cor. If  l1 = 
2
l

, then  yB = 
4 3 47

8 2 6 2 2 384
⎛ ⎞ ⎛ ⎞+ × =
⎝ ⎠ ⎝ ⎠

w l w l l wl
EI EI EI

EXAMPLE 20.7.  A cantilever 2.5 m long is loaded with a uniformly distributed load of 10
kN/m over a length of 1.5 m from the fixed end. Determine the slope and deflection at the free end
of the cantilever. Take flexural rigidity of the beam as 1.9 × 1012 N-mm2.

SOLUTION. Given: Span (l) = 2.5 m = 2.5 × 103 mm ;  Uniformly distributed load (w) = 10 kN/m
= 10 N/mm ;  Loaded length (l1) = 1.5 m = 1.5 × 103 mm and flexural rigidity (EI) = 1.9 × 1012

N-mm2.
Slope at the free end

We know that slope at the free end.

iB =
3 3 3
1

12

10 (1.5 10 )
6 6 (1.9 10 )

wl
EI

× ×=
× ×

 = 0.003 rad        Ans.

Deflection at the free end
We also know that deflection at the free end,

yB =
4 3
1 1

1[ ]
8 6
wl wl

l l
EI EI

+ −



498 � Strength of Materials

=
3 4 3 3

12 12

10 (1.5 10 ) 10 (1.5 10 )

8 (1.9 10 ) 6 (1.9 10 )

× × × ×+
× × × ×

3 3(2.5 10 ) (1.5 10 )⎡ ⎤× × − ×
⎣ ⎦

= 3.3 + 3 = 6.3  mm        Ans.

20.8. Cantilever Loaded from the Free End

Fig. 20.5

Consider a cantilever AB of length l and carrying a uniformly distributed load w per unit length
for a length of l1, from the free end as shown in Fig. 20.5.

Fig. 20.6

The slope and deflection of the cantilever, in this case may be obtained as discussed below:
1. First of all, consider the whole cantilever from A to B to be loaded with a uniformly distributed

load of w per unit lenght as shown in Fig. 20.6.

2. Then superimpose an upward uniformly distributed load of w per unit length from A to C as
shown in Fig. 20.6.

3. Then obtain the slopes and deflections due to the above mentioned loading as per Art. 20.6 and
20.7.

4. Then the slope at B is equal to the slope due to the total load minus the slope due to the super-
imposed load.

5. Similarly, the deflection at B is equal to the deflection due to the total load minus the deflection
due to the superimposed load,

∴ iB =
33

1( )
6 6

w l lwl
EI EI

⎡ ⎤⎡ ⎤ −
− ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

Similarly, yB =
4 34

1 1 1( ) ( )
8 8 6

w l l w l l lwl
EI EI EI

⎡ ⎤⎡ ⎤ − −
− +⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

Note. The slope and deflection at A due to superimposed uniformly distributed load from A to C is obtained by
substituting (l – l1) for l, and vice versa in Art. 20.7.

EXAMPLE 20.8. A cantilever 75 mm wide and 200 mm deep is loaded as shown in Fig. 20.7.

Find the slope and deflection at B. Take E = 200 GPa.
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Fig. 20.7

SOLUTION. Given: Width (b) = 75 mm ; Depth (d) = 200 mm ;  Uniformly distributed load (w) = 20
kN/m = 20 N/mm ;  Span (l) = 2 m = 2 × 103 mm ;  Loaded length (l1) = 1 m = 1 × 103 mm and Young’s
modulus (E) = 200 GPa = 200 × 103 N/mm2

Slope at B
We know that moment of inertia of the cantilever section,

l =
33

6 475 (200)
50 10 mm

12 12
bd ×= = ×

and slope at B iB =
33

1( )
6 6

w l lwl
EI EI

⎡ ⎤⎡ ⎤ −
− ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

=
3 3 3 3 3

3 6 3 6

20 (2 10 ) 20 [(2 10 ) (1 10 )]

6 (200 10 ) (50 10 ) 6 (200 10 ) (50 10 )

⎡ ⎤ ⎡ ⎤× × × − ×−⎢ ⎥ ⎢ ⎥
× × × × × × × ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= 0.00267 – 0.000333 = 0.00234 rad        Ans.
Deflection at B

We also know that deflection at B,

yB =
4 34

1 1 1( ) ( )
8 8 6

w l l w l l lwl
EI EI EI

⎡ ⎤⎡ ⎤ − −
− +⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

=
3 4

3 6

20 (2 10 )

8 (200 10 ) (50 10 )

⎡ ⎤× ×
⎢ ⎥

× × ×⎢ ⎥⎣ ⎦

  

3 3 4 3 3 3 3

3 6 3 6

20 [(2 10 ) (1 10 )] 20 [(2 10 ) (1 10 )] (1 10 )

8 (200 10 ) (50 10 ) 6 (200 10 ) (50 10 )

⎡ ⎤× − × × − × ×− +⎢ ⎥
× × × × × ×⎢ ⎥⎣ ⎦

= 4.0 – 0.58 = 3.42  mm        Ans.

20.9. Cantilever with a Gradually Varying Load

Fig. 20.8
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Consider a cantilever AB of length l and carrying a gradually varying load from zero at B to w per
unit length at A as shown in Fig. 20.8.

Now consider a section X, at a distance x from the free end B. We know that the bending moment
at the section,

MX =
31

2 3 6
wx x wxx
l l

− × × × = −  ...(Minus sign due to hogging)

∴
2

2

d y
EI

dx
=

3

6
wx

l
− ...(i)

Integrating the above equation,

·
dy

EI
dx

=
4

124
wx C

l
− + ...(ii)

where C1 is the constant of integration. We know that when x =l, then dy
dx

 = 0. Substituting these
values in equation (ii),

0 =
4

124
wl C

l
− +     or    C1  =  

3

24
wl−

∴ ·
dy

EI
dx

=
4 3

24 24
wx wl

l
− + ...(iii)

This is required equation for the slope at any section, by which we can get the slope at any section
on the cantilever. We know that the maximum slope occurs at the free end. Therefore for maximum
slope, substituting x = 0 in equation (iii),

EI · iB =
3

24
wl

or iB =
3

24
wl

EI
 radians ...(iv)

Integrating the equation (iii) once again,

EI · y =
5 3

2120 24
wx wl C

l
− × + ...(v)

where C2 is the constant of integration. We know that when x = l, then y = 0. Substituting these values
in the above equation,

0 =
4 4

2120 24
wl wl C− + +     or    C2  =  

4

30
wl−

∴ EI · y =
5 3 4

120 24 30
wx wl x wl

l
− + − ...(vi)

This is the required equation for deflection, at any section, by which we can get the deflection at
any section on the cantilever. We know that maximum deflection occurs at the free end. Therefore for
maximum slope, substituting x = 0 in equation (vi),

EI · yB =
4

30
wl−

∴ yB =
4

30
wl

EI
−

=
4

30
wl

EI

...(Minus singn means that the
    deflection is downwards)
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EXAMPLE 20.9.   A cantilever of 2 m span carries a triangular load of zero intensity at the free
end and 100 kN/m at the fixed end. Determine the slope and deflection at the free end. Take I =
100 × 106 mm4 and E = 200 GPa.

SOLUTION. Given: Span (l) = 2 m = 2 × 103 mm ;  Load at the fixed end (w) = 100 kN/m =
100 N/mm; Moment of inertia (I) = 100 × 106 mm4 and modulus of elasticity (E) = 200 GPa = 200 ×
103 N/mm2.
Slope at the free end

We know that slope at the free end,

iB =
33

3 6

1000 (2 10 )
24 24 (200 10 ) (100 10 )

wl
EI

× ×=
× × × ×

 = 0.00167 rad        Ans.

Deflection at the free end
We also know that deflection at the free end,

yB =
3 44

3 6

100 (2 10 )
30 30 (200 10 ) (100 10 )

wl
EI

× ×=
× × × ×

 = 2.67 mm        Ans.

EXERCISE 20.1

1. A cantilever 2.4 m long carries a point load of 30 kN at its free end. Find the slope and deflec-
tion of the cantilever under the load. Take flexural rigidity for the cantilever beam as  25 × 1012

N-mm2.

[Ans. 0.0035 rad ;  5.5 mm]

2. A cantilever 150 mm wide and 200 mm deep projects 1.5 m out of a wall. Find the slope and
deflection of the cantilever at the free end, when it carries a point load of 50 kN at its free end.
Take E = 200 GPa. [Ans. 0.0028 rad ;  2.8 mm]

3. A cantilever beam 120 mm wide and 180 mm deep is 2 m long. Find the maximum load, which
can be placed at the free end, the deflection of the cantilever at its free end should not exceed 5
mm. Take E as 200 GPa. [Ans. 21.87 kN]

4. A cantilever beam of length 1.8 m is carrying a uniformly distributed load of 10 kN/m on its
entire length. What is the slope and deflection of the beam at its free end? Take flexural rigidity
of the beam as 3.2 × 1012 N-mm2.

[Ans. 0.003 rad ;  4.1 mm]

5. A cantilever beam 120 mm wide and 200 mm deep is 2.5 m long. Find the uniformly distributed
load, the beam should carry to produce a deflection of 5 mm at its free end. Take E = 200 GPa.

[Ans. 16.4 kN/m]

6. A cantilever beam of 2.5 m span carries a load which is gradually varying from zero at the free
end to 200 kN/m over the fixed end. Find the deflection of the free end. Take flexural rigidity of
the section as 160 × 1012 N-mm2.

[Ans. 1.63 mm]
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20.10. Cantilever with Several Loads
If a cantilever is loaded with several point or uniformly distributed loads, the slope as well as the

deflection at any point on the cantilever, is equal to the algebraic sum of the slopes and deflections at
that point due to various loads acting individually.

EXAMPLE 20.10.   A cantilever AB 2 m long is carrying a load of 20 kN at free end and 30 kN
at a distance 1 m from the free end. Find the slope and deflection at the free end. Take E = 200
GPa and I = 150 × 106 mm4.

SOLUTION. Given: Span AB (l) = 2 m = 2 × 103 mm ; Load at the free end (W1) = 20 kN = 20 × 103 N;
Load at C (W2) = 30 kN = 30 × 103 N ; Length AC (l1) = 1 m = 1 × 103 mm ; Modulus of elasticity (E)
= 200 GPa = 200 × 103 N/mm2 and moment of inertia (I) = 150 × 106 mm4.

Fig. 20.9

Slope at the free end
We know that slope at the free end

iB =
2 2

1 2 1

2 2
W l W l

EI EI

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=
3 3 2

3 6

(20 10 ) (2 10 )

2 (200 10 ) (150 10 )

⎡ ⎤× × ×
⎢ ⎥

× × × ×⎢ ⎥⎣ ⎦

3 3 2

3 6

(30 10 ) (1 10 )

2 (200 10 ) (150 10 )

⎡ ⎤× × ×+ ⎢ ⎥
× × × ×⎢ ⎥⎣ ⎦

 rad

= 0.00133 + 0.0005 = 0.00183  rad        Ans.

Deflection at the free end

We also know that deflection at the free end,

yB =
3 3 2

1 2 1 2 1
1( )

3 3 2
W l W l W l

l l
EI EI EI

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=
3 3 3

3 6

(20 10 ) (2 10 )

3 (200 10 ) (150 10 )

⎡ ⎤× × ×
⎢ ⎥

× × × ×⎢ ⎥⎣ ⎦

3 3 3

3 6

(30 10 ) (1 10 )

3 (200 10 ) (150 10 )

⎡ ⎤× × ×+ ⎢ ⎥
× × ×⎢ ⎥⎣ ⎦

3 3 2
3 3

3 6

(30 10 ) (1 10 )
(2 10 ) (1 10 )

2 (200 10 ) (150 10 )

⎡ ⎤× × ×+ × × − ×⎢ ⎥
× × ×⎢ ⎥⎣ ⎦

= 1.78 + 0.33 + 0.5 = 2.61 mm        Ans.
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EXAMPLE 20.11. A cantilever 2 m long carries a point load 20 kN at its free end and a
uniformly distributed load of 8 kN/m over the whole length. Determine the slope and deflection of
the cantilever at its free end. Take E = 200 GPa and I = 50 × 106 mm4.

SOLUTION. Given: Span (l ) = 2 m = 2 × 103 mm ;  Point load (W) = 20 kN = 20 × 203 N ;
Uniformly distributed load (w) = 8 kN/m = 8 N/mm ;  Modulus of elasticity (E) = 200 GPa = 200 ×
103 N/mm2 and moment of inertia (I) = 50 × 106 mm4.

Slope of the cantilever at its free end
We know that slope of the cantilever at its free end,

yB =
3 4

3 8
Wl wl

EI EI

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

=

3 3 2

3 6

(20 10 ) (2 10 )

2 (200 10 ) (50 10 )

⎡ ⎤× × ×
⎢ ⎥

× × × ×⎢ ⎥⎣ ⎦

3 3

3 6

8 (2 10 )

8 (200 10 ) (50 10 )

⎡ ⎤× ×+ ⎢ ⎥
× × × ×⎢ ⎥⎣ ⎦

 rad

= 0.004 + 0.0011 = 0.0051 rad        Ans.
Deflection of the cantilever at its free end

We also know that deflection of the cantilever at its free end,

yB =
3 4

3 8
Wl wl

EI EI

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

=
3 3 3

3 6

(20 10 ) (2 10 )

3 (200 10 ) (50 10 )

⎡ ⎤× × ×
⎢ ⎥

× × × ×⎢ ⎥⎣ ⎦

3 4

3 6

8 (2 10 )

8 (200 10 ) (50 10 )

⎡ ⎤× ×+ ⎢ ⎥
× × × ×⎢ ⎥⎣ ⎦

= 5.3 + 1.6 = 6.9 mm        Ans.

EXAMPLE 20.12. A cantilever 100 mm wide and 180 mm deep projects 2.0 m from a wall
into which it is cast. The cantilever carries a uniformly distributed load of 20 kN/m over a length
of 1 m from the free end, and point load of 10 kN at the free end as shown in Fig. 20.10.

Find the slope and deflection at the free end. Take E = 200 GPa.

Fig. 20.10

SOLUTION. Given: Width (b) = 100 mm ; Depth (d) = 180 mm ;  Load at the free end (W) = 10
kN = 10 × 103 N ;  Modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2 ;  Length AB (l) = 2 m =
2 × 103 mm ;  Load in CB (w) = 20 kN/m = 20 N/mm and length CB (l1) = 1 m = 1 × 103 mm.
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Slope at the free end
We know that moment of inertia of the cantilever section,

I =
33

6 4100 (180)
48.6 10 mm

12 12
bd ×= = ×

and slope at the free end,

iB =
32 3

1( )
2 6 6

w l lWl Wl
EI EI EI

⎡ ⎤⎛ ⎞⎡ ⎤ ⎛ ⎞ −
+ −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

=
3 3 2

3 6

(10 10 ) (2 10 )

2 (200 10 ) (48.6 10 )

⎡ ⎤× × ×
⎢ ⎥

× ×⎢ ⎥⎣ ⎦

3 3 3 3 3

3 6 3 6

20 (2 10 ) 20 [(2 10 ) (1 10 )]

6 (200 10 ) (48.6 10 ) 6 (200 10 ) (48.6 10 )

⎡ ⎤⎛ ⎞ ⎛ ⎞× × × − ×+ −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× × × ×⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 rad

= 0.00206 + (0.00274 – 0.00034) = 0.00446  rad        Ans.

Deflection at the free end
We also know that deflection at the free end,

yB =
4 33 4

1 1( ) ( )
3 8 8 6

w l l w l l lWl wl
EI EI EI EI

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ − −
+ − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

=
3 3 3 3 4

3 6 3 6

(10 10 ) (2 10 ) 20 (2 10 )

3 (200 10 ) (48.6 10 ) 8 (200 10 ) (48.6 10 )

⎡ ⎤ ⎡ ⎤× × × × ×+⎢ ⎥ ⎢ ⎥
× × × ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

3 3 4

3 6

20 [(2 10 ) (1 10 )

8 (200 10 ) (48.6 10 )

⎡ ⎤⎛ ⎞× − ×− ⎢ ⎥⎜ ⎟⎜ ⎟× ×⎢ ⎥⎝ ⎠⎣ ⎦

3 3 3 3

3 6

20 [(2 10 ) (1 10 )] (2 10 )

6 (200 10 ) (48.6 10 )

⎡ ⎤⎛ ⎞× − × × ×+ ⎢ ⎥⎜ ⎟⎜ ⎟× ×⎢ ⎥⎝ ⎠⎣ ⎦

= 2.74 + 2.06 – (0.13 + 0.69) = 3.98 mm        Ans.

EXAMPLE 20.13.   A metallic cantilever 150 mm wide, 200 mm deep and of 2 m span carries a
uniformly varying load of 50 kN/m at the free end to 150 kN/m at the fixed end as shown in Fig. 20.11.

Find the slope of the cantilever at the free end. Take E = 100 GPa.

Fig. 20.11
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SOLUTION. Given: Width (b) = 150 mm ;  Depth (d) = 200 mm ;  Span (l) = 2 m = 2 × 103 mm ;
Load at A = 150 kN/m = 150 N/mm ;  Load at B = 50 kN/m = 50 N/mm and modulus of elasticity (E)
= 100 GPa = 100 × 103 N/mm3.
Slope at the free end

Let us split up the trapezoidal load into a uniformly distributed load (w1) of 50 N/mm and a
triangular load (w2) of 100 N/mm at A to zero at B.

We know that moment of inertia of the cantilever section,

I =
33

6 4150 (200)
100 10 mm

12 12
bd ×= = ×

∴ Slope at the free end B,

iB =
3 3

1 2

6 24
w l w l

EI EI

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=
3 3

3 6

50 (2 10 )

6 (100 10 ) 100 10

⎡ ⎤× ×
⎢ ⎥

× × × ×⎢ ⎥⎣ ⎦

3 3

3 6

100 (2 10 )

24 (100 10 ) (100 10 )

⎡ ⎤× ×+ ⎢ ⎥
× × × ×⎢ ⎥⎣ ⎦

 rad

= 0.0067 + 0.0033 = 0.01 rad        Ans.
Deflection at the free end

We also know that deflection at the free end,

yB =
4 4

1 2

8 30
w l w l

EI EI

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=
3 4

3 6

50 (2 10 )

8 (100 10 ) (100 10 )

⎡ ⎤× ×
⎢ ⎥

× × × ×⎢ ⎥⎣ ⎦

3 4

3 6

100 (2 10 )

30 (100 10 ) (100 10 )

⎡ ⎤× ×+ ⎢ ⎥
× × × ×⎢ ⎥⎣ ⎦

mm

= 10 + 5.3 = 15.3 mm        Ans.

20.11. Cantilever of Composite Sections
We have already discussed in the previous chapter, the slope and deflection at any section of

composite section of a beam. We shall use the same method for finding out the slope and deflection in
cantilevers.

EXAMPLE 20.14.  A composite cantilever beam 2 m long consists of a rectangular timber
joist 150 mm × 240 mm deep. Two steel plates 150 mm × 10 mm thick are fixed at the top and
bottom faces of the timber joist as shown in fig. 20.12.
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Fig. 20.12

Find the slope and deflection of the cantilever at its free end, when it is carrying a uniformly
distributed load of 10 kN/m. Take Es = 200 GPa and Et = 10 GPa.

SOLUTION. Given: Span (l) = 2 m = 2 × 103 mm ;  Uniformly distributed load (w) = 10 kN/m = 10
N/mm; Modulus of elasticity for steel (Es) = 200 GPa = 200 × 103 N/mm2 and modulus of elasticity
for timber (Et) = 10 GPa = 10 × 103 N/mm2.

Slope at the free end
From the geometry of the composite beam, we find that the centre of gravity of the composite

section coincides with the centre of gravity of the timber section. Therefore flexural rigidity for the
timber section about its centre of gravity,

EI(timber) = (10 × 103) 
3150 (240)

12

⎡ ⎤×
⎢ ⎥
⎢ ⎥⎣ ⎦

 N-mm2

= 1728 × 109 N-mm2

Similarly, EI(steel) = (200 × 103) 
3

2150 (10)
2 2 (150 10) (125)

12

⎡ ⎤⎛ ⎞× + × ×⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 N-mm2

= (200 × 103) × [(0.025 × 106) + (46.875 × 106)] N-mm2

= 9380 × 109 N-mm2

∴ Total flexural rigidity for the composite section about its centre of gravity,

∑ EI = (1728 × 109) + (9380 × 109) = 11108 × 109 N-mm2

We know that slope at the free end,

iB =
3 33

9

10 (2 10 )
6 6 (11108 10 )

wl
EI

× ×=
∑ × ×

 = 0.0012  rad        Ans.

 Deflection at the free end
We also know that deflection at the free end,

yB =
3 44

9

10 (2 10 )
8 8 (11108 10 )

wl
EI

× ×=
∑ × ×

 = 1.8 mm        Ans.
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EXERCISE 20.2

1. A cantilever beam AB having length L and stiffness EI is fixed at the end A. A uniformly distrib-
uted load of intensity w/unit length acts over half of the beam from the fixed end. Obtain the
expressions for slope and deflection at the end B.

⎡
⎢
⎢⎣

Ans. 
3 47;

48 384
wL wL

EI EI

⎤
⎥
⎥⎦

2. A cantilever 2 m long carries a point load of 1 kN at the free end, and a uniformly distributed
load of 2 kN/m over a length of 1.25 m from the fixed end. Find the deflection at the free end,
if E = 200 GPa. Take I = 138.24 × 106 mm4.

[Ans. 1.46 m]

3. A horizontal cantilever of uniform section and length L carries a load W at a distance L/4 from the
free end. Derive from the first principles the deflection at the free end in terms of W, L, E and I.

⎡
⎢
⎢⎣

Ans.  
327

128
WL

EI

⎤
⎥
⎥⎦

4. A horizontal cantilever of length 3a carries two concentrated loads, W at a distance a from the
fixed end and W′ at the free end. Obtain the formula for the maximum deflection due to the
loading.

⎡
⎢
⎢⎣

Ans.  
23 (2 7

3
+ ′a

W W
EI

 
⎤
⎥
⎥⎦

QUESTIONS

1. Derive an expression for the slope and deflection at the free end of a cantilever AB of span l and
flexural rigidity EI, when it is subjected to a point load at the free end.

2. Obtain an expression for the slope and deflection at the free end of a cantilever AB of span l and
stiffness EI when it is carrying a point load at a distance l1 from the fixed end.

3. Show that the deflection of a cantilever at its free end B is given by the relation:

yB =
4

8
wl
EI

where w = Uniformly distributed load per unit length of the cantilever,

l = Span of the cantilever and

EI = Flexural rigidity of the cantilever.

4. Derive an expression for the slope and deflection of a cantilever subjected to a triangular load
uniformly varying from zero at the free end to w at the fixed end.

OBJECTIVE TYPE QUESTIONS

1. Maximum deflection of a cantilever beam of span l carrying a point load W at its free end is

(a)
3

2
Wl

EI
(b)

3

3
Wl

EI
(c)

3

8
Wl

EI
(d)

3

16
Wl

EI

where   EI  = Rigidity of the cantilever beam.
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2. The maximum slope of a cantilever carrying a point load at its free end is at the
(a) fixed end (b) centre of span

(c) free end (d) none of these

3. A cantilever beam of span l caries a 1 uniformly distributed load w over the entire span. The
maximum slope of the cantilever is

(a)
2

3
wl
EI

(b)
2

4
wl
EI

(c)
3

6
wl
EI

(d)
3

8
wl
EI

where   EI = Rigidity of the beam.

4. Maximum deflection of a cantilever is equal to

(a)
4

2
wl
EI

(b)
4

3
wl
EI

(c)
4

8
wl
EI

(d)
4

16
wl

EI

where w = Uniformly distributed load per unit length over the entire span,
l = Span of the cantilever beam and

EI = Rigidity of the cantilever beam,

ANSWERS

1. (b) 2. (c) 3. (c) 4. (c)
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 Contents
1. Introduction.
2. Advantages of Fixed Beams.

3. Bending Moment Diagrams for
Fixed Beams.

4. Fixing Moments of a Fixed Beam.

5. Fixing Moments of a Fixed Beam
Carrying a Central Point Load.

6. Fixing Moments of a Fixed Beam
Carrying an Eccentric Point Load.

7. Fixing Moments of a Fixed Beam
Carrying a Uniformly Distributed
Load.

8. Fixing Moments of a Fixed Beam
Carrying a Gradually Varying Load
from Zero at One End to w per unit
length at the Other.

9. Fixing Moments of a Fixed Beam
due to Sinking of a Support.

24.1. Introduction
A beam, which is built-in at its two supports,

is called a constrained beam or a fixed beam.
Since the beam is fixed at its two supports,
therefore the slope of the elastic curve of the
beam at its two ends, even after loading will be
zero. Thus, a fixed beam AB may be looked
upon as a simply supported beam, subjected to
end moments MA and MB, such that the slopes
at two supports are zero. A little consideration
will show that this is only possible, if the
magnitude and directions of the restraining
moments MA and MB are equal and opposite to
that of the bending moments under a given
system of loading.

24C h a p t e r
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24.2. Advantages of Fixed Beams
A fixed beam has the following advantages over a simply supported beam:

1. The beam is stiffer, stronger and more stable.

2. The slope at both the ends is zero.

3. The fixing moments are developed at the two ends, whose effect is to reduce the maximum
bending moment at the centre of the beam.

4. The deflection of a beam, at its centre is very much reduced.

24.3. Bending Moment Diagram for Fixed Beams
Consider a fixed beam AB, of span l subjected to various types of loading as shown in Fig. 24.1

(a). Now we shall analyse the beam into the following two categories:

1. A simply supported beam AB subjected to vertical loads and reactions.
2. A simply supported beam AB subjected to end moments.

Fig. 24.1

The complete bending moment diagram may be drawn by superimposing the bending moment
diagrams for the above two cases. We know that the beam AB, when treated as a simply supported
beam carrying vertical loads and reactions will be subjected to positive bending moment (i.e., sag-
ging) as shown in Fig. 24.1 (b). But the beam AB, when treated as a simply supported beam, having
fixing moments MA and MB will be subjected to negative bending moment (i.e., hogging) as shown in
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Fig. 24.1 (c). Since the directions of the above two moments are opposite to each other, therefore
their  resultant effect may be seen by drawing the two moments, on the same side of the base AB as
shown in Fig. 24.1(d).

Now consider any section X, at a distance x from A. Let the bending moment due to vertical
loading be µX. The bending moment due to fixing moments MA and MB at X,

µX = ( )A B A
xM M M
l

⎡ ⎤− + −⎢ ⎥⎣ ⎦

∴ Total bending moment at X,

MX = µX + µ′X = µ ( )X A B A
xM M M
l

⎡ ⎤− + −⎢ ⎥⎣ ⎦
Notes: 1. The total bending moment at any section may be found out from the above relation, if the values of

MA and MB are known.

2. The shear force diagram for the beam may now be drawn as usual.

3. The portion of the beam AB, in which the net bending moment is sagging (i.e., positive) will bend
with concave upwards, whereas the portion of the beam, in which the net bending moment is hogging
(i.e., negative) will bend with convex upwards. The elastic curve of the beam may be drawn as usual
as shown in Fig. 24.1 (e).

24.4. Fixing Moments of a Fixed Beam
We have already discussed in the previous article, that the bending moment at any section X of a

fixed beam,
MX = µX + µ′X

∴
2

2

d y
EI

dx
= µX + µ′X ...(i)

2

2

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∵

d yM
EI dx

Integrating the above equation for the whole length of the beam i.e., from 0 to l,

2

2
0

l
d y

EI
dx∫ =

0 0

µ µ
l l

X Xdx dx′⋅ + ⋅∫ ∫

0

l
dy

EI
dx

⎡ ⎤
⎢ ⎥⎣ ⎦

=
0 0

µ µ
l l

X Xdx dx′⋅ + ⋅∫ ∫
or EI (iB – iA) = a + a′ ...(ii)

where iB = Slope of the beam at B,

iA = Slope of the beam at A,

a = Area of the µ-diagram and
a′ = Area of the µ′-diagram.

Since the slopes at A and B (i.e., iA and iB) are zero, therefore

a + a′ = 0          or          a = – a′
We know that the shape of µ′-diagram is trapezoidal having end ordinates equal to MA and MB.

∴ Area of µ′-diagram,

a′ = ( )
2 A B
l M M+

or ( )
2 A B
l M M+ = – a (ä a = – a′)
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∴ MA + MB =
2a
l

− ...(iii)

From equation (i) we know that

2

2

d y
EI

dx
= µX + µ′X

Multiplying the above equation by x and integrating the same for the whole length of the beam
i.e., from 0 to l,

2

2
0

l
d y

EI x
dx

⋅∫ =
0 0

µ µ
l l

X Xx dx x dx′⋅ + ⋅∫ ∫

0

l
dy

EI x y
dx

⎡ ⎤−⎢ ⎥⎣ ⎦
= ax a x′+ ′

or EI [l (iB – yB) – 0 (IA – yA) = ax ax+ ′
Since iB and yB are equal to zero, therefore

ax a x′+ ′ = 0     or     ax a x′= − ′

where x = Distance of centre of gravity of µ-diagram from A and

x ′ = Distance of centre of gravity of µ′-diagram from A.

We know that the shape of the µ′-diagram is trapezoidal with end ordinates equal to MA and MB.
Therefore splitting up the µ′-diagram into two triangles as shown in Fig. 24.1(c).

a x′ ′ =
2

2 3 2 3A B
ll l lM M⎛ ⎞⎛ ⎞× × + × ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=
2

( 2 )
6A B
lM M+

or
2

( 2 )
6A B
lM M+ = a x−

∴ MA + 2MB = 2
6a x

l
− ...(iv)

Now subtracting equation (iii) and (iv),

MB = 2 2 2
6 2 2 ( 3 )
a x a a x l
l l l

− + = − +

and substituting the value of MB in equation (iii),

2
2 ( 3 )A
aM x l

l
+ − + =

2a
l

−

MA = 2
2 2 ( 3 )a a x l
l l

− − − +

=
2

2 [ ( 3 )]a l x l
l

− + − +

=
2

2 (2 3 )a l x
l

− −



574 � Strength of Materials

These are the required equations for the fixing moments MA and MB of a fixed beam AB. Here we
shall discuss the following standard cases for the fixing moments.

1. A fixed beam carrying a central point load.

2. A fixed beam carrying an eccentric point load.

3. A fixed beam carrying a uniformly distributed load.
4. A fixed beam carrying a gradually varying load from zero at one end to w per unit length at the

other end.

24.5. Fixing Moments of a Fixed Beam Carrying a Central Point Load
Consider a beam AB of length l fixed at A and B and carrying a central point load W as shown in

Fig. 24.2 (a).

(i) Bending moment diagram
Let MA = Fixing moment at A and

MB = Fixing moment at B.

Since the beam is symmetrical, therefore MA and MB will also be equal. Moreover, the µ′-dia-
gram (i.e., bending moment diagram due to fixing moments MA and MB) will be a rectangle as shown
i n
Fig. 24.2 (b). We know that µ-diagram i.e., bending moment diagram due to central point lead will be

a triangle with the central ordinate equal to 
4

wl
 as shown in Fig. 24.2 (b).

Fig. 24.2

Now equating the areas of the two diagrams,

MA · l =
21

2 4 8
Wl Wll− ⋅ ⋅ = −

MA = 8
Wl−
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Similarly, MB = 8
Wl− ...[By symmetry]

Now complete the bending moment diagrams as shown in Fig. 24.2 (b).
(ii) Shear force diagram

Let RA = Reaction at A and

RB = Reaction at B.
Equating clockwise moments and anticlockwise moments about A,

RB × l + MA = MB + W × 
2
l

∴ RB =
2

W
...(ä MA = MB)

Similarly, RA =
2

W
...(By symmetry)

Now complete the S.F. diagram as shown in Fig. 24.2 (c).

(iii) Deflection of the beam
From the geometry of the figure, we find that the points of contraflexure will be at a distance of

l/4 from both the ends of the beam.

We know that bending moment at any section X, at a distance x from A,

MX = µX – µ′X

or
2

2

d y
EI

dx
= 2 8

Wx Wl−  ...(i)

Integrating the above equation,

dy
EI

dx
=

2

14 8
Wx Wlx C− +

where C1 is the first constant of integration. We know that when x = 0, then 
dy
dx

 = 0. Therefore C1 = 0.

or
dy

EI
dx

=
2

4 8
Wx Wlx−  ...(ii)

This is the required equation for the slope of the beam at any section.
Now integrating the equation (ii) once again,

EI · y =
3 2

212 16
Wx Wlx C− +

where C2 is the second constant of integration. We know that when x = 0, then y = 0. Therefore C2 = 0.

or EI · y =
3 2

12 16
Wx Wlx−  ...(iii)

This is the required equation for the deflection of the beam at any section. We know that the maximum
deflection occurs at the centre of the beam. Therefore substituting x = l/2 in the above equation,

EI · yC =
3 2 3 2 3

12 2 16 2 96 64 192
W l Wl l Wl Wl Wl⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

or yC =
3

192
Wl

EI
− ...(Minus sign means that the

    deflection is downwares)
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=
3

192
Wl

EI

NOTE: The term EI is known as flexural rigidity.

EXAMPLE 24.1. A fixed beam AB, 4 metres long, is carrying a central point load of 3 tonnes.
Determine the fixing moments and deflection of the beam under the load. Take flexural rigidity of
the beam as 5 × 103 kN-m2.

SOLUTION. Given: Length (l) = 4 m ;  Central point load (W) = 3 kN and flexural rigidity (EI) =
5 × 103 kN-m2.

Fixing moments
We know that fixing moment at A,

MA =
3 4

8 8
Wl ×− = −  = – 1.5 kN-m        Ans.

Similarly, fixing moment at B,

MB =
3 4

8 8
Wl ×− =  = – 1.5 kN-m        Ans.

Deflection of the beam under the load
We also know that deflection of the beam under the load,

yC =
33

3

3 (4)
192 192 (5 10 )

Wl
EI

×=
× ×

 = 0.2 × 10–3 m = 0.2 mm        Ans.

24.6. Fixing Moments of a Fixed Beam Carrying an Eccentric
Point Load

Fig. 24.3
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Consider a beam AB fixed at A and B and carrying an eccentric point load as shown in Fig.
24.3(a).

Let l = Span of the beam,

W = Load on the beam,

a = Distance between the fixed end A and the axis of the load,
b = Distance between the fixed end B and the axis of the load,

MA = Fixing moment at A and

MB = Fixing moment at B.
(i) Bending moment diagram

Since the beam is not symmetrical, therefore MA and MB will also not be equal. Moreover, the µ′-
diagram will be a trapezium as shown in Fig. 24.3 (b).

We know that the µ-diagram will be triangle with ordinate equal to Wab
l

 as shown in Fig. 24.3

(b). Now equating the areas of the two diagrams,

( )
2A B
lM M+ = 2

Wab l
l

− ×

∴ MA + MB =
Wab

l
− ...(i)

The moment of µ-diagram area about A (by splitting up the triangle into two right angled tri-
angles)

=
2

2 3 2 3
Wab a a Wab b ba

l l
⎡ ⎤⎛ ⎞ ⎛ ⎞− × × + × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=
2

22
6 2 3

Wab Wab ba ab
l l

⎡ ⎤⎛ ⎞⎛ ⎞− × + +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

...(ii)

and moment of µ′-diagram about A (by splitting up the trapezium into two triangles) as shown in
Fig. 24.3 (b)

=
22 ( 2 )

2 3 2 3 6A B A B
l l l l lM M M M⎛ ⎞ ⎛ ⎞× × + × × = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
...(iii)

Now equating these two moments,

2

( 2 )
6A B
lM M+ =

2
22

6 2 3
Wab Wab ba ab

l l

⎡ ⎤⎛ ⎞⎛ ⎞− × + +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

=
2

2 3
2

6 2 3
ab bWab Waba

l l

⎡ ⎤⎛ ⎞+⎛ ⎞− × +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

= ( )2 22 3
6 6

Wab Waba ab b
l l

⎡ ⎤⎛ ⎞− × + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=
2 2(2 3 )

6
Wab a ab b

l
− + +

=
2 2[2( ) 3( ) ]

6
Wab l b l b b b

l
− − + − + ...(ä a + b = l)

=
2 2 2 2[2( 2 ) 3( ) ]

6
Wab l b lb lb b b

l
− + − + − +
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=
2 2 2 2[2 2 4 3 3 ]

6
Wab l b lb lb b b

l
− + − + − +

=
2(2 ) (2 )

6 6
Wab Wabl lb l b

l
− − = − −

= [2( ) ]
6

Wab a b b− + − ...(ä a + b = l)

=
(2 )
6

Wab a b+−

∴ MA + 2MB = 2

(2 )Wab a b

l

+− ...(iv)

Subtracting equation (i) from (iv),

MB = 2

(2 ) 2
1

Wab a b a bWab Wab
l l ll

+ +⎛ ⎞− + = − −⎜ ⎟
⎝ ⎠

= 2

2
[2 ( ) ]

a b lWab Wab a l a l
l l l

+ −⎛ ⎞− = − + − −⎜ ⎟
⎝ ⎠

=
2

2
Wa b

l
−

Subtracting this value of MB in equation (i),
2

2A
Wa bM

l
− =

Wab
l

−

∴ MA =
2

2
1Wab Wa b Wab a

l l ll
⎛ ⎞− + = − −⎜ ⎟
⎝ ⎠

=
2

2

−⎛ ⎞− = −⎜ ⎟⎝ ⎠
l aWab Wab

l l l
(ä l – a = b)

Now complete the bending moment diagram as shown in Fig. 24.3(b).

(ii) Shear force diagram
Let RA = Reaction at A and

RB = Reaction at B.

Equating clockwise moments and anticlockwise moments about A,
RB × l + MA = MB + W · a

∴ RB =
( )B AM M W a

l
− + ⋅

Similarly, RA =
( )A BM M W b

l
− + ⋅

Now, complete the shear force diagram as shown in Fig. 24.3(b).

(iii) Deflection of the beam
We know that the bending moment at any section X at a distance x from A.

MX = µX – µ′X
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or
2

2

d y
EI

dx
= ( )A B A

Wb xx M M M
l l

⎡ ⎤− + −⎢ ⎥⎣ ⎦

=
2 2 2

2 2 2
Wbx Wab Wa b Wab x

l ll l l

⎡ ⎤⎛ ⎞
− + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

=
2

2 3

( )Wab a b xWbx Wab
l l l

⎡ ⎤−− +⎢ ⎥
⎣ ⎦

=
2

2 3

( )Wab a b xWbx Wab
l l l

−− −

Integrating the above equation,

dy
EI

dx
=

22 2

12 3

( )
2 2

−− − +Wab a b xWbx Wab x
C

l l l

where C1 is the first constant of integration. We know that when x = 0, then 
dy
dx

 = 0. Therefore C1 = 0.

or
dy

EI
dx

=
22 2

2 3

( )
2 2

Wab a b xWbx Wab x
l l l

−− −

=
2 2

2 2

( )
1

2
a a bWbx Wab x

l l l

−⎛ ⎞− −⎜ ⎟
⎝ ⎠

=
2 22 2

2 22
l a abWbx Wab x

l l l

⎛ ⎞− + −⎜ ⎟⎜ ⎟
⎝ ⎠

=
2 2

2 2
3 2

(( ) )
2

Wbx Wab xa b a ab
l l

+ − + − (ä l = a + b)

dy
EI

dx
=

2 2
2 2 2

3 2
( 2 )

2

Wbx Wab xa b ab a ab
l l

+ + − + −

=
2 2

2
3 2

(3 )
2

Wbx Wab xab b
l l

+ −

=
2 2 2

3 2

(3 )

2

Wb x a b Wab x

l l

+ − ...(v)

Integrating the above equation once again,

EI · y =
2 3 2 2

23 2

(3 )

6 2

Wb x a b Wab x C
l l

+ − +

where C2 is the second constant of integration. We know that when x = 0, then y = 0. Therefore
C2 = 0.

or EI · y =
2 3 2 3

3 2

(3 )

6 2

Wb x a b Wab x

l l

+ −

=
2 2

3
[ (3 ) 3 ]

6

Wb x x a b al
l

+ − ...(vi)

We know that for maximum deflection, 
dy
dx

 should be equal to zero. Therefore, equating the

equation (v) to zero.
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2 2 2

3 2

(3 )

2

Wb x a b Wab x

l l

+ − = 0

∴ x =
2

(3 )
al

a b+
Substituting this value of x in equation (vi),

EI · ymax =
22

3
2 2 (3 ) 3

3 (3 )6

Wb al al a b al
a b a bl

⎛ ⎞ ⎡ ⎤+ −⎜ ⎟ ⎢ ⎥+ +⎝ ⎠ ⎣ ⎦

=
2 2 2

3 2
4 (2 3 )

6 (3 )

Wb a l al al
l a b

× −
+

=
3 2

2
2
3 (3 )

Wa b

a b
− ×

+

∴ ymax =
3 2

2
2
3 (3 )

Wa b

a b EI
− ×

+
The deflection under the load may be found out by substituting x = a in equation (vi),

EI · y =
2 2

3
[ (3 ) 3 ]

6

Wb a a a b al
l

+ −

=
2 2

3
[ (3 ) 3 ( )]

6

Wb a a a b a a b
l

+ − + [ä l = a + b]

=
2 2 3 3

2 2
3 3

[3 3 3 ]
6 3

Wb a Wa ba ab a ab
l l

+ − − = −

∴ y =
3 3

33

Wa b

l EI
−

=
3 3

33

Wa b

l EI

EXAMPLE 24.2.  A fixed beam AB of 5 m span carries a point load of 20 kN at a distance of
2 m from A. Determine the values of fixing moments and the deflection under the load, if flexural
rigidity of the beam is 10 × 103 kN-m2.

SOLUTION. Given: Span (l) = 5 m ;  Point load (W) = 20 kN ;  Distance between load and A (a) =
2 m or distance between load and B (b) = 5 – 2 = 3 m and flexural rigidity (EI) = 10 × 103 kN-m2.
Fixing moments

We know that fixing moment at A,

MA =
22

2 2

20 2 (3)

(5)

Wab

l

× ×− = −  = – 14.4 kN-m        Ans.

and fixing moment at B, MB =
22

2 2

20 (2) 3

(5)

Wa b

l

× ×− = −  = – 9.6 kN-m        Ans.

Deflection under the load
We also know that deflection under the load,

y =
3 33 3

2 3 3

20 (2) (3)

3 3 (5) (10 10 )

Wa b

l EI

× ×=
× × ×

m

... (Minus sign indicated that
deflection is downwards)

... (Minus sign indicated that
deflection is downwards)
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= 1.15 × 10–3 m = 1.15 mm        Ans.

EXAMPLE 24.3. A beam of span l is fixed at its both ends. It carries two concentrated loads of W
each at a distance of l/3 from both the ends. Find the fixing moments and draw the bending moment
diagram.

SOLUTION. Given: Span = l and concentrated load = W.

Fig. 24.4

For the sake of convenience, let us first find out the fixing moments, separately due to loads at C
and D and then add up the moments. Since the beam and loading is symmetrical, therefore both the
fixing moments must be equal. Now consider the load W at C. From the geometry of the figure, we
find that a = l/3 and b = 2l/3.

We know that fixing moment at A due to the load W at C,

MA1
=

2

2

2 2

2
3 3 4

27

l lW
Wab Wl

l l

⎛ ⎞× × ⎜ ⎟
⎝ ⎠− = − = − ...(i)

Now consider the load W at D. From the geometry of the figure, we find that a = 2l/3 and b = l/3.
We know that fixing moment at A due to load W at D,

MA2
=

2

2

2 2

2
3 3 2

27

l lW
Wa b Wl

l l

⎛ ⎞× × ⎜ ⎟
⎝ ⎠− = − = − ...(ii)

∴ Total fixing moment at A,

MA = MB = MA1 + MA2 = 
4 2
27 27
Wl Wl⎛ ⎞− +⎜ ⎟

⎝ ⎠

=
6
27
Wl− = 2

9
− Wl

      Ans.

We know that when the beam is considered as a simply supported, the reaction at A,
RA = W

∴ Bending moment at C, MC =
3 3 3A
l l WlR W× = × =

Now complete the bending moment diagram as shown in Fig. 24.4.
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24.7. Fixing Moments of a Fixed Beam Carrying a Uniformly
Distributed Load

Fig. 24.5

Consider a beam AB of length l fixed at A and B and carrying a uniformly distributed load w per
unit length over the entire span as shown in Fig. 24.5 (a).

(i) Bending moment diagram
Let MA = Fixing moment at A, and

MB = Fixing moment at B.

Since the beam is symmetrical, therefore MA and MB will also be equal. Moreover, the µ′-dia-
gram will be a rectangle, as shown in Fig. 24.5 (b). We know that the µ-diagram will be a parabola

with the central ordinate equal to 
2

8
wl

 as shown in Fig. 24.5 (b).

Now equating the areas of the two diagrams,

MA · l =
2 32

3 8 12
wl wll− ⋅ ⋅ = −

∴ MA =
2

12
wl−

Similarly, MB =
2

12
wl−  ...(By symmetry)

We know that maximum positive bending moment at the centre of the beam (neglecting fixing
moments)

=
2

8
wl

∴ Net positive bending moment at the centre of the beam

=
2 2 2

8 12 24
wl wl wl− =
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Now complete the bending moment diagram as shown in Fig. 24.5 (b)
(ii) Shear force diagram

Let RA = Reaction at A, and

RB = Reaction at B.
Equating the clockwise moments and anticlockwise moments about A,

RB × l + MA = MB + w × l × 
2
l

∴ RB =
2
wl

...(ä MA = MB)

Similarly, RA =
2
wl

 ...(By symmetry)

Now complete the shear force diagram as shown in Fig. 24.5 (c).

(iii) Deflection of the beam
We know that bending moment at any section X, at a distance x from A,

MX = µX = µ′X = 
2 2

2 2 12
wl wx wlx

⎛ ⎞
⋅ − −⎜ ⎟

⎝ ⎠

∴
2

2

d y
EI

dx
=

2 2

2 2 12
wlx wx wl⎛ ⎞

− −⎜ ⎟
⎝ ⎠

...(i)

Integrating the above equation,

dy
EI

dx
=

2 3 2

14 6 12
wlx wx wl x C− − +

where C1 is the first constant of integration. We know that when x = 0, then 
dy
dx

 = 0. Therefore C1 = 0.

or
dy

EI
dx

=
2 3 2

4 6 12
wlx wx wl x− − ...(ii)

Integrating the equation (ii) once again,

EI · y =
3 4 2 2

212 24 24
wlx wx wl x C− − +

where C2 is the second constant of integration. We know that when x = 0, then y = 0. Therefore C2 = 0.

or EI · y =
3 4 2 2

12 24 24
wlx wx wl x− −  ...(iii)

We know that the maximum deflection occurs at the centre of the beam. Therefore substituting
x = l/2 in the above equation,

EI · yC =
3 4 22 4 4 4 4

12 2 24 2 24 2 96 384 96 384
wl l w l wl l wl wl wl wl⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − = − − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

or yC =
4

384
wl

EI
−

=
4

384
wl

EI

...(Minus sign means that
deflection is downwards
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(iv) Points of contraflexures
The points of contraflexures may be found out by equating (i) to zero,

2 2

2 2 12
wlx wx wl⎛ ⎞

− −⎜ ⎟
⎝ ⎠

= 0

or
2

2

6
llx x− − = 0

∴
2

2

6
lx lx− + = 0

Solving this quadratic equation for x,

x =

2
2 4

6
2 2 2 3

± −
= ±

ll l
l l

= 0.5 l ± 0.289 l = 0.789 l          and          0.211 l

EXAMPLE 24.4. An encastre beam AB 4 m long is subjected to uniformly distributed load of
3 kN/m over the entire length. Determine the values of maximum negative and positive bending
moments. Also calculate the maximum deflection of the beam. Take flexural rigidity of the beam
as 10 MN-m2.

SOLUTION. Given: Length (l) = 4 m ;  Uniformly distributed load (w) = 3 kN/m and flexural
rigidity (EI) = 10 MN-m = 10 × 103 kN-m2.
Maximum negative bending moment

We know that maximum negative bending moment,

= MA = MB = 
22 3 (4)

12 12
wl ×− = −  = – 4 kN-m        Ans.

Maximum positive bending moment
We know that maximum positive bending moment,

MC =
22 3 (4)

24 24
wl ×= −  = 2 kN-m        Ans.

Maximum deflection of the beam
We also know that maximum deflection of the beam,

yC =
44

3

3 (4)
384 384 (10 10 )

wl
EI

×=
× ×

 = 0.2 × 10–3 m

=  0.2 mm        Ans.

EXAMPLE 24.5.  A fixed beam AB of span 6 m is carrying a uniformly distributed load of
4kN/m over the left half of the span. Find the fixing moments and support reactions.

SOLUTION. Given: Span (l) = 6 m ;  Uniformly distributed load (w) = 4 kN/m and loaded portion
(l1) = 3 m.
Fixing moments

Let MA = Fixing moment at A and,

MB = Fixing moment at B.
First of all, consider the beam AB on a simply supported. Taking moments about A,

RB × 6 = 4 × 3 × 1.5 = 18
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∴ RB =
18
6

 = 3 kN

and RA = 3 × 4  – 3 = 9 kN

Fig. 24.6

We know that µ-diagram will be parabolic from A to C and triangular from C to B as shown in
Fig. 24.6 (b). The bending moment at C (treating the beam as a simply supported),

MC = RB × 3 = 3 × 3 = 9 kN-m
The bending moment at any section X in AC, at a distance x from A (treating the beam as a simply

supported),

MX = 29 4 9 2
2
xx x x x− ⋅ = −

∴ Area µ-diagram from A to B,

a =
3

2

0

1(9 2 ) 9.0 3
2

x x dx− + × ×∫

=

32 3

0

9 2 13.5
2 3
x x⎡ ⎤

− +⎢ ⎥
⎣ ⎦

=
2 39 (3) 2 (3)

13.5 36
2 3

× ×− + =

and area of µ′-diagram, a′ = (MA + MB) × 
6
2

 = 3 (MA + MB)

We know that a′ = – a

∴ 3 (MA + MB) = – 36

or MA + MB =
36
3

−  = – 12 ...(i)

Moment of µ-diagram area about A (by splitting up the diagram into AC and CB),

–a x =
3

2 3

0

1(9 2 ) 9 3 4
2

x x dx− + × × ×∫
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–a x =
33 4

0

9 2 54
3 4
x x⎡ ⎤

− +⎢ ⎥
⎣ ⎦

=
3 49 (3) 2 (3)

54
3 4

⎡ ⎤× ×− +⎢ ⎥
⎢ ⎥⎣ ⎦

 = 94.5

and moment of x′ -diagram area about A (by splitting up the trapezium into two triangles) as shown in
Fig. 24.6 (a),

–a x′′ =
2 66 6 6

2 3 2 3A BM M
×⎛ ⎞× × + × ×⎜ ⎟

⎝ ⎠

= 6MA + 12MB = 6(MA + 2MB)

We know that –a x′ = –
–a x

6(MA + 2MB) = – 94.5

∴ MA + 2MB =
94.5

6
−  = – 15.75 ...(ii)

Solving equations (i) and (ii),
MA = – 8.25 kN-m        Ans.
MB = – 3.75 kN-m        Ans.

Now complete the bending moment diagram as shown in Fig. 24.6 (b).
Support reactions

Let RA = Reaction at A, and

RB = Reaction at B.
Equating the clockwise moments and anticlockwise moments about A,

RB × 6 + 8.25 = (4 × 3 × 1.5) + 3.75 = 21.75

∴ RB =
21.75 8.25

6
−

 = 2.25 kN        Ans.

and RA = 4 × 3 – 2.25 = 9.75 kN        Ans.

EXAMPLE 24.6.  A beam AB of uniform section and 6 m span is built-in at the ends. A uni-
formly distributed load of 3 kN/m runs over the left half of the span and there is in addition a
concentrated load of 4 kN at right quarter as shown in Fig. 24.7.

Fig. 24.7

Determine the fixing moments at the ends, and the reactions. Sketch neatly the bending mo-
ment and shearing force diagram marking thereon salient values.

SOLUTION: Given: Span (l) = 6 m ;  Uniformly distributed load on AC (w) = 3 kN/m ;  Loaded
portion (l1) = 3 m and concentrated load at D (W) = 4 kN.

Fixing moments at the ends

Let MA = Fixing moment at A and
MB = Fixing moment at B.
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First of all, consider the beam AB as a simply supported. Taking moments about A,
RB × 6 = (3 × 3 × 1.5) + (4 × 4.5) = 31.5

∴ RB =
31.5

6  = 5.25 kN

and RA = (3 × 3 + 4) – 5.25 = 7.75 kN

We know that the µ-diagram will be parabolic from A to C, trapezoidal from C to D and triangu-
lar from D to B as shown in Fig. 24.8(b). The bending moment at D (treating the beam at a simply
supported),

MD = 5.25 × 1.5 = 7.875 kN-m
and MC = 5.25 × 3 – 4 × 1.5 = 9.75 kN-m

The bending moment at any section X in AC, at a distance x from A (treating the beam as a simply
supported),

MX = 7.75x – 3x 
2
x

 = 7.75x – 1.5x2

∴ Area of µ-diagram from A to B,

∴ a =

3
2

0

1(7.75 1.5 ) (9.75 7.875) 1.5
2

x x dx ⎛ ⎞− + + ×⎜ ⎟
⎝ ⎠∫

1 7.875 1.5
2

⎛ ⎞+ × ×⎜ ⎟
⎝ ⎠

=

32 3

0

7.75 1.5 19.125
2 3

x x⎡ ⎤
− +⎢ ⎥

⎣ ⎦

=
2 37.75 (3) 1.5 (3)

19.125
2 3
× ×− +  = 40.5

Fig. 24.8
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and area of µ-diagram, a′ =
6( )
2A BM M+ ×  = 3 (MA + MB)

We know that a′ = – a

∴ 3 (MA + MB) = – 40.5 ...(ä a = 40.5)
or MA + MB = – 13.5 ...(i)

Moment of µ-diagram area about A (by splitting up the diagram into AC, CD and DB),

–a x =
3

2 3

0

1(7.75 1.5 ) 9.75 1.5 3.5
2

x x dx ⎛ ⎞− + × × ×⎜ ⎟
⎝ ⎠∫

1 17.875 1.5 4 7.875 1.5 5
2 2

⎛ ⎞ ⎛ ⎞+ × × × + × × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
33 4

0

7.75 1.5 78.75
3 4

x x⎡ ⎤
− +⎢ ⎥

⎣ ⎦

=
3 47.75 (3) 1.5 (3)

78.75
3 4

⎡ ⎤× ×− +⎢ ⎥
⎢ ⎥⎣ ⎦

 = 118.1

and moment of µ′-diagram area about A (by splitting up the trapezium into two triangles),

–a x′′ =
2 66 6 6

2 3 2 3A BM M
×⎛ ⎞⎛ ⎞× × + × ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= 6MA + 12MB = 6 (MA + 2MB)

We know that –a x′′ = – –a x
∴ 6 (MA + 2MB) = – 118.1

or MA + 2MB =
118.1

6
−  = – 19.7 ...(ii)

Solving equations (i) and (ii), we get
MA = – 7.3 kN-m          and          MB = – 6.2 kN-m

Now complete the bending moment diagram as shown in Fig. 24.8 (b).
Shearing force diagram

Let RA = Reaction at A and
RB = Reaction at B.

Equating the clockwise moments and anticlockwise moments about A,
RB × 6 + 7.3 = (3 × 3 × 1.5) + (4 × 4.5) + 6.2 = 37.7

∴ RB =
37.7 7.3

6
−

 = 5.07 kN

and RA = (3 × 3 + 4) – 5.07 = 7.93 kN
Now complete the shear force diagram as shown in Fig. 24.8 (c).

EXERCISE 24.1

1. A fixed beam of 2 m span is carrying a point load of 50 kN at its mid-point. Find the fixing
moments and deflection of the beam under the load. Take EI as 2 × 103 kN-m2.

[Ans. –12.5 kN-m ;  –12.5 kN-m ;  1.04 mm]
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2. A fixed beam AB of span 3 m is subjected to a point load of 15 kN at a distance of 1 m from A.
Determine the fixing moments of A and B. [Ans. –6.67 kN-m ;  –3.33 kN-m]

3. A built-in beam of span 3.6 m is carrying a uniformly distributed load of 15 kN/m. Find the
fixing moments at the supports. Also find the maximum positive bending moment.

 [Ans. –16.2 kN-m ;  8.1 kN-m]

4. A fixed beam AB of span 6 m is subjected to two point loads of 20 kN and 15 kN at distances of
2 m and 4 m from A. Calculate the fixing moments at A and B.[Ans. –24.4 kN-m ;  –22.2 kN-m]

24.8. Fixing Moments of a Fixed Beam Carrying a Gradually
Varying Load from Zero at One End to w per unit length at
the Other

Consider a beam AB fixed at A and B and carrying a gradually varying load from zero at A to w
per unit length at B as shown in Fig. 24.9 (a).

Fig. 24.9

Let l = Span of the beam,

MA = Fixing moment at A and
MB = Fixing moment at B.

First of all, consider the beam AB as a simply supported and taking moments about A,

RB × l =
22

2 3 3
l l wlw × × =

∴ RB = 3
wl
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and RA =
2 3 6

wl wl wl− =

We know that the µ-diagram will be parabolic from A to B. The bending moment at any section
X, at a distance x from A (treating the beam as a simply supported),

MX =
3

6 2 3 6 6
wl wx x x wlx wxx

l l
× − × × = −

∴ Area of µ-diagram, a =
3

0
6 6

l
wlx wx dx

l

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∫

=
3

0
6

l
w xlx dx

l

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∫

=
2 4

0
6 2 4

l
w lx x

l

⎡ ⎤
−⎢ ⎥

⎣ ⎦

=
3 3 3

6 2 4 24
w l l wl⎛ ⎞

− =⎜ ⎟
⎝ ⎠

and area of µ′-diagram, a′ = ( )
2 A B
l M M+

We know that a′ = – a

∴ ( )
2 A B
l M M+ =

3

24
wl−

or MA + MB =
2

12
wl− ...(i)

Moment of µ-diagram area about A,

–a x =
2 4

0
6 6

l
wlx wx dx

l

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∫

=
4

2

0
6

l
w xlx dx

l

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∫

=
3 5

0
6 3 5

l
w lx x

l

⎡ ⎤
−⎢ ⎥

⎣ ⎦

=
4 4 4

6 3 5 45
w l l wl⎛ ⎞

− =⎜ ⎟
⎝ ⎠

and moment of µ′-diagram about A (by splitting up the trapezium into two triangles),

a′ x′ = 2 3 2 3A B
l l l lM M× × + × ×

=
2

( 2 )
6 A B
l M M+

We know that –a x′′ = –
–a x

∴
2

( 2 )
6 A B
l M M+ =

4

45
wl−
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or MA + 2MB =
22

15
wl− ...(ii)

Solving equations (i) and (ii),

MA =
2

30 15
wl Wl− = − ... 2

wlW⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

and MB =
2

20 10
wl Wl− = − ... 2

wlW⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

Alternative method
Consider a strip of width dx at a distance x from the support A. We see that the load at this section

=
wx
l

∴ Weight of the strip, W =
wx dx
l

⋅

We know that the fixing moment at A, due to the strip

=

2
2

2 2

( )wx dx x l xWab l
l l

⋅ −
− =

=
2 2

3

( )wx l x dx

l

−−

Total fixed end moment at A will be given by integrating the above equation from 0 to l,

MA =
2 2

3
0

( )
l

wx l x dx

l

−−∫

=
2 2 2

3
0

( 2 )
l

w x l x lx dx
l

− + −∫

=
2 2 4 2

3
0

( 2 )
l

w l x x lx dx
l

− + −∫

=
2 3 5 4

3
0

2
3 5 4

l
l xw x lx

l

⎡ ⎤
− + −⎢ ⎥

⎢ ⎥⎣ ⎦

=
5 5 5

3 3 5 2
w l l l

l

⎡ ⎤
− + −⎢ ⎥

⎣ ⎦

=
2

30 15
wl Wl− = − ... 2

wlW⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

Similarly, MB =

2

2
0

( )l wx dx x l x
l

l

⋅ −
−∫

=
3

3
0

( )
l

w x l x dx
l

− −∫
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=
3 4

3
0

( )
l

w lx x dx
l

− −∫

=
4 5

3
0

4 5

l
w lx x

l

⎡ ⎤
− −⎢ ⎥

⎣ ⎦

=
5 5

3 4 5
w l l

l

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

=
2

20 10
wl Wl− = − ... 2

wlW⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

We know that the maximum* bending moment equal to 0.128 Wl will take place at a distance of
0.577 l from A, treating the beam as a simply supported. Now complete the bending moment diagram
as shown in Fig. 24.9 (b).

Shear force diagram
Let RA = Reaction at A and

RB = Reaction at B.

Equating the clockwise moments and anticlockwise moments about A,

RB × l + MA =
22

2 3 3B B
l l wlM w M+ × × = +

∴ RB =
3

B AM M wl
l
−

+

Similarly, equating clockwise moments and anticlockwise moments about B,

RA × l + MB =
2

2 3 6A A
l l wlM w M+ × × = +

∴ RA =
6

A BM M wl
l
−

+

Now complete the shear force diagram as shown in Fig. 24.9 (c).

EXAMPLE 24.7.  A beam AB of span 5 m is built-in at its both ends. It carries a gradually
varying load from zero at A to 4 kN/m at B. Determine the fixed end moments and reactions at
both ends of the beam.

SOLUTION. Given: Span (l) = 5 m and load at B (w) = 4 kN/m

Fixed end moments
We know that fixed end moment at A,

MA =
22 4 (5)

30 30
wl ×− = −  = – 3.33 kN-m        Ans.

and fixed end moment at B,

MB =
22 4 (5)

20 20
wl ×− = −  = – 5.0 kN-m        Ans.

Reactions at both ends of the beam
We also know that reaction at A,

RA =
3.33 ( 5.0) 4 5

6 5 6
A BM M wl

l
− − − − ×+ = +  kN

* For details, please refer to Art. 13.14
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= 0.33 + 3.33 = 3.66 kN        Ans.

and reaction at B,

RB =
5.0 ( 3.33) 4 5

3 5 3
B AM M wl

l
− − − − ×+ = +  kNm

= – 0.33 + 6.67 = 6.34 kN        Ans.

24.9. Fixing Moments of a Fixed Beam due to Sinking of a Support
Sometimes, one of the two supports of a fixed beam sinks down, whereas the other remains at the

same level. The effect of sinking of a support is to produce some additional moment at the two
supports. Consider a beam fixed at A and B without any load. Let the support B sink down from its
original level as shown in Fig. 24.10 (a).

Let l = Span of the fixed beam AB and
δ = Amount, by which the support B has sunk down.

Since the beam is not loaded, therefore

4

4

d y
EI

dx
= 0

Integrating the above equation,

3

3

d y
EI

dx
= – FA  ...(ä FA is negative)

where FA is the shear force at A.

Fig. 24.10

Integrating the above equation again,

2

2

d y
EI

dx
= – FA · x – MA  ...(ä MA is negative)

where MA is the bending moment at A,

Integrating the above equation once again,

dy
EI

dx
=

2

12
A

A
F x

M x C
⋅

− − ⋅ +
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where C1 is the first constant of integration. We know that when x = 0, then 
dy
dx

 = 0. Therefore C1 = 0.

∴ dy
EI

dx
=

2

2
A

A

F x
M x

⋅
− − ⋅  ...(i)

Integrating the above equation once again,

EI · y =
3 2

26 2
A AF x M x

C
⋅ ⋅

− − +

where C2 is the second constant of integration. We know that when x = 0, then y = 0. Therefore C2 = 0.

∴ EI · y =
3 2

6 2
A AF x M x⋅ ⋅

− − ...(ii)

We know that when x = l, then 
dy
dx

 = 0,

∴ 0 =
2

2
A

A

F l
M l

⋅
− − ⋅

or FA =
2 AM

l
− ...(iii)

We also know that when x = l, then y = δ

∴ EI · δ =
2 2

6 2
A AF l M l⋅ ⋅

− −

Substituting the value of FA in the above equation,

EI · δ =
232

6 2
A AM M ll

l
⋅

× −

=
2 2

2 3
A AM l M l⋅ ⋅

− +

=
2

2 1 1
2 3 6

A
A

M l
M l

⋅⎛ ⎞− ⋅ − = −⎜ ⎟
⎝ ⎠

∴ MA =
2

6EI

l

δ−

Now substituting the value of MA in equation (iii),

FA = 2 3

6 122 EI EI
l l l

δ δ⎛ ⎞− − × = +⎜ ⎟
⎝ ⎠

∴ MB = FA · l + MA = 3 2

12 6EI EI
l

l l

δ δ⋅ −

= 2

6EI

l

δ+

The bending moment diagram is shown in Fig. 24.10 (b).
NOTE. If the support A sinks down by δ from its original level, then

MA =
2

6EI

l

δ
          and          MB = 

2
6EI

l

δ−
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EXAMPLE 24.8.  A steel fixed beam AB of span 6 m is 60 mm wide and 100 mm deep. The
support B sinks down by 6 mm. Find the fixing moments at A and B. Take E = 200 GPa.

SOLUTION. Given: Span (l) = 6 m =  mm ;  Width (b) = 60 mm ;  Depth (d) = 100 mm ;  Sinking
of the support B (δ) = 6 mm and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

We know that moment of inertia of the beam section,

I =
33 60 (100)

12 12
bd ×=  = 5 × 106 mm4

∴ Fixing moment at A,

MA =
3 6

2 3 2

6 6 (200 10 ) (5 10 ) 6

(6 10 )

EI

l

δ × × × × ×− = −
×

 N-mm

= – 1 × 106 N-mm = – 1 kN-m        Ans.
and fixing moment at B,

MB =
3 6

2 3 2

6 6 (200 10 ) (5 10 ) 6

(6 10 )

EI

l

δ × × × × ×+ =
×

 N-mm

= + 1 × 106 N-mm = 1 kN-m        Ans.

EXAMPLE 24.9.   A beam AB of 8 m span is fixed at its both ends. When a uniformly distrib-
uted load of 20 kN/m is placed on the beam, its support B sinks 12 mm below the support A. What
are the support moments, if I for the section is 98.75 × 106 mm4 and E = 200 GPa.

SOLUTION. Given: Span (l) = 8 m ;  Uniformly distributed load (w) = 20 kN/m ;  Sinking of
support B (δ) = 12 mm ;  Moment of inertia of the beam section (I) = 98.75 × 106 mm4 and modulus
of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

First of all, let us find out the support moments due to uniformly distributed load. We know that
support moments at A,

MA1
=

22 20 (8)
12 12
wl ×− = −  = – 106.67 kN-m

Similarly, MB1
= – 106.7 kN-m

Now let us find out the support moments due to sinking of the support B. We know that support
moment at A,

MA2
=

3 6

2 3 2

6 6 (200 10 ) (98.25 10 ) 12

(8 10 )

EI

l

δ × × × × ×− = −
×

 N-mm

= – 22.2 × 106 N-mm = – 22.2 kN-m

∴ Support moment at A,

MA = MA1
 + MA2

 = – 106.7 + (– 22.2) = – 128.9 kN-m        Ans.

We also know that support moment at B,

MB2
=

3 6

2 3 2

6 6 (200 10 ) (98.75 10 ) 12

(8 10 )

EI

l

δ × × × × ×+ = +
×

= + 22.2 × 106 N-mm = 22.2 kN-m
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∴ Support moment at B,
MB = MB1

 + MB2
 =  – 106.7 + 22.2 = – 84.5 kN-m        Ans.

EXERCISE 24.2

1. A fixed beam AB of span 3 m carries a gradually varying load from zero at A to 5 kN/m at B.
Find the fixed end moments at A and B. [Ans. –1.5 kN-m ;  2.25 kN-m]

2. A fixed beam AB is of span 4 m. The support B sinks down by 10 mm. Find the fixing moments at
A and B if the flexural rigidity of the beam is 4 × 103 kN-m2. [Ans. –15 kN-m ;  +15 kN-m]

3. A built-in beam AB of span 4 m is carrying a uniformly distributed load of 15 kN/m. The
support B sinks down by 10 mm. Determine the fixing moments at A and B. Take E = 200 Gpa
and I = 8 × 106 mm4. [Ans. –26 kN-m ;  –14 kN-m]

Hints: MA1
=

22 15 (4)
12 12
wl ×− = −  = – 20 kN-m

and MA2
=

3 6

2 3 2

6 6 (200 10 ) (8 10 ) 10

(4 10 )

δ × × × × ×− = −
×

EI

l
 N-mm

= – 6 × 106 N-mm = – 6 kN-m

∴ MA = MA1
 + MA2

 = – 20 – 6 = – 26 kN-m

Similarly, MB = MB1
 + MB2

 = – 20 + 6 = – 14 kN-m

QUESTIONS

1. What is your idea of an encastre beam and the arrangement of fixing it at its two supports ?
2. What is meant by an encastre beam? Is there any advantage in using it ?

3. If a fixed beam AB carries a central load W, find out the value of maximum deflection.

4. Derive an expression for the maximum deflection of an encastre beam, carrying a uniformly
distributed load of w per unit length.

5. A beam, built-in at its both ends, has a uniform flexural rigidity EI throughout its length l. It
carries a single point load W, which is placed at a distance a from the left end. Calculate, from
first principles, the fixed end moments developed at two ends.

6. Derive an expression for the fixing moments, when one of the supports of a fixed beam sinks
down by δ from its original position.

OBJECTIVE TYPE QUESTIONS

1. When a fixed beam of span l is subjected to a central point load W, then the fixing moments are

(a)
4

Wl− (b) 8
Wl− (c)

12
Wl− (d) 16

Wl−

2. A fixed beam AB of span l is carrying a point load W at a distance a from the support A and at
a distance of b from the support B. The fixing moment at A will be

(a)
2Wab

l
(b)

2Wa b
l

(c)
2

2
Wab

l
(d)

2

2
Wa b

l



Chapter 24 : Fixed Beams � 597

3. A fixed beam AB of length l is loaded with a uniformly distributed load of w per unit length. The
support moments are

(a)
2

8
wl− (b)

2

12
wl− (c)

2

24
wl− (d)

2

48
wl−

4. A built-in beam AB of span l is loaded with a gradually varying load from zero at A to w per unit
length at B. The fixing moment A will be

(a)
2

8
wl (b)

2

12
wl (c)

2

20
wl

(d)
2

30
wl

ANSWERS

1. (b) 2. (c) 3. (b) 4. (d)
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1. Introduction.
2. Bending Moment Diagrams for

Continuous Beams.
3. Claypeyron’s Theorem of Three

Moments.
4. Application of Clapeyron’s Theorem of

Three Moments to various Types of
Continuous Beams.

5. Continuous Beams with Simply
Supported Ends.

6. Continuous Beams with Fixed End
Supports.

7. Continuous Beams with End Span
Overhanging.

8. Continuous Beams with a Sinking
Support.

9. Continuous Beams Subjected to a
Couple.

25.1. Introduction
A beam, which is supported on more than two

supports, is called a continuous beam. Such a
beam, when loaded will deflect with convexity
upwards, over the intermediate supports and with
concavity upwards over the mid of the spans. The
intermediate supports of a continuous beam are
always subjected to some bending moment. The
end supports, if simply supported will not be sub-
jected to any bending moment. But the end sup-
ports, if fixed, will be subjected to fixing moments
and the slope of the beam, at the fixed ends will
be zero.

25.2. Bending Moment Diagrams
for Continuous Beams

The analysis of a continuous beam is similar

25C h a p t e r
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to that of a fixed beam. The bending moment diagram for a continuous beam under any system of
loading may be drawn in the following two stages:

1. By considering the beam as a series of discontinuous beams, from support to support and drawing
the usual μ-diagram due to vertical loads.

2. By superimposing the usual μ′-diagram, due to end moments over μ-diagram.

25.3. Claypeyron’s Theorem of Three Moments
It states, “If a beam has n supports, the end ones being fixed, then the same number of equations

required to determine the support moments may be obtained from the consecutive pairs of spans i.e.,
AB-BC, BC-CD, CD-DE and so on.”
Proof:

Consider a continuous beam ABC, fixed at A and C and supported at B as shown in Fig. 25.1 (a).

Let l1 = Span  of the beam,
I1 = Moment of inertia of the beam in span AB,

l2 , I2 = Corresponding values for the span BC,

MA = Support moment at A,
MB = Support moment at B,

MC = Support moment at C,

Fig. 25.1

μX = Bending moment at any section X, considering the beam be
tween two supports as simply supported and

μX′ = Fixing moment at any section X, of the beam,

We know that in the span AB, the bending moment at any section X at a distance x from A,

MX = μX + μX′

∴
2

1 2

d y
EI

dx
= μX + μX′ ...

2

2
d yM

EI dx

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∵
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Multiplying the above equation by x and integrating the same for the whole span AB i.e., from 0
to I1.

1 2

1 2
0

·
l

x d y
EI

dx∫ =
1 1

0 0

· · · ·

l l

X Xx dx x dxμ + μ ′∫ ∫
1

1
0

·
l

dy
EI x y

dx
⎡ ⎤−⎢ ⎥⎣ ⎦

= 1 1 1 1a x a x+ ′ ′

or EI1 [l1 iB – yB) – 0 (iA – yA)] = 1 1 1 1a x a x+ ′

EI1 [l1 iB – yB] = 1 1 1 1a x a x+ ′ ′ ...(i)

Since yB is equal to zero, therefore

EI1 l1 iB = 1 1 1 1a x a x+ ′ ′ ...(ii)
where a1 = Area of the μ-diagram in the span AB,

1x = Distance of centre of gravity of μ-diagram from A in the span AB,

1 1a x′ ′ = Corresponding values for the μ′-diagram and

iB = Slope of the beam AB at B,
We know that the shape of the μ′-diagram is trapezoidal, having end ordinates equal to MA and

MB as shown in Fig. 25.1 (a). Therefore splitting up this trapezium into two triangles,

1 1·a x′ ′ = 1 1 1 12
2 3 2 3A B
l l l l

M M
⎛ ⎞ ⎛ ⎞× × + × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
2
1( 2 )
6A B

l
M M+

Substituting this value of 1 1·a x′ ′  in equation (ii)

EI1 l1 iB =
2
1

1 1 ( 2 )
6A B
l

a x M M+ +

or EI1 iB = 1 1 1

1

( 2 )
6A B

a x l
M M

l
+ + ...(iii)

∴ E · iB = 1 1 1

1 1 1

( 2 )
6A B

a x l
M M

I l I
+ +

Similarly, in the span BC, taking C as the origin and x positive to the left,

EiB′ = 2 2 2

2 2 2

( 2 )
6C B

a x l
M M

I l I
+ + ...(iv)

where, a2 = Area of the μ-diagram in the span BC,

2x′ = Distance of centre of gravity of μ-diagram from C in the

span BC,

a′2 = Area of the μ′-diagram in the span BC,

2x′ = Distance of the centre of gravity of the μ′-diagram from

C in the span BC and
i′B = Slope of the beam BC at B,
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Since iB is equal to –i′B, therefore E · iB is equal to – E · i′B.

or 1 1 1

1 1 1

( 2 )
6A B

a x l
M M

I l I
+ + = 2 2 2

2 2 2

( 2 )
6C B

a x l
M M

I l I
⎡ ⎤− + +⎢ ⎥
⎣ ⎦

(MA + 2MB)
1

1

l
I  + (MC+2MB) 2

2

l
I

= – 1 1 2 2

1 1 2 2

6 6a x a x
I l I l

−

1 1 2 2

1 1 2 2

2 2A B C B

l l l l
M M M M

I I I I
+ + + = – 1 1 2 2

1 1 2 2

6 6⎛ ⎞
+⎜ ⎟⎝ ⎠

a x a x
I l I l

∴ 1 1 2 2

2 1 2 2

2A B C
l l l l

M M M
I I I I

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= 1 1 2 2

1 1 2 2

6 6a x a x
I l I l

⎛ ⎞− +⎜ ⎟
⎝ ⎠

NOTES: 1. For the sake of simplicity, we have considered a continuous beam with two spans only. But this
equation can be extended for any number of spans.

2. If moment of inertia of the beam is constant, then

MA l1 + 2 MB (l1 + l2) + MC l2 = 1 1 2 2

1 2

6 6a x a x
I I

⎛ ⎞− +⎜ ⎟
⎝ ⎠

3. The shear force diagram for the beam may be drawn as usual.
4. The elastic curve of the beam may be drawn as usual as shown in Fig. 25.1 (c).

25.4. Application of Clapeyron’s Theorem of Three Moments to
Various Types of Continuous Beams

We have already studied in Art. 25.3 the Clapeyron’s theorem of three moments. Now we shall
discuss its application to the following types of continuous beams:

1. Continuous beams with simply supported ends,

2. Continuous beams with fixed end supports,
3. Continuous beams with the end span overhanging and

4. Continuous beams with a sinking support.

25.5. Continuous Beams with Simply Supported Ends
Sometimes, a continuous beam is simply supported on its one or both the end supports. In such a

case, the fixing moment on the simply supported end is zero.

EXAMPLE 25.1. A continuous beam ABC 10 m long rests on three supports A, B and C at the
same level and is loaded as shown in Fig. 25.2.

Fig. 25.2

Determine the moments over the beam and draw the bending moment diagram. Also calculate
the reactions at the supports and draw the shear force diagram.

SOLUTION. Given : Length AB (l1) = 6 m ;  Length BC (l2) = 4 m ;  Point load at D = (W) = 3 kN;
Distance AD (a) = 2 m ;  Distance DB (b) = 4 m and uniformly distributed load in BC = w = 1 kN/m.
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Fig. 25.3

Moments over the beam
Let *MA = Fixing moment at A,

MB = Fixing moment at B and

*MC = Fixing moment at C.
First of all, let us consider the beam AB as a simply supported. Therefore, bending moment at D,

MD =
1

3 2 4
4

6
Wab

l
× ×= =  kN-m

Similarly, bending moment at the mid of the span BC

=
2 2
2 1 (4)

2
8 8

wl ×= =  kN-m

Now draw the μ-diagrams with the help of above bending moments as shown in Fig. 25.3 (a).
From the geometry of the above bending moment diagrams, we find that

1 1a x =
2 21 1 42 4 4 4 2 32

2 3 2 3
⎡ × ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞× × × + × × + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

and 2 2a x =
2 322 4 2
3 3

⎛ ⎞× × × =
⎝ ⎠

Now using three moments equation,

MA l1 + 2MB (l1 + l2) + MC l2 = 1 1 2 2

1 2

6 6a x a x
l l

⎛ ⎞+⎜ ⎟
⎝ ⎠

0 + 2 MB (6 + 4) + 0 =

3266 32 3
6 4

⎛ ⎞××⎜ ⎟+
⎜ ⎟
⎜ ⎟⎝ ⎠

* Since the beam is simply supported at A and C, therefore fixing moments MA and MC will be zero.
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∴ 20 MB = – (32 + 16) = – 48

or MB =
48
20

−  = – 2.4 kN-m        Ans.

Now complete the bending moment diagram as shown in Fig. 25.3 (b).

Shear force diagram

Let RA = Reaction at A,
RB = Reaction at B and

RC = Reaction at C.

Taking moments about B,
RA × 6 – (3 × 4) = – 2.4 ...(ä MB = – 2.4 kN-m)

∴ RA =
2.4 12.0 9.6

6 6
− + =  = 1.6 kN        Ans.

Similarly, RC × 4 – (4 × 2) = – 2.4 ...(ä MB = – 2.4 kN-m)

∴ RC =
2.4 8.0 5.6

4 4
− + =  = 1.4 kN        Ans.

and RB = (3 + 1 × 4) – (1.6 + 1.4) = 4.0 kN        Ans.
Now complete the shear force diagram as shown in Fig. 25.3 (c)

EXAMPLE 25.2. A continuous beam ABCD, simply supported at A, B, C and D, is loaded as
shown in Fig. 25.4.

Fig. 25.4

Find the moments over the beam and draw bending moment and shear force diagrams.

SOLUTION. Given : Length AB (l1) = 6 m ;  Length BC (l2) = 5 m ;  Length CD (l3) = 4 m ;  Load
at E (W1) = 9 kN ;  distance AE (a1) = 2 m ;  Distance EB (b1) = 4 m ;  Load at F (W2) = 8 kN ;  Distance
BF (a2) = 2 m ;  Distance FC (b2) = 3 m and uniformly distributed load in CD (w) = 3 kN/m.

Moments over the beam
Let * MA = Fixing moment at A,

MB = Fixing moment at B,

MC = Fixing moment at C and

*MD = Fixing moment at D.
First of all, let us consider the beam AB as a simply supported beam. Therefore bending moment

at E,

ME = 1 1 1

1

9 2 4
6

W a b
l

× ×=  = 12 kN-m

Similarly, MF = 2 2 2

2

8 2 3
5

W a b
l

× ×=  = 9.6 kN-m

* Since the beam is simply supported at A and D, therefore fixing moments MA and MD will be zero.
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and bending moment at the mid of the span CD

=
2 2
3 3 (4)

8 8
wl ×=  = 6 kN-m

Fig. 25.5

Now draw the m-diagrams with the help of above bending moments as shown in Fig. 25.5 (b).
From the geometry of the above bending moment diagrams, we find that for the spans AB and BC,

1 1a x =
2 21 1 42 12 4 12 2 96

2 3 2 3
⎡ × ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞× × × + × × + =⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

and 2 2a x =
2 31 1 23 9.6 2 9.6 3 64

2 3 2 3
⎡ × ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞× × × + × × + =⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

Similarly, for the spans BC and CD,

* 2 2a x =
2 31 1 33 9.6 2 9.6 2 56

2 3 2 3
⎡ × ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞× × × + × × + =⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

and 3 3a x =
2 6 4 2 32
3

⎛ ⎞× × × =⎜ ⎟
⎝ ⎠

Now using three moments equation for the spans AB and BC,

MA l1 + 2MB (l1 + l2) + MC l2 = 1 1 2 2

1 2

6 6a x a x
l l

⎛ ⎞− +⎜ ⎟
⎝ ⎠

0 + 2 MB (6 + 5) + MC × 5 =
6 96 6 64

6 5
× ×⎛ ⎞− +⎜ ⎟

⎝ ⎠

22 MB + 5 MC = – 172.8 ...(i)

* The previous value of 2 2a x  is with reference to the support C (being the end support of spans AB and

BC). this value of 2 2a x  is with reference to the support B (being the end support of spans BC and CD).
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Again using three moments equation for the spans BC and CD,

MB l2 + 2 MC (l2 + l3) + MD l3 = 3 32 2

2 3

66 a xa x
l l

⎛ ⎞
− +⎜ ⎟
⎝ ⎠

MB × 5 + 2 MC (5 + 4) + 0 =
6 56 6 32

5 4
× ×⎛ ⎞+⎜ ⎟

⎝ ⎠

5 MB + 18 MC = – 115.2 ...(ii)
Solving equations (i) and (ii),

MB = – 6.84 kN-m          and          MC = – 4.48 kN-m        Ans.
Now complete the bending moment diagram as shown in Fig. 25.5 (b).

Reactions at the supports

Let RA = Reaction at A,

RC = Reaction at B,
RC = Reaction at C and

RD = Reaction at D.

Taking moments about B,
RA × 6 – (9 × 4) = – 6.84 ...(ä MB = – 6.84 kN-m)

∴ RA =
6.84 36 29.16

6 6
− + =  = 4.86 kN        Ans.

Now taking moments about C,
RD × 4 – (12 × 2) = – 4.48 ...(ä MC = – 4.48 kN-m)

∴ RD =
4.48 24 19.52

4 4
− + =  = 4.88 kN        Ans.

Again taking moments about C,

RA × 11 – (9 × 9) + RB × 5 – (8 × 3)

= – 4.48 ...(ä MC = – 4.48 kN-m)
4.86 × 11 – 81 + 5 RB – 24= – 4.48

RB =
4.48 53.46 81 24 47.06

5 5
− − + + =  = 9.41 kN        Ans.

and RC = (9 + 8 + 12) – (4.86 + 4.88 + 9.41) = 9.85 kN       Ans.
Now draw the shear force diagram as shown in Fig. 25.5 (c)

25.6. Continuous Beams with Fixed End Supports
Sometimes, a continuous beam is fixed at its one or both ends. If the beam is fixed at the left end

A, then an imaginary zero span is taken to the left of A and the three moments theorem is applied as
usual. Similarly, if the beam is fixed at the right end, then an imaginary zero span is taken after the
right end support and the three moments theorem is applied as usual.
NOTES. 1. The fixing moment, at the imaginary support of the zero span i.e., M0 is always equal to zero.

2. Propped cantilevers and beams may also be analyses by Clapeyron’s theorem of three moments.

EXAMPLE 25.3.    A continuous beam ABC of uniform section, with span AB as 8 m and BC as
6 m, is fixed at A and simply supported at B and C. The beam is carrying a uniformly distributed
load of 1 kN/m throughout its length. Find the moments along the beam and the reactions at the
supports. Also draw the bending moment and shear force diagrams.



606 � Strength of Materials

SOLUTION. Given : Length AB (l1) = 8 m ;  Length BC (l2) = 6 m and uniformly distributed load
(w) = 1 kN/m.
Moments along the beam

Since the beam is fixed at A, therefore assume a zero span to the left of A.

Let * M0 = Fixing moment at the left hand support of zero span,
MA = Fixing moment at A,

MB = Fixing moment at B and

*MC = Fixing moment at C.
First of all, consider the beam AB as a simply supported beam. Therefore bending moment at the

mid of the span AB.

=
2 2
1 1 0 (8)

8 8
wl +=  = 8.0 kN-m

Similarly, bending moment at the mid of the span BC

=
2 2
2 1 (6)

8 8
wl ×=  = 4.5 kN-m

Now draw the μ-diagram with the help of above bending moments as shown in Fig. 25.6 (b).
From the geometry of the above bending moment diagrams, we find that for the span 0A and AB,

Fig. 25.6

0 0a x = 0

and 1 1a x =
2 5128 8 4 170.67
3 3

⎛ ⎞× × × = =⎜ ⎟
⎝ ⎠

* Since threre is a zero span on the left of A, therefore the fixing moment M0 will be zero. Moreover, as the
beam is simply supported at C, therefore fixing moment MC will also be zero.
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Similarly, for the span AB and BC,

1 1a x =
2 5128 8 4 170.67
3 3

⎛ ⎞× × × = =⎜ ⎟
⎝ ⎠

and 2 2a x =
2 4.5 6 3 54
3

⎛ ⎞× × × =⎜ ⎟
⎝ ⎠

Now using three moments equation for the spans 0A and AB,

M0 l0 + 2 MA (0 + l1) + MB l1 = 0 0 1 1

0 1

6 6a x a x
l l

⎛ ⎞
− +⎜ ⎟
⎝ ⎠

0 + 2 MA (0 + 8) + MB × 8 =
6 170.67

0
8

×⎛ ⎞− +⎜ ⎟
⎝ ⎠

16 MA + 8 MB = – 128 ...(i)
Again using three moments equation for the spans AB and BC,

MA ll + 2 MB (l1 + l2) + MC l2 = 1 1 2 2

1 2

6 6a x a x
l l

⎛ ⎞− +⎜ ⎟
⎝ ⎠

MA × 8 + 2 MB (8 + 6) + 0 =
6 170.67 6 54

8 6
× ×⎛ ⎞− +⎜ ⎟

⎝ ⎠

8 MA + 28 MB = – 182 ...(ii)

Solving the equations (i) and (ii)
MA = – 5.75 kN-m          and          MB  =  – 4.5 kN-m        Ans.

Now complete the bending moment diagram as shown in Fig. 25.6 (b).

Reactions at supports
Let RA = Reaction at A,

RB = Reaction at B, and

RC = Reaction at C,
Taking moments about B,

RC × 6 – (6 × 3) = – 4.5 (ä MB = – 4.5 kN-m)

∴ RC =
4.5 18 13.5

6 6
− + =  = 2.2 kN        Ans.

Now taking moments about A,

RC × 14 + RB × 8 – (1 × 14 × 7) =– 5.75 (ä MA = – 5.57 kN-m)

(2.25 × 14) – 8 · RB – 98 = – 5.75

∴ RB =
5.75 98 31.5

8
− + −

 = 7.6 kN        Ans.

and *RA = 14.0 – (2.25 + 7.6) = 4.15 kn        Ans.
Now completed the shear force diagram as shown in Fig. 25.7 (c).

* The reaction at RA may also be found out by taking mokments about B, i.e.,
RA × 8 – (8 × 4) – MA = – 4.5 ...(ä MB = – 4.5 kN-m)

8 RA – 32 – 5.75 = – 4.5

∴ RA =
4.5 32 5.75 33.25

8 8
− + + = = 4.15 kN        Ans.
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EXAMPLE 25.4.  Evaluate the bending moment and shear force diagrams of the beam shown
in Fig. 25.7.

Fig. 25.7

What are the reactions at the supports?

SOLUTION. Given : Length AB (l1) = 6 m ;  Length BC (l2) = 6 m ;  Uniformly distributed load in
AB (w) = 2 kN/m and point load at D (W) = 12 kN.
Bending moment at A, B and C

Since the beam is fixed at A and C, therefore assume a zero span to the left of A and right of C.

Let M0 = Fixing moments at the imaginary supports of zero span (on
the left of A and right of C).

MA = Fixing moment at A,

MB = Fixing moment at B and

MC = Fixing moment at C.

Fig. 25.8
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First of all, consider the beam AB as a simply supported beam. Therefore bending moment at the
mid of span AB

=
2 2
1 2 (6)

8 8
wl ×=  = 9 kN-m

Similarly, bending moment at the mid of the span BC

=
12 6

4 4
Wl ×=  = 18 kN-m

Now draw the μ-diagram with the help of above bending moments as shown in Fig. 25.8 (b).
From the geometry of bending moment diagrams, we find that for the spans 0A and AB,

0 0a x = 0

1 1a x =
1 9.0 6 3 108
2

⎛ ⎞× × × =⎜ ⎟
⎝ ⎠

Similarly, for the span AB and BC,

1 1a x =
2 9.0 6 3 108
3

⎛ ⎞× × × =⎜ ⎟
⎝ ⎠

2 2a x =
1 18.0 6 3 162
2

⎛ ⎞× × × =⎜ ⎟
⎝ ⎠

and for span BC and CD, 3 3a x =
1 18.0 6 3 162
2

⎛ ⎞× × × =⎜ ⎟
⎝ ⎠

0 0a x = 0

Now using three moments equation for the spans 0A and AB,

M0 l0 + 2 MA (0 + l1) + M0 l1 = 0 0 1 1

0 1

6 6a x a x
l l

⎛ ⎞
− +⎜ ⎟
⎝ ⎠

0 + 2 MA (0 + 6) + MB × 6 =
6 108

0
6

×⎛ ⎞+⎜ ⎟
⎝ ⎠

12 MA + 6 MB = – 108

or 2 MA + MB = – 18 ...(i)
Again using three moments equation for the spans AB and BC,

MA l1 + 2 MB (l1 + l2) + MC l2 = 1 1 2 2

1 2

6 6a x a x
l l

⎛ ⎞+⎜ ⎟
⎝ ⎠

MA × 6 + 2 MB (6 + 6) + MC × 6 =
6 108 6 162

6 6
× ×⎛ ⎞− +⎜ ⎟

⎝ ⎠

6 MA + 24 MB + 6 MC = – 270

or MA + 4 MB + MC = – 45 ...(ii)

Again using three moments equation for the spans BC and C 0,

MB l2 + 2 MC (l2 + l0) + MC l0 = –
0 02 2

2 0

66 a xa x
l l

⎛ ⎞
+⎜ ⎟

⎝ ⎠

MB × 6 + 2 MC (6 + 0) + 0 = –
6 162

0
6

×⎛ ⎞+⎜ ⎟
⎝ ⎠

6 MB + 12 MC = – 162
or MB + 2 MC = – 27 ...(iii)
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Solving equations (i), (ii) and (iii)
MA = – 5.25 kN-m,

MB = – 7.5 kN-m

and MC = – 9.75 kN-m
Now complete the bending moment diagram as shown in Fig. 25.8 (b).

Reactions at the supports

Let RA = Reaction at A,
RB = Reaction at B and

RC = Reaction at C.

Taking moments about B and equating the same,
RA × 6 + MB = MA + (2 × 6 × 3)

RA × 6 – 7.5 = – 5.25 + 36 = 30.75

∴ RA =
30.75 7.5

6
+

 = 6.375 kN        Ans.

Again taking moments about B and equating the same,
RC × 6 + MB = MC + 12 × 3

RC × 6 – 7.5 = – 9.75 + 36 = 26.25

∴ RC =
26.25 7.5

6
+

 = 5.625 kN        Ans.

and RB = (2 × 6 + 12) – (6.375 + 5.625) = 12 kN        Ans.
Now draw the shear force diagram and elastic curve as shown in Fig. 25.8 (c) and 25.8 (d).

EXERCISE 25.1

1. A continuous beam  is simply supported over three spans, such that AB = 8 m, BC = 12 m and
CD = 5 m. It carries uniformly distributed load of 4 kN/m in span AB, 3 kN/m in span BC and 6
kN/m in span CD. Find the moments over the supports B and C.

[Ans. – 35.9 kN-m ;  – 31.0 kN-m]

2. A simply supported beam ABC is continuous over two spans AB and BC of 6 m and 5 m respec-
tively. The span AB is carrying a uniformly distributed load of 2 kN/m and the span BC is
carrying a point load of 5 kN at a distance of 2 m from B. Find the support moment and the
reactions. [Ans. – 7.1 kN-m ;  4.82 kN ;  11.6 kN ;  0.58 kN]

3. A continuous beam ABC is fixed at A and is simply supported at B and C. The span AB is 6 m
and carries a uniformly distributed load of 1 kN/m. The span AC is 4 m and carries a uniformly
distributed load of 3 kN/m. Determine the fixed end moments.

[Ans. MA = 2.143 kN-m ;  MB = 4.714 kN-m ; MC = 0]
4. A continuous beam ABCD is simply supported over three spans of 5 m, 5 m and 4 m respec-

tively. The first two spans are carrying a uniformly distributed load of 4 kN/m, whereas the last
span is carrying a uniformly distributed load of 5 kN/m. Find the support moments at B and C.

[Ans. – 10.37 kN-m ;  – 8.52 kN-m]

5. A continuous beam ABCD is simply supported over three spans of 6 m, 5 m and 4 m respec-
tively. The beam carries point loads of 90 kN and 80 kN at 2 m and 8 m from the support A and
a uniformly distributed load 30 kN/m over the span CD. Find the moments and reactions at the
supports. [Ans. 68.4 kN-m ;  44.8 kN-m ;  48.6 kN-m ;  90.1 kN ;  98.5 kN]



Chapter 25 : Theorem of Three Moments � 611

25.7. Continuous Beams with End Span Overhanging
Sometimes, a continuous beam is overhanging, at its one or both ends. In such a case, the over-

hanging part of the beam behaves like a cantilever. The fixing moments on the end support may be
found out by the cantilever action of the overhanging part of the beam.

EXAMPLE 25.5.  A beam ABCD 9 m long is simply supported at A, B and C, such that the
length AB is 3 m, length BC is 4.5 m and the overhung CD is 1.5 m. It carries a uniformly
distributed load of 1.5 kN/m in span AB and a point load of 1 kN at the free end D. The moments
of inertia of the beam in span AB and CD is I and that in the span BC is 2I. Draw the bending
moment and shear force diagrams for the beam.

SOLUTION. Given : Length AB (l1) = 3 m ;  Length BC (l2) = 4.5 m ;  Length CD (l3) = 1.5 m ;
Uniformly distributed load in AB (w) = 1.5 kN/m ;  Point load at D = 1 kN ;  Moment of inertia of
lengths AB and CD (IAB) = I and moment of inertia of length BC (IBC) = 2 I.

Bending moment diagram
Let *MA = Fixing moment at A,

MB = Fixing moment at B and

MC = Fixing moment at C.
First of all, consider the beam AB as a simply supported beam. Therefore bending moment at the

mid of span AB

=
2 2
1 1.5 (3)

8 8
wl ×=  = 1.69 kN-m

From the geometry of the figure, we find that the dixing moment at C,

MC = – 1.0 × 1.5 = – 1.5 kN-m

Fig. 25.9

Now draw the μ-diagram, with the help of above bending moments as shown in Fig. 25.9 (b).
From the geometry of the above bending moment diagram, we find that for the spans AB and BC,

1 1a x =
2 1.69 3 1.5 5.07
3

× × × =

* Since the beam is simply supported at A, therefore fixing moment MA will be zero.
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Now using three moments equation for the spans AB and BC,

1 1 2 2

1 1 2 2

2A B C
l l l l

M M M
I I I I

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

= 1 1 2 2

1 1 2 2

6 6a x a x
I l I l

⎡ ⎤− +⎢ ⎥
⎣ ⎦

3 4.5 4.50 2 1.5
2 2BM

I l l
⎛ ⎞+ + + ×⎜ ⎟
⎝ ⎠

=
6 5.07

3l
×−

×

10.5 6.75
2

BM
I I

− =
10.14

I

or 10.5 MB – 3.375 = – 10.14

∴ MB =
10.14 3.375

10.5
− +

 = – 0.65 kN-m

Now complete the final bending moment diagram as shown in Fig. 25.9 (b).
Shear force diagram

Let RA = Reaction at A,
RB = Reaction at B and
RC = Reaction at C,

Taking moments at B,
RA × 3 – (1.5 × 3 × 1.5) = – 0.65 ...(ä MB = – 0.65 kN-m)

∴ RA =
0.65 6.75 6.1

3 3
− + =  = 2.03 kN

Again taking moments about B,
RC × 4.5 – (1 × 6) = – 0.65 ...(ä MB = – 0.65 kN-m)

∴ RC =
0.65 6 5.35

4.5 4.5
− + =  = 1.19 kN

and RB = [(3 × 1.5) + 1] – (2.03 + 1.19) = 2.28 kN

Now complete the shear force diagram as shown in Fig. 25.9 (c).

EXAMPLE 25.6.  A beam ABCDE has a built-in support at A and roller supports at B, C and
D, DE being an overhung. AB = 7 m, BC = 5 m, CD = 4 m and DE = 1.5 m. The values of moment
of inertia of the section over each of these lengths are 3I, 2I, I and I respectively. The beam
carries a point load of 10 kN at a point 3 m from A, a uniformly distributed load of 4.5 kN/m over
whole of BC and a concentrated load of 9 kN in CD, 1.5 m from C and another point load of 3 kN
at E, the top of overhung as shown in Fig. 25.10.

Fig. 25.10

Determine (i) moments developed over each support and (ii) draw diagram for the entire beam,
stating values at salient points.



Chapter 25 : Theorem of Three Moments � 613

SOLUTION. Given : Length AB (l1) = 7 m ;  Length BC (l2) = 5 m ;  Length CD (l3) = 4 m ;  Length
DE (l4) = 1.5 m ;  Moment of inertia of length AB (IAB) = 3 I ;  Moment of inertia for length BC (IBC)
= 2 I ;  Moment of inertia of length CD (ICD) = IDE = I ;  Point load at F (W1) = 10 kN ;  Uniformly
distributed load between B and C (w2) = 4.5 kN/m ;  Point load at G (W2) = 9 kN and point load at E
= 3 kN.

(i) Moments developed over each support

Fig. 25.11

Since the beam is fixed at A, therefore, assume a zero span to the left of A.

Let *M0 = Fixing moment at left hand support of zero span,

MA = Fixing moment at A,
MB = Fixing moment at B,

MC = Fixing moment at C and

MD = Fixing moment at D.
First of all, let us consider the beam AB as a simply supported beam. Therefore bending moment

under the 10 kN load

= 1 1 1

1

10 3 4
7

W a b
l

× ×=  = 17.14 kN-m

Similarly, bending moment under the 9 kN load in span CD

= 3 3 3

3

9 1.5 2.5
4

W a b
l

× ×=  = 8.44 kN-m

and bending moment at the mid of the span BC

=
2 2

2 2 4.5 (5)
8 8

w l ×− =  = 14.06 kN-m

From the geometry of the figure, we find that the fixing moment at D, due to load at E,

MD = – 3 × 1.5 = – 4.5 kN-m
Now draw μ-diagram with the help of above bending moments as shown in Fig. 25.11 (b). From

the geometry of the above bending moment diagram, we find that for the span 0A and AB,

0 0a x = 0

* Since there is a zero span on the left to A, therefore the fixing moment M0 will be zero.
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and 1 1a x =
2 41 1 34 17.14 3 17.14 4 220

2 3 2 3
⎡ × ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞× × × + × × + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

Similarly, for the spans AB and BC,

1 1a x =
3 21 1 43 17.14 4 17.14 3 200

2 3 2 3
⎡ × ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞× × × + × × + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

and 2 2a x =
2
3

 × 5 × 14.06 × 2.5 = 117.2

Similarly, for the spans BC and CD,

2 2a x =
2
3

 × 5 × 14.06 × 2.5 = 117.2

and 3 3a x =
2 2.51 1 1.52.5 8.44 1.5 8.44 2.5

2 3 2 3
⎡ × ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞× × × + × × +⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

=36.6

Now using three moments equation for the spans 0A and AB,

0 0 1 1
0

0 0 1 1

2 A B

l l l l
M M M

I I I I
⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

= – 0 0 1 1

0 0 1 1

6 6a x a x
I l I l

⎛ ⎞
+⎜ ⎟

⎝ ⎠

7 70 2
3 3A BM M

I I
+ × + =

6 220
0

3 7I
×⎛ ⎞− +⎜ ⎟×⎝ ⎠

14 7
3 3

A BM M
I I

+ =
1320
3 7I

−
×

or 2 MA + MB = – 26.94 ...(i)
Again using three moments equation for the span AB and BC,

1 1 2 2

1 1 2 2

2A B C

l l l l
M M M

I I I I
⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

= 1 1 2 2

1 1 2 2

6 6a x a x
I l I l

⎛ ⎞− +⎜ ⎟
⎝ ⎠

7 7 5 52
3 3 2 2A B CM M M
I I I I

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

=
6 200 6 117.2
3 7 2 5I I
× ×⎛ ⎞− +⎜ ⎟× ×⎝ ⎠

57 29
3 3 2

CA B MM M
I I I

+ + =
171.4 140.6

3 2I I
⎛ ⎞− +⎜ ⎟
⎝ ⎠

14 MA + 58 MB + 15 MC = – 764.6 ...(ii)
Again using three moments equation for the spans BC and CD,

3 32 2

2 2 3 3

2B C D

l ll l
M M M

I I I I
⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

= 3 32 2

2 2 3 3

66 a xa x
I l I l

⎛ ⎞ +⎜ ⎟
⎝ ⎠

5 5 4 42 4.5
2 2B CM M

I I I I
⎛ ⎞+ + −⎜ ⎟
⎝ ⎠

=
6 117.2 6 36.6

2 5 4I I
× ×⎛ ⎞− +⎜ ⎟× ×⎝ ⎠

265 18
2 2

CB MM
I I I

+ − =
140.6 54.9

2 I I
⎛ ⎞− +⎜ ⎟
⎝ ⎠

5 MB + 26 MC = – 214.4 ...(iii)
Now solving equations (i), (ii) and (iii), we get

MA = – 8.76 kN-m        Ans.
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MB = – 9.41 kN-m        Ans.
MC = – 6.44 kN-m        Ans.

Now complete the bending moment diagram as shown in Fig. 25.11 (b)

25.8. Continuous Beams with a Sinking Support
Sometimes, one of the supports of a continuous beam sinks down due to loading with respect to

the other supports which remain at the same level. The sinking of a support effects the moments at the
supports.

Fig. 25.12

Now consider a continuous beam ABC fixed at A and C and supported at B as shown in Fig.
25.12. Let the support B* sink down through a more distance than the support C sinks down from its
original position (or in other words from the support A),

Let δA = Height of support A from B

and δC = Height of support C from B.
We have already discussed in Art. 25.3 that in the span AB

dEI1 [l1 iB – yB] = 1 1 1 1a x a x+ ′ ′

or EI1 [l1 iB – dA] = 1 1 1 1a x a x+ ′ ′

We have also discussed that

1 1a x′ + ′ = (MA + 2 MB) 
2
1

6
l

∴ EI1 [l1 iB + δA) =
2
1

1 1 ( 2 )
6A B

l
a x M M+ +

EI1 l1 iB + EI1 δA =
2
1

1 1 ( 2 )
6A B

l
a x M M+ +

1

A
B

E
Ei

l
δ

+ = 1 1 1

1 1 1

( 2 )
6A B

a x l
M M

I l I
+ +

* It is also possible if all three supports sink down. But the support B sinks down more than A and C.
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or EiB = 1 1 1

1 1 1 1

( 2 )
6

A
A B

a x l E
M M

I l I l
δ

+ + −

Similarly, in the span BC taking C as the origin and x positive to the left,

Ei′E = 2 2 2

2 2 2 2

( 2 )
6

C
C B

Ea x l
M M

I l I l
δ

+ + −

Since iB is equal to – i′B, therefore EiB is equal to – Ei′B.

or 1 1 1

1 1 1 1

( 2 )
6

A
A B

a x l E
M M

I l I l
δ

+ + − = – 2 2 2

2 2 2 2

( 2 )
6

C
C B

Ea x l
M M

I l I l
δ⎡ ⎤+ + −⎢ ⎥

⎣ ⎦

1 2 2 2

1 1 2 2

2 2
6 6 6 6A B C B

l l l l
M M M M

I I I I
+ + + = 1 1 2 2

1 1 2 2 2 2

CA Ea x a x E
I l I l l l

δδ⎛ ⎞− + + +⎜ ⎟
⎝ ⎠

1 1 2 2

1 1 2 2

2A B C

l l l l
M M M

I I I I
⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

= 1 1 2 2

1 1 1 2 1 2

66 6 6 CA Ea x a x E
I l I l l l

δδ⎛ ⎞− + + +⎜ ⎟
⎝ ⎠

NOTES:  1.  If the moment of inertia of the beam is constant, then

MA l1 + 2 MB (l1 + l2) + MC l2 = 1 1 2 2

1 2 1 2

66 6 6 CA EIa x a x EI
l l l l

δδ⎛ ⎞− + + +⎜ ⎟
⎝ ⎠

2. The above formula has been derived by taking δA and δC as positive. But while solving the numericals on
sinking supports, care should always be taken to use the proper sign. The following guide rules should be
kept in mind for the purpose:
(i) The three moments equation always refer to two adjacent spans. The reference level should always be

taken as that of the common support.
(ii) The sign of δ for the left and right support, should then be used by comparing its height with the

central support (positive for higher and negative for lower), e.g., Consider a continuous beam ABCD
in which let the support B sink down by an amount equal to δ. The three supports, namely A, C and D
will remain at the same level. Now, while using three moments equation for the spans AB and BC, the
values of δA and δC will be positive (because both the supports A and C are at higher level than that of
B). But while using three moments equation for the spans BC and CD, the value of δB will be negative
(because the support B is at a lower level than that of C) and the value of δD will be zero (because the
support D is at the same level as that of C).

EXAMPLE 25.7.     A continuous beam ABC, shown in Fig. 25.13 carries a uniformly distributed
load of 50 kN on AB and BC. The support B sinks by 5 mm below A and C and the values of EI is
constant throughout the beam.

Fig. 25.13

Taking E = 200 GPa and I = 332 × 106 mm4, find the bending moment at supports A and B and
draw the bending moment diagram.

SOLUTION. Given : Length AB (l1) = 4 m ;  Length BC (l2) = 3 m ;  Uniformly distributed load over
AC (w) = 50 kN-m ;  Sinking of support of (δB) = – 5 mm = – 0.005 m or δA = δC = + 0.005 m ;  Modulus
of elasticity (E) 200 GPa = 200 × 106 kN/m2 and moment of inertia (I) = 332 × 106 mm4 = 332 × 10–6 m4.
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Fig. 25.14

Since the beam is fixed at A, therefore let us assume a zero span to the left of A,
MA = Fixing moment at A,

MB = Fixing moment at B, and

*MC = Fixing moment at C,
First of all, consider the beam AB as a simply supported. Therefor bending moment at the mid of

the span AB

=
2 2
1 50 (4)

8 8
wl ×=  = 100 kN-m

Similarly, bending moment at the mid of the span BC

=
2 2
2 50 (3)

8 8
wl ×=  = 56.25 kN-m

Now draw μ-diagram, with the help of above bending moments as shown in Fig. 25.14 (b). From
the geometry of the above bending moment diagram, we find that for the spans 0A and AB,

0 0a x = 0

and 1 1a x =
2 1600100 4 2 533.3
3 3

× × × = =

Similarly, for the spans AB and BC,

1 1a x =
2 1600100 4 2 533.3
3 3

× × × = =

and 2 2a x =
2 56.25 3 1.5 168.75
3

× × × =

Now using three moments equation for the spans 0A and AB,

M0 l0 + 2 MA (0 + l1) + MB l1 = – 0 0 01 1

0 1 1 2

6 66 6 Ba x EIa x EI
l l l l

δ δ⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦

* Since the beam is simply supported at C, therefore fixing moment C will be zero.
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0 + 2 MA (0 + 4) + (MB × 4) =
6 533.3

0
4

×⎡ ⎤− +⎢ ⎥⎣ ⎦

6 66 (200 10 ) (332 10 ) ( 0.005)
0

4

−× × × × −+ +

8 MA + 4 MB = – 800 – 498 = – 1298

∴ 2 MA + MB = – 324.5 ...(i)
Now using three moments equation for the spans AB and BC,

MA l1 + 2 MB (l1 + l2) + MC l2 = 1 1 2 2

1 2 1 2

6 6 6 6a x a x EI A EI C
l l l l

⎡ ⎤ δ δ− + + +⎢ ⎥
⎣ ⎦

(MA × 4) + 2 MB (4 + 3) + 0 =
6 533.3 6 168.75

4 3
× ×⎡ ⎤− +⎢ ⎥⎣ ⎦

6 66 (200 10 ) (332 10 ) ( 0.005)
4

−× × × × ++

6 66 200 10 332 10 ( 0.005)
3

−× × × × ++

4 MA + 14 MB = – (800 + 337.5) + 498 + 664 = 24.5

∴ 2 MA + 7 MB = 12.25 ...(ii)

Solving equations (i) and (ii),
MA = – 190.3 kN-m        Ans.

and MB = 56.1 kN-m        Ans.
Now complete the bending moment diagram as shown in Fig. 25.14 (b).

NOTES:  1. While considering the spans 0A and AB, the assumed support 0 and fixed support A are at the same level.
But the support B has sunk down. Therefore the value of δ0 is taken as zero and that for δB as negative.

2. While considering the spans AB and BC, the supports A and C are at the same level. But the support
B has sunk down. Therefore the values δA and δC are taken as positive.

EXAMPLE 25.8.   A continuous beam is built-in at A and is carried over rollers at B and C as
shown in Fig. 25.15. AB = BC = 12 m.

Fig. 25.15

It carries a uniformly distributed load of 3 kN/m over AB and a point load of 24 kN in BC, 4 m
from the support B, which sinks 30 mm. The values of E and I are 200 GPa and 0.2 × 109 respec-
tively and uniform throughout. Calculate the support moments and draw bending moment diagram
and shear force diagram, giving critical values. Also draw the deflected shape of the centre line of
the beam.

SOLUTION. Given : Length AB (l1) = 12 m ;  Length BC (l2) = 12 m ;  Uniformly distributed loas
in AB (w) = 3 kN/m ;  Point loas at D (W) = 24 kN ;  Sinking of support B (δB) = – 30 mm = – 0.03 m
or δA = δC = + 0.03 m ;  modulus of elasticity (E) = 200 GPa = 200 × 106 kN-m2 and sinking of
support B (I) = 0.2 × 109 mm4 = 0.2 × 10–3 m4.
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Fig. 25.16

Since the beam is fixed at A, therefore let us assume a zero span to the left of A,

Support moments at A, B and C

Let MA = Support moment at A,

MB = Support moment at B, and

MC = Support moment at C,
First of all, consider the beam AB as a simply supported beam. Therefore bending moment at the

mid of span AB

=
2 2
1 3 (12)

8 8
wl ×=  = 54.0 kN-m

Similarly, bending moment under the 24 kN load

=
2

24 4 8
12

Wab
l

× ×=  = 64.0 kN-m

Now draw μ-diagram with the help of above bending moments as shown in Fig. 25.16 (b).
From the geometry of the above bending moment diagram, we find that for the spans 0A and AB,

0 0a x = 0

and 1 1a x =
2
3  × 54 × 12 × 6 = 2592

Similarly, for the spans AB and BC,

1 1a x =
2
3  × 54 × 12 × 6 = 2592
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and 2 2a x =
2 81 1 464 8 64 4 8 2560

2 3 2 3
⎡ × ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞× × × + × × + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

Now using three moments equation for the spans 0A and AB,

M0 l0 + 2 MA (l0 + l1) + MB l1 = 0 0 01 1

0 1 0 1

6 66 6 Ba x EIa x EI
l l l l

δ δ⎡ ⎤ ⎡ ⎤
− + + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

0 + 2 MA (0 + 12) + MB × 12 =
6 36 2592 6 (200 10 (0.2 10 ) ( 0.03)

0 0
12 12

−⎡ ⎤× × × × × × −⎡ ⎤− + + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
24 MA + 12 MB = – 1296 – 600 = – 1896

∴ 2 MA + MB = – 158 ...(i)
Now using three moments equation for the spans AB and BC,

MA l1 + 2 MB (l1 + l2) + MC l2 = 1 1 2 2

1 1 1 2

66 6 6 CA EIa x a x EI
l l l l

δδ⎡ ⎤ ⎡ ⎤− + + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

MA × 12 + 2 MB (12 + 12) + 0 =
6 2592 6 2560

12 12
× ×⎡ ⎤− +⎢ ⎥⎣ ⎦

6 36 (200 10 ) (0.2 10 ) 0.03
12

−⎡⎛ ⎞× × × × ×− ⎢⎜ ⎟⎜ ⎟
⎢⎝ ⎠⎣

6 36 (200 10 ) (0.2 10 ) 0.03
12

− ⎤⎛ ⎞× × × × ×+ ⎥⎜ ⎟⎜ ⎟
⎥⎝ ⎠⎦

12 MA + 48 MB = – (1296 + 1280) + 600 + 600 = – 1376
∴ 3 MA + 12 MB = – 344 ...(ii)
Solving eqauations (i) and (ii)

MA = – 73.9 kN-m        Ans.
MB = 10.2 kN-m        Ans.
MC = 0        Ans.

Bending moment diagram
Now complete the bending moment diagram as shown in Fig. 25.16 (b).

Shear force diagram
Let RA = Reaction at A,

RB = Reaction at B, and
RC = Reaction at C.

Taking moments about B,
– 10.2 = RC × 12 – (24 × 4) ...(ä MB = – 10.2 kN-m)

∴ RC =
10.2 96

12
− +

 = 7.15 kN

Now taking moments about A,
– 73.9 = 7.15 × 24 + RB × 12 – (24 × 16) – (3 × 12 × 6)

...(ä MA = – 73.9 kN-m)
= 12 RB – 428.4

∴ RB =
73.9 428.4

12
− +

 = 29.54 kN

and RA = (3 × 12 + 24) – (7.15 + 29.54) = 23.31 kN
Now complete the Shear Force diagram as shown in Fig. 25.16 (c).

The elastic curve i.e., deflected shape of the centre line of the beam is shown in Fig. 25.16 (d).
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25.9. Continuous Beams Subjected to a Couple
Sometimes, a continuous beam is subjected to a couple in one (or more) of the spans. Such a

beam is also analyses in the similar manner. The couple will cause negative moments in one part and
positive moments in the other part of the span. While taking moment of the bending moment diagram,
due care should be taken for the positive and negative bending moments.

EXAMPLE 25.9.   A continuous beam ABC of constant moment of inertia is simply supported
at A, B and C. The beam carries a central point load of 4 kN in span AB and a central clockwise
couple of moment 30 kN-m in span BC as shown in Fig. 25.17.

Fig. 25.17

Find the support moments and plot the shear force and bending moment diagrams.

SOLUTION. Given : Length AB (l1) = 10 m ;  Length BC (l2) = 15 m ;  Load at D (w) = 4 kN and
couple at E (μ) = 30 kN-m.

Support moments
Let *MA = Support moment at A,

MB = Support moment at B and

*MC = Support moment at C.
First of all, consider the beam AB and BC as a simply supported beam. Therefore bending mo-

ment at D,

MD = 1 4 10
4 4

Wl ×=  = 10 kN-m

We know that the **moment just on the right side of E

=
30

2 2
μ =  = 15.0 kN-m

and **moment just on the left side of E

=
30

2 2
μ− = −  =  15 kN-m

Now draw the -diagram with the help of above bending moments as shown in Fig. 25.18 (b).
From the geometry of the bending moment diagrams, we find that for spans AB and BC,

1 1a x =
1
2

 × 10 × 10 × 5 = 250

2 2a x = 0 (ä + B.M. = – B.M.)

Now using three moments equation for the spans AB and BC,

MA l1 + 2 MB (l1 + l2) + MC l2 = 1 1 2 2

1 2

6 6a x a x
l l

⎛ ⎞− +⎜ ⎟
⎝ ⎠

* Since the beam is simply supported at A and C, therefore fixing moment MA and MC will be zero.
** For details, please refer to Art. 13.18.
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Fig. 25.18

0 + 2 MB (10 + 15) + 0 =
6 250

0
10
×⎛ ⎞− +⎜ ⎟

⎝ ⎠

∴ 50 MB = – 150

or MB = – 3 kN-m

Now complete the bending moment diagram as shown in Fig. 25.18 (b).
Shear force diagram

Let RA = Reaction at A,
RB = Reaction at B, and
RC = Reaction at C.

Taking moments about B,
RA × 10 – 4 × 5 = – 3 ...(ä MB = – 3 kN-m)

∴ RA =
3 20
10

− +
 = 1.7 kN

Similarly, RC × 15 – 30 = – 3 ...(ä MB = – 3 kN-m)

∴ RC =
3 30
15

− +
 = 1.8 kN

and RB = 4 – (1.7 + 1.8) = 0.5 kN

Now draw the shear force diagram as shown in Fig. 25.18 (c)

EXERCISE 25.2

1. A continuous beam ABCD is fixed at A and simply supported at B and C, the beam CD is
overhanging. The spans AB = 6 m, BC = 5 m and overhanging CD = 2.5 m. The moment of
inertia of the span BC is 2 l and that of AB and CD is l. The beam is carrying a uniformly
distributed load of 2 kN/m over the span AB, a point load of 5 kN in BC at a distance of 3 m
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from B and a point load of 8 kN at the free end.
Determine the fixing moments at A, B and C and draw the bending moment diagram.

[Ans. 8.11 kN-m ;  1.79 kN-m ;  20.0 kN-m]
2. A beam ABCD is continuous over three spans AB = 8 m, BD = 4 m and CD = 8 m. The beam AB

and BC is subjected to a uniformly distributed load of 1.5 kN/m, whereas there is a central point
load of 4 kN in CD. The moment of inertia of AB and CD is 2 l and that of BC is I. The ends A
and D are fixed. During loading, the support B sinks down by 10 mm. Find the fixed end
moments. Take E = 200 GPa and l = 1600 × 106mm4.

[Ans. – 16.53 kN-m ;  – 30.66 kN-m ;  – 77.33 kN-m ;  – 21.33 kN-m]
3. A continuous beam ABCD 20 m long is supported at B and C and fixed at A and D. The spans

AB, BC and CD are 6 m, 8 m and 6 m respectively. The span AB carries a uniformly distributed
load of 1 kN/m, the span BC carries a central point load of 10 kN and the span CD carries a
point load of 5 kN/m at a distance of 3 m from C. During loading, the support B sinks by 10 mm.
Find the fixed end moments and draw the bending moment diagram. Take E = 200 GPa and I =
3 × 109mm4. The moment of inertia of the spans AB and CD is I and that of BC is 2I.

[Ans. – 5.74 kN-m ;  – 2.57 kN-m ;  – 9.2 kN-m ;  – 2.07 kN-m]

QUESTIONS

1. What a continuous beam is subjected to a couple in a span, it will cause negative moment in one
part and positive moment in other part of the span.

2. Explain the theorem of three moments.
3. Prove the Clapeyron’s theorem of three moments.

4. How will you apply the theorem of three moments to a fixed beam?

5. Explain the effect on a continuous beam, when one of the intermediate supports sinks down.
6. Describe the effect of a couple acting in one of the spans of a continuous beam.

OBJECTIVE TYPE QUESTIONS

1. Fixing moment over a simply supported end is

(a) zero (b) negative (c) positive (d) infinity
2. When a continuous beam is fixed at the left end, then an imaginary span is taken to the left of the

beam. The support moment at the imaginary support is

(a) negligible (b) considerable (c) zero (d) calculated

3. If a continuous beam is fixed at its both ends, then imaginary support is
(a) not taken (b) taken on left side only

(c) taken on both the ends (d) taken on right side only.

4. If one of the span of a continuous beam is subjected to a clockwise couple, then
(a) the span will be subjected to positive moment.

(b) the span will be subjected to negative moment.

(c) entire beam will be subjected to positive moment.
(d) one part of the span is subjected to positive moment and the other part to negative moment.

ANSWERS

1. (a) 2. (c) 3. (d) 4. (d)
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26.1. Introduction
The moment distribution method, which was

first introduced by Prof. Hardy Cross in 1930, is
widely used for the analysis of all types of
indeterminate structures. In this method, all the
members of a structure are first assumed to be
fixed in position and direction and fixed end
moments due to external loads are obtained. Now
all the hinged joints are released, by applying an
equal and opposite moment and their effects are
evaluated on the opposite joints. The unbalanced
moment at a joint, is distributed in the two spans
in the ratio of their distribution factors. This
process is continued, till we reach the required
degree of precision.

26C h a p t e r
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26.2. Sign Conventions
Though different  types of sign conventions are adopted by different authors in their books, yet

the following sign conventions, which are widely used and internationally recognised will be used in
this book.

1. All the clockwise moments at the ends are taken as positive.

2. All the anticlockwise moments at the ends are taken as negative.

26.3. Carry Over Factor
We have already discussed in Art. 26.1 that the moments are applied on all the end joints of a

structure, whose effects are evaluated on the other joints. The ratio of moment produced at a joint to
the moment applied at the other joint, without displacing it, is called carry over factor. Now, we shall
find out the value of carry over factor in the following two cases of beam:

1. When the beam is fixed at one end and simply supported at the other.

2. When the beam is simply supported at both the ends.

26.4. Carry Over Factor for a Beam Fixed at One End and
Simply Supported at the Other

Consider a beam AB fixed at A and simply supported at B. Let a clockwise moment be applied at
the support B of the beam as shown in Fig. 26.1.

Let l = Span of the beam,

μ = Clockwise moment applied at B (i.e., MB) and

MA = Fixing moment at A.
Since the beam is not subjected to any external loading, therefore the two reactions (R) must be

equal and opposite as shown in Fig. 26.1.

Fig. 26.1

Taking moments about A and equating the same,

R · l = MA + μ ...(i)

Now consider any section X, at a distance x from A. We know that the moment at X,
MX = MA – R · x

or
2

2

d y
EI

dx
= MA – R · x ...

2

2
d y

M EI
dx

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∵

Integrating the above equation,

dy
EI

dx
=

2

1·
2A

RxM x C− +

where C1 is the first constant of integration. We know that when x = 0, then dy
dx

 = 0. Therefore C1 = 0.
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or dy
EI

dx
=

2

·
2

RxMA x − ...(ii)

Integrating the above equation once again,

EI · y =
2 3

2
·

2 6
AM x Rx C− +

where C2 is the second constant of integration. We know that when x = 0, then y = 0. Therefore C2 = 0.

or EI · y =
2 3·

2 6
AM x Rx− ...(iii)

We also know that when x = l, then y = 0. Therefore substituting these values in equation (iii),

0 =
2 3· ·

2 6
AM l R l−

∴
3

6
Rl =

2·
2

AM l

or R · l = 3MA

Substituting the value of  in equation (i),

3MA = MA + μ

or MA =
2 2

BMμ = ...(iv)

∴ A

B

M
M

=
1
2

It is thus obvious, that carry over factor is one-half in this case,
We see from equation (ii) that

dy
EI

dx
= MA · x 

2

2
Rl−

Now for slope at B, substituting x = l in the above equation,

EI · iB = MA · l 
2

2
Rl− ...(ä   R · l = 3MA)

= MA · l 3 ·
2 AM l−

=
·

2 4
AM l lμ− = − ... 2AM

μ⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

∴ iB =
4

l
EI
μ−

=
4

l
EI
μ

or μ =
4 · BEI i

l

26.5. Carry Over Factor for a Beam Simply Supported at Both Ends
Consider a beam AB simply supported at A and B. Let a clockwise moment be applied at the

support B of the beam as shown in Fig. 26.2.

 ...(Minus sign means that the tangent at
B makes an angle with AB in the

negative or anticlockwise direction)
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Fig. 26.2

Let l = Span of the beam, and
μ = Clockwise moment at B.

Since the beam is simply supported at A, therefore there will be no fixing moment at A. Moreover,
as the beam is not subjected to any external loading, therefore the two reactions must be equal and
opposite as shown in Fig. 26.2.

Taking moments about A,
R · l = μ ...(i)

Now consider any section X, at a distance x from A. We know that the moment at X,

MX = – R · x

or
2

2

d y
EI

dx
= – R · x ...

2

2
d y

M EI
dx

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∵

Integration the above equation,

dy
EI

dx
=

2

12
Rx C− + ...(ii)

where C1 is the first constant of integration. Integrating the above equation once again,

EI · y =
3

1 26
Rx C x C− + +

where C2 is the second constant of integration. We know that when x = 0, then y = 0. Therefore C2 = 0.

or EI · y =
3

16
Rx C x− + ...(iii)

We also know that when x = l, then y = 0. Therefore substituting these values in the above
equation,

0 =
3

16
Rl C− + l

∴ C1 =
2

6 6
lRl μ= ...(ä   R · l = μ)

Substituting this value of C1 in equation (ii),

dy
EI

dx
=

2 2

2 6 2 6
l lRx Rlx

l
μ μ− + = − +

=
2

2 6
x l
l

μ μ− + ...(ä   R · l = μ)

Now for slope at B, substituting x = l in the above equation,

EI · iB =
2

2 6 2 6 3
l l l l l
l

μ μ μ μ μ− + = − + = −
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∴ iB =
3

l
EI
μ−

=
3

l
EI
μ

∴ μ =
3 · BEI i

l

26.6. Stiffness Factor
It is the moment required to rotate the end, while acting on it, through a unit angle without

translation of the far end. We have seen in Art. 26.4 that the moment on a beam having one end fixed
and the other freely supported,

μ =
4 · BEI i

l
∴ Stiffness factor for such a beam (substituting iB = 1),

k1 =
4EI

l
Similarly, we have seen in Art. 26.5 that the moment on a beam having simply supported ends,

μ =
3 · BEI i

l
∴ Stiffness factor for such a beam (substituting iB = 1),

k2 =
3EI

l

26.7. Distribution Factors
Sometimes, a moment is applied on a structural joint to produce rotation, without the translation

of its members. This moment is distributed among all the connecting members of the joint in the
proportion of their stiffness.

Consider four members OA, OB, OC and OD meeting at A. Let the members OA and OC be fixed
at A and C, whereas the members OB and OD be hinged at B and D. Let the joint O be subjected to a
moment μ as shown in Fig. 26.3.

Fig. 26.3

Let l1 = Length of the member OA,

I1 = Moment of inertia of the member OA,

... (Minus sign means that the tangent
at B makes an angle with AB in the

negative or anticlockwise direction)
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E1 = Modulus of elasticity of the member OA,
l1, I2, E2 = Corresponding values for the member OB,

l3, I3, E3 = Corresponding values for the member OC,

and l4, I4, E4 = Corresponding values for the member OD.
A little consideration will show that as a result of the moment μ, each member gets rotated

through some equal angle. Let this angle through which each member is rotated be θ.

We know that the stiffness of member OA,

k1 = 1 1

1

4E I
l

...(ä   End A is fixed)

Similarly, k2 = 2 2

2

3E I
l

...(ä   End B is hinged)

and k3 = 3 3

3

4E I
l

...(ä   End C is fixed)

and k4 = 4 4

4

3E I
l

...(ä   End D is hinged)

Now total stiffness of all the members,

k = k1 + k2 + k3 + k4

and total moment applied at the joint,

μ = kθ
∴ Moment on the member OA,

μ1 = k1θ
Similarly, μ2 = k2θ :    μ3  =  k3θ      and      μ4  =  k4θ

∴ 1μ
μ = 1 1k k

k k
θ

=
θ

Similarly, 2μ
μ = 2k

k
 ;  3μ

μ   =  3k
k

  and   4 4k
k

μ
=

μ

∴ μ1 = k1 k
μ

Similarly, μ2 = 2k
k
μ

 ;  μ3  =  3k
k
μ

  and  μ4  =  4k
k
μ

The quantities 31 2, ,
kk k

k k k
 and 4k

k
 are known as distribution factors for the members OA, OB, OC

and OD respectively. The moments μ1, μ2, μ3 and μ4 are known as distributed moments.

EXAMPLE 26.1.  Five members OA, OB, OC, OD and OE meeting at O, are hinged at A and
C and fixed at B, D and E. The lengths of OA, OB, OC, OD and OE are 3 m, 4 m, 2 m, 3 m and 5
m and their moments of inertia are 400 mm4, 300 mm4, 200 mm4, 300 mm4 and 250 mm4

respectively. Determine the distribution factors for the members and the distributed moments,
when a moment of 4000 kN-m is applied at O.

SOLUTION: Given: Length OA = 3 m ;  Length OB = 4 m ;  Length OC = 2 m ;  Length OD = 3 m;
Length OE = 5 m ;  Moment of inertia of OA = 400 mm4 ;  Moment of inertia of OB = 300 mm4 ;
Moment of inertia of OC = 200 mm4 ;  Moment of inertia of OD = 300 mm4 ;  Moment of inertia of OE
= 250 mm4 and moment on D = 4000 kN-m.
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We know that stiffness factor for OA,

kA =
3 4003

4
EEI

I
× ×=  = 400 E ...(ä  Member is hinged at A)

Similarly, kB =
4 3004

4
EEI

I
× ×=   ...(ä  Member is fixed at B)

Now complete the column for stiffness for all the members, keeping in mind whether the member
is hinged or fixed at the end. Now find out the distribution factor and distribution moments for each
member as shown in the above chart.

Now from the above chart, we find that the distribution factors for OA, OB, OC, OD and OE are

1 3 3 1, , ,
4 16 16 4

and 1
8

 respectively       Ans.

The moment of 4000 kN-m applied at the joint O will be distributed among the members as
obtained from the above in the following table:

Member Length M.I. Stiffness Distribution Distributed

(m) (mm4) (k) factor moments N-m

OA 3 400
3 400

3
E ×

 = 400
400 1

1600 4
E
E

= 1 4000
4

×  = 1000

OB 4 300
4 300

4
E ×

 = 300
300 3

1600 16
E
E

= 3 4000
16

×  = 750

OC 2 200
3 200

2
E ×

 = 300
300 3

1600 16
E
E

= 3 4000
16

×  = 750

OD 3 300
4 300

3
E ×

 = 400
400 1

1600 4
E
E

= 1 4000
4

×  = 1000

OE 5 250
4 250

5
E ×

 = 200
200 1

1600 8
E
E

= 1 4000
8

×  = 500

Total ΣΣΣΣΣ = 1600E ΣΣΣΣΣ = 400

Thus distributed moments for OA, OB, OC, OD and OE are 1000, 750, 750, 1000 and 500 N-m
respectively.       Ans.

26.8. Application of Moment Distribution Method to Various Types
of Continuous Beams

In the previous articles, we have studied the principles of the moment distribution method. First
of all, all the supports are assumed to be clamped and fixing moments are found out for all the spans.
The unbalanced moment at a support is distributed among the two spans in the ratio of their stiffness
factors and their effects are evaluated on the opposite joints. This process is continued till we reach
the desired degree of precision. Though the moment distribution method has very wide applications
yet in the proceeding articles, we shall discuss its application to the following types of beams only:

1. Beams with fixed end supports,

2. Beams with simply supported ends,

3. Beams with end span overhanging and
4. Beams with a sinking support.
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26.9. Beams with Fixed End Supports
Sometimes, a continuous beam is fixed at its one or both ends. In such a case, the fixed end

moments are obtained and the unbalanced moment is distributed in two spans in the ratio of their
distribution factors.

EXAMPLE 26.2.  Evaluate the bending moment and shear force diagrams of the beam shown
in Fig. 26.4.

What are the reactions at the supports?

Fig. 26.4

* SOLUTION. Given: Length AB (l1) = 6 m ;  Length BC (l2) = 6 m ;  Uniformly distributed load in
AB (w) = 2 kN/m and point load at D (W) = 12 kN.

First of all, let us consider the continuous beam ABC to be split into two fixed beams AB and BC
as shown in Fig. 26.5 (b) and (c).

We know that in span AB the fixing moment at A

=
2

12
wl−  ...(Minus sign due to anticlockwise)

Fig. 26.5

=
22 (6)

12
×−  = – 6.0 kN-m

* We have already solved this question by Theorem of three moments in Example 25.4.
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and fixing moment at B =
2

12
wl+  ...(Plus sign due to clockwise)

=
22 (6)

12
×

 = 6.0 kN-m

Similarly, in span BC the fixing moment at B

=
8

Wl−  ...(Minus sign due to anticlockwise)

=
12 6

8
×−  = – 9.0 kN-m

and fixing moments at C =
8

Wl+  ...(Plus sign due to clockwise)

=
12 6

8
×

 = 9.0 kN-m

Now let us find out the distribution factors at B. From the geometry of the figure, we find that the
stiffness factor for BA,

kB =
4 4 2

6 3
EI EI EI
l

= = ...(ä  The beam is fixed at A)

Similarly, kB =
4 4 2

6 3
EI EI EI
l

= = ...(ä  The beam is fixed at C)

∴ Distribution factors for the members BA and BC

=

2
3

2 2
3 3

EI

EI EI+
       and      

2
3

2 2
3 3

EI

EI EI+
      =       

1
2

     and      
1
2

Fig. 26.6

Now draw the beam and fill up the distribution factors and initial moments as shown in Fig. 26.6.
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We find that the fixing moment at B in span AB, is + 6.0 kN-m and that in span BC, is – 9.0 kN-
m. Thus there is an unbalanced moment equal to (– 9.0 + 6.0) = – 3.0 kN-m. Now, distribute this
unbalanced moment (equal to – 3.0 kN-m) into the spans AB and BC in the ratio of their distribution
factors i.e., + 1.5 kN and + 1.5 kN. Now *carry over the effects of these distributed moments at A and

D equal to 
1 1.5
2

×  = + 0.75 kN. Then distribute the unbalanced moment at B (In this case, there is no

carry over moment from A or D at B. So the distribution of moment at B is zero). Now, find out the
final moments at A, B and C in the spans AB and BC, by algebraically adding the respective values as
shown in the last column of the table.

We know that the bending moment at the centre of the span AB, treating it as a simply supported
beam

=
22 2 (6)

8 8
wl ×=  = 9.0 kN-m

Similarly, bending moment under the load in the span BC

=
12 6

4 4
Wl ×=  = 18.0 kN-m

Now complete the final bending moment **diagram as shown in Fig. 26.7 (b).

Let RA = Reaction at A,
RB = Reaction at B and

RC = Reaction at C.

Fig. 26.7

* As per At. 26.4 the carry over factor is 
1
2 .

** Though the moment at B in the span AB, is positive and moment at C in the span BC is positive in the
table, yet these moments are taken as negative in the bending moment diagram. The reason for the same
is that these points the moments tend to bend the beam with convexity upwards.
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Taking moments at B and equating the same,
RA × 6 + MB = MA + 2 × 6 × 3

RA × 6 – 7.5 = – 5.25 + 36 = 30.75

∴ RA =
30.75 7.5

6
+

 = 6.375 kN        Ans.

Again taking moments about B and equating the same,
RC × 6 + MB = MC + 12 × 3

RC × 6 – 7.5 = – 9.75 + 36 = 26.25

∴ RC =
26.25 7.5

6
+

 = 5.625 kN        Ans.

and RB = (2 × 6 + 12) – (6.375 + 5.625) = 12.0 kN        Ans.
Now complete the shear force diagram and elastic curve as shown in Fig. 26.7 (c) and (d).

26.10. Beams with Simply Supported Ends
Sometimes, a continuous beam is simply supported curve on one or both of its ends. We know

that the fixing moment on a simply supported end is zero. Therefore in such a case, the simply supported
ends are released by applying equal and opposite moments and their effects are carried over on the
opposite joints. It may also be noted that no moment is carried over from the opposite joint to the
simply supported end.

EXAMPLE 26.3     A continuous beam ABC 10 m long rests on three supports A, B and C at the
same level and is loaded as shown in Fig. 26.8.

Fig. 26.8

Determine the moments over the beam and draw the bending moment diagram. Also calculate
the reactions at the supports and draw the shear force diagram.

*SOLUTION. Given: Length AB (l1) = 6 m ;  Length BC (l2) = 4 m ;  Load at D (W) = 3 kN ;
Distance AD (a) = 2 m ; Distance DB (b) = 4 m and uniformly distributed load BC (w) = 1 kN/m.

First of all, assume the continuous beam ABC to split up into two fixed beams AB and BC as
shown in Fig. 26.9 (b) and (c).

In span AB, the fixing moment at A

=
2

2
Wab

l
−  ...(Minus sign due to anticlockwise)

=
2

2

3 2 (4) 8
3(6)

× ×− = −  = – 2.67 kN-m

and fixing moment at B

=
2

2
Wa b

l
+  ...(Plus sign due to clockwise)

=
2

2

3 (2) 4 4
3(6)

× ×+ = +  = + 1.33 kN-m

* We have already solved this question  by Theorem of three moments in Example 25.1.
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Fig. 26.9

Similarly, in span BC, the fixing moment at B

=
2

12
wl−  ...(Minus sign due to anticlockwise)

=
21 (4) 4

12 3
×− = −  = – 1.33 kN-m

and fixing moment at C

=
2

12
wl+ ...(Plus sign due to clockwise)

=
21 (4) 4

12 3
×+ = +  = + 1.33 kN-m

Now let us find out the distribution factors at B. From the geometry of the figure, we find that the
stiffness factor for BA,

kBA =
3 3

6 2
EI EI EI
l

= =  ...(ä  The beam is hinged at A)

Similarly, stiffness factor for BC,

kBC =
3 3 3

4 4
EI EI EI
l

= = ...(ä  The beam is hinged at C)

Distribution factors for BA and BC

= 2
3

2 4

EI

EI EI+
       and        

3
4

3
2 4

EI

EI EI+
      =      

2
5        and       

3
5

Now draw the beam and fill up the distribution factors and fixing moments as shown in Fig.
26.10 (a). Now release the ends A and C (because of simply supported ends) by applying equal and
opposite moments. Now *carry over the moments from A to B and C to B. After adding the carry over

* As per article 26.5, the carry over factor is 
1
2
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moments at B, we find that the moment at B in span AB is + 2.66 kN-m and in span BC is – 2.00. Now
distribute the unbalanced moment of 0.66 kN-m (i.e., 2.66 – 2.00 = 0.66 kN-m) into the two spans of
AC in the ratio of their distribution factors, i.e., – 0.26 kN-m and – 0.40 kN. Now find out the final
moments by adding all the values.

We know that the bending moment under 3 tonnes load in the span AB treating it as a simply
supported

=
3 2 4

6
Wab

l
× ×=  = 4.0 kN-m

Similarly, bending moment at the mid of the span BC due to uniformly distributed load

=
22 1 (4)

8 8
wl ×=  = 2.0 kN-m

Now prepare the following table.

Fig. 26.10

Now complete the final bending moment diagram as shown in Fig. 26.11(b).

Shear force diagram
Let RA = Reaction at A,

RB = Reaction at B and

RC = Reaction at C.
Taking moments about B,

RA × 6 – 3 × 4 = – 2.4 ...(ä  MB = 2.4 kN-m)

∴ RA = 2.4 12.0 9.6
6 6

− + =  = 1.6 kN        Ans.

Similarly,
RC × 4 – 4 × 2 = – 2.4 ...(ä  MB = – 2.4 kN-m)

∴ RC = 2.4 8.0 5.6
4 4

− + =  = 1.4 kN        Ans.
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and RB = (3 + 4) – (1.6 + 1.4) = 4.0 kN        Ans.
Now draw shear force diagram as shown in Fig. 26.11 (c).

Fig. 26.11

EXERCISE 26.1

1. A continuous beam ABC is fixed at A and is simply supported at B and C. The span AB is 6 m
and carries a uniformly distributed load of 1 kN/m. The span AC is 4 m and carries a uniformly
distributed load of 3 kN/m. Determine the fixed end moments.

[Ans. ( = 2.143 kN-m ;  MB = 4.714 kN-m ;  MC = 0)]
2. A simply supported beam ABC is continuous over two spans AB and BC of 6 m and 5 m respec-

tively. The span AB is carrying a uniformly distributed load of 2 kN-m and the span BC is
carrying a point load of 5 kN at a distance of 2 m from B. Find the support moment at B.

[Ans. 7.1 kN-m]
3. A continuous beam ABCD is simply supported over three spans, such that AB = 8 m BC = 12 m

and CD = 5 m. It carries uniformly distributed load of 4 kN/m in span AB, 3 kN/m in span BC
and 6 kN/m in span CD. Find the moments over the supports B and C.

[Ans. 35.9 kN-m ;  31.0 kN-m]
4. A continuous beam ABCD is simply supported over three spans of 6 m, 5 m and 4 m respec-

tively. The beam carries point loads of 90 kN and 80 kN at 2 m and 8 m from the support A and
a uniformly distributed load of 30 kN-m over the span CD. Find the moments and reactions at
the supports. [Ans. 68.4 kN-m ;  44.8 kN ;  48.6 kN ;  94.1 kN ;  98.5 kN]

26.11. Beams with End Span Overhanging
Sometimes, a beam is overhanging at its one or both the end supports. In such a case, the bending

moment at the support near the overhanging end will be due to the load over the overhanging portion
and will remain constant, irrespective of the moments on the other supports. It is thus obvious that the
distribution factors over the support having one span overhanging will be 1 and 0. Moreover, this
support is considered as a simply supported for the purpose of calculating distribution factors in the
span, adjoining the overhanging span.
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EXAMPLE 26.4.   A beam ABCD 9 m long is simply supported at A, B and C such that the span
AB is 3 m, span BC is 4.5 m and the overhanging CD is 1.5 m. It carries a uniformly distributed load
of 1.5 kN/m in span AB and a point load of 1 kN at the free end B. The moment of inertia of the beam
in span AB is I and that in the span BC is 2I. Draw the B.M. and S.F. diagrams of the beam.

*SOLUTION. Given : Length AB (l1) = 3 m ;  Length BC (l2) = 4.5 m ;  Length CD (l3) = 1.5 m ;
Moment of inertia for AB (IAB) = ICD = I ;  Moment of inertia for BC = (IBC) = 2I ;  Uniformly
distributed load between A and B (w) = 1.5 kN/m and point load at D (W) = 1 kN.

Bending moment diagram
First of all, let us assume the continuous beam ABCD to be split up into fixed beams AB, BC and

cantilever CD.
In span AB the fixing moment at AP

=
22 1.5 (3)

12 12
wl ×− = −  = – 1.125 kN-m

and fixing moment at B

=
22 1.5 (3)

12 12
wl ×+ = +  = + 1.125 kN-m

Since the span BC is not carrying any load, therefore fixing moment at B and C will be zero. The
moment at C for the cantilever CD will be 1 × 1.5 = –1.5 kN-m.

Now let us find out the distribution factors at B and C. From the geometry of the figure, we find
that the stiffness factor for BA,

kBA =
3 3 1

3
EI EI EI
l

= =

Similarly, kBC =
3 23 6 4

4.5 4.5 3
E lEI EI EI

l
×= = =

Distribution factor for BA and BC

=
2

41
3

EI
EIEI +

       and       

4
3

41
3

EI

EIEI +
       =        

3
7        and        4

7

We know that distribution factors for CA and CD will be 1 and 0, because the beam is overhanging
at C.

Now prepare the following table.

A B C D

3
7

4
7 1 0

– 1.125 + 1.125 0 0 – 1.5 Fixed end moments

+ 1.125 0 0 + 1.5 0 Release A and balance C

+ 0.562 + 0.75 0 0 Carry over

0 + 1.687 + 0.75 + 1.5 – 1.5 Initial moments

– 1.037 – 1.40 – – Distribute

0 + 0.65 – 0.65 + 1.5 – 1.5 Final moments

* We have already solved, this question by Theorem of three momens in Example 25.5

...(ä  The end A is simply
supported at A)

...(ä  Beam is over
     handing beyond C)
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We know that the bending moment in the mid of span AB due to uniformly distributed load, by
considering it as a simply supported beam

=
22 1.5 (3)

8 8
wl ×=  = 1.69 kN-m

Now complete the final bending moment diagram as shown in Fig. 26.12(b).
Shear force diagram

Let RA = Reaction at A,
RB = Reaction at B and
RC = Reaction at C.

Taking moments at B

RA × 3 – (1.5 × 3 × 1.5) = – 0.65 ...(ä  MB = – 0.65 kN-m)

Fig. 26.12

or RA = 0.65 6.75
3

− +  = 2.03 kN

Again taking moments about B,
RC × 4.5 – (1 × 6) = – 0.65 ... (ä  MB = – 0.65 kN-m)

or RC =
0.65 6

4.5
− +

 = 1.19 kN

∴ RB = (3 × 1.5 + 1) – (2.03 + 1.19) = 2.28 kN

Now complete the shear force diagram as shown in Fig. 26.12 (c).

EXAMPLE 26.5.   A continuous beam ABCDE, with uniform flexural rigidity throughout has
roller supports at B, C and D, a built-in support E and an overhang AB as shown in Fig. 26.13.

Fig. 26.13
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It carries a uniformly distributed load of intensity of 2 kN/m on AB and another of intensity of
3 kN/m over BCDE. In addition to it, a point load of 8 kN is placed midway between C and D. The
span lengths are AB = 2 m, BC = CD = DE = 5 m. Obtain the support moments by the moment
distribution method and sketch the B.M. diagram giving values at salient points.

SOLUTION. Given: Length AB (l1) = 2 m ;  Length BC (l2) = Length CD (l3) = Length DE (l4) = 5
m ; Uniformly distributed load on AB (w1) = 2 kN/m ;  Uniformly distributed load in BC, CD, DE (w2)
= 3 kN/m and point load at F (W) = 8 kN.

Support moments

First of all, let us assume the continuous beam ABCDE to be split up into cantilever AB and fixed
beams BC, CD and DE.

We know that the bending moment at B for the cantilever AB,

MB = 1
1 1

22 2
2 2
l

w l × = × ×  = 4 kN-m

In span BC, fixing moment at B

=
2 2

2 3 (5)
12 12

w l ×− = −  = – 6.25 kN-m

and fixing moment at C =
2 2

2 3 (5)
12 12

w l ×+ = +  = + 6.25 kN-m

In span CD, the fixing moment at C

=
2 2

2
212

w l Wab

l

⎡ ⎤
− +⎢ ⎥
⎢ ⎥⎣ ⎦

=
2 2

2
3 (5) 8 2.5 (2.5)

12 5

⎡ ⎤× × ×− +⎢ ⎥
⎢ ⎥⎣ ⎦

 kN-m

= – 11.25 kN-m

and fixing moment at D =
2 2

2
212

w l Wa b

l

⎡ ⎤
+ +⎢ ⎥
⎢ ⎥⎣ ⎦

=
2 3

2
3 (5) 8 2.5 (2.5)

12 5

⎡ ⎤× × ×+ +⎢ ⎥
⎢ ⎥⎣ ⎦

 kN-m

= + 11.25 kN-m

In span DE, the fixing moment at D

=
2 2

2 3 (5)
12 12

w l ×− = −  = – 6.25 kN-m

and fixing moment at E

=
2 2

2 3 (5)
12 12

w l ×+ =  = + 6.25 kN-m

Now let us find out the distribution factors at B, C and D. From the geometry of the figure, we
find that the distribution factors for BA and BC will be 0 and 1.

Stiffness factor for CB,

kCB =
3EI

l
 = 

3
5
EI

...(∵   The beam is overhanging beyond C)

and kCD =
4EI

l
 = 

4
5
EI

...(∵   The beam is continuous at D)
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Distribution factors for CB and CD

=

3
5

3 4
5 5

EI

EI EI+
       and       

4
5

3 4
5 5

EI

EI EI+
        =        3

7
        and       4

7

Similarly, stiffness factor for DC,

kCD =
4EI

l
 = 

4
5
EI

...(∵   The beam is continuous at C)

and kDE =
4EI

l
 = 

4
5
EI

...(ä  The beam is fixed at E)

Distribution factors for DC and  DE

=

4
5

4 4
5 5

EI

EI EI+
       and       

4
5

4 4
5 5

EI

EI EI+
        =        1

2
     and     1

2

Now prepare the following table:

A B C D E

0 1
3
7

4
7

1
2

1
2

+ 4.00 – 6.25 + 6.25 – 11.25 + 11.25 – 6.25 + 6.25 Fixed end moments

+ 2.25 Balance B

+ 1.13 Cary over

+ 4.00 – 4.00 + 7.38 – 11.25 + 11.25 – 6.25 + 6.25 Initial moments

+ 1.66 + 2.21 – 2.50 – 2.50 Distribute

– 1.25 + 1.10 – 1.25 Carry over

+ 0.54 + 0.71 – 0.55 – 0.55 Distribute

– 0.28 + 0.36 – 0.28 Cary over

+ 0.12 + 0.16 – 0.18 – 0.18 Distribute

– 0.09 + 0.08 – 0.09 Carry over

+ 0.04 + 0.05 – 0.04 – 0.04 Distribute

+ 4.00 – 4.00 + 9.74 – 9.74 + 9.52 – 9.52 + 4.63 Final moments

We know that the bending moment in the middle of span BC, by considering it as a simply
supported beam

=
2

2
8

w l
 = 

23 (5)
8

×
 = 9.38 kN-m

Similarly, bending in the middle of span CD, by considering it as a simply supported beam
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=
2

2
8 1

w l Wab+  = 
23 (5) 8 2.5 2.5

8 5
× × ×+  = 19.38 kN-m

and bending moment in the middle of span DE, by considering it as a simply supported beam

=
2

2
8

w l
 = 

23 (5)
8

×
 = 9.38 kN-m

Now complete the final bending moment diagram as shown in Fig. 26.14 (b).

Fig. 26.14

EXAMPLE 26.6.   A beam ABCDE has a built-in support A and roller supports at B, C and D,
DE being an overhung. AB = 7 m, BC = 3 m, CD = 4m and DE = 1.5 m. The values of I, the
moment of inertia of the section, over each of these lengths are 3I, 2I, I and I respectively. The
beam carries a point load of 10 kN at a point 3 m from A, a uniformly distributed load of 4.5 kN/
m over whole of BC and a concentrated load of 9 kN in CD 1.5 m from C and another point load
of 3 kN at E the top of overhang as shown in Fig. 26.15.

Fig. 26.15

Determine (i) moments developed over each of the supports A, B, C and D and (ii) draw
bending moment diagram for the entire beam, stating values at salient points.

*SOLUTION. Given : Length AB (l1) = 7 m ;  Length BC (l2) = 5 m ;  Length CD (l3) = 4 m ;  Length
DE (l4) = 1.5 m ;  Moment of inertia for AB (IAB) = 3I ;  Moment of inertia for BC (IBC) = 2I ;  Moment
of inertia for CD (ICD) = IDE = I ;  Point load at F (W1) = 10 kN ;  Uniformly distributed load on BC
(w1) = 4.5 kN/m ;  Point load at G (W2) = 9 kN and point load at E = 3 kN.

Moments developed over each of the support
First of all, let us assume the continuous beam ABCDE to be split up into fixed beams AB, BC,

CD and cantilever DE.

* This question is also solved in Example 25.6.
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In span AB, fixing moment at A

=
2 2

1
2 2

10 3 (4)

(7 )

W ab

l

× ×− = −  = – 9.80 kN-m

and fixing moment at B =
2 2

1
2 2

10 (3) 4

(7)

W a b

l

× ×+ =  = 7.35 kN-m

In span BC, fixing moment at A

=
22 4.5 (5)

12 12
wl ×− = −  = – 9.38 kN-m

and fixing moment at C =
22 4.5 (5)

12 12
wl ×+ = −  = 9.38 kN-m

In span CD, fixing moment at C

=
2 2

2
2 2

9 1.5 (2.5)

(4)

W ab

l

× ×− = −  = – 5.27 kN-m

and fixing moment at D =
2 2

2
2 2

9 (1.5) 2.5

(4)

W a b

l

× ×+ = −  = 3.16 kN-m

and the moment at D, for the cantilever at DE

= 3 × 1.5 = – 4.5 kN-m
Now let us find out the distribution factors at B, C and D. From the geometry of the figure, we

find that the stiffness factor for BA,

kBA =
4 34 12

7 7
E IEI EI

l
×= = ...(ä  The beam is fixed at A)

and kBC =
4 24 8

5 5
E IEI EI

l
×= = ...(ä  The beam is continuous at C)

Distribution factors for BA and  BC

=

12
7

12 8
7 5

EI

EI EI+
      and      

8
5

12 8
7 5

EI

EI EI+
        =        

15
29       and       14

29

Similarly, stiffness factor for CB,

kCB =
4 24 8

5 5
E IEI EI

l
×= = ...(ä  The beam is continuous at B)

and kCD =
3 3

4
EI EI
l

= ...(ä  The beam is overhanging beyond D)

Distribution factors for CB and  CD

=

8
5

8 3
5 4

EI

EI EI+
      and      

3
4

8 3
5 4

EI

EI EI+
        =        

32
47       and      15

47

Distribution factors for DC and DE will be 1 and 0, because the beam is overhanging at D.
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Now prepare the following table:

A B                C                    D E

15
29

14
29

32
47

15
47 1 0

–  9.80 + 7.35 – 9.38 + 9.38 – 5.27 + 3.16 – 4.5 Fixed end moments

+ 1.34 Balance D

+ 0.67 Carry over

– 9.80 + 7.35 – 9.38 + 9.38 – 4.60 + 4.5 – 4.5 Initial moments

+ 1.05 + 0.98 – 3.25 – 1.53 Distribute

+ 0.53 – 1.63 + 0.49 0 Carry over

+ 0.84 + 0.79 – 0.33 – 0.16 Distribute

+ 0.42 – 0.17 + 0.40 0 Carry over

+ 0.09 + 0.08 – 0.27 – 0.13 Distribute

+ 0.05 – 0.13 + 0.04 0 Carry over

0.07 + 0.06 – 0.03 – 0.01 Distribute

+ 0.04 – 0.02 + 0.03 0 Carry over

 0.01  0.01 – 0.02 – 0.01 Distribute

– 8.76  9.41 – 9.41 + 6.44 – 6.44 + 4.5 – 4.5 Final moments

The moments developed at each of the support are given in the above table.        Ans.
Bending moment diagram

We know that the bending moment under the 10 kN load in span AB, treating it as a simply
supported

Fig. 26.16
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= 1 10 3 4
7

W ab
l

× ×=  = 17.14 kN-m

Similarly, bending moment at the mid of the span BC

=
22 4.5 (5)

8 8
wl ×=  = 14.06 kN-m

and bending moment under the 9 kN load in span CD

= 2 9 1.5 2.5
4

W ab
l

× ×=  = 8.44 kN-m

Now complete the final bending moment diagram as shown in Fig. 26.16 (b).

26.12. Beams with a Sinking Support
Sometimes, one of the supports of a continuous beam sinks down with respect to others, as a

result of loading. As a result of sinking, some moments are caused on the two supports, in addition to
the moments due to loading.

Fig. 26.17

Consider a beam ABC simply supported at A, B and C subjected to any loading. As a result of this
loading, let the support B sink down by an amount equal to δ as shown in Fig. 26.17 (b). Now assume
the beam ABC to be split up into two beams AB and BC as shown in Fig. 26.17 (c) and (d).

Now from the geometry of the beam AB, we find that the moment caused at A and B due to
sinking of the support B

= 2
6EI

l

δ− ...(Minus sign due to right support sinking down)

Similarly, moment caused at B and C of the beam BC due to sinking of the support B

= 2
6EI

l

δ+ ...(Plus sign due to left support sinking down)



646 � Strength of Materials

EXAMPLE 26.7.   A continuous beam ABC shown in Fig. 26.18 carries a uniformly distributed
load of 50 kN/m on AB and BC. The support B sinks by 5 mm below A and C and the value of EI
is constant throughout the beam.

Fig. 26.18

Taking E = 200 GPa and I = 332 × 106 mm4, find the bending moment at supports A and B and
draw the bending moment diagram.

*Solution. Given : Length AB (l1) = 4 m ;  Length BC (l2) = 3 m ;  Uniformly distributed load (w)
= 50 kN/m ;  Sinking of support B (δB) = –5 mm = – 0.005 m or δA = δC = + 0.005 m ;  Modulus of
elasticity (E) = 200 GPa = 200 × 106 kN/m2 and moment of inertia (I ) = 332 × 106 mm4

=  332 × 10–6 m4.
Bending moment at supports

First of all, let us assume the continuous beam ABC to be split up into fixed beams AB and BC. In
span AB, fixing moment at A due to loading

=
22 50 (4)

12 12
wl ×− = −  = – 66.7 k-m

and fixing moment at B

=
22 50 (4)

12 12
wl ×+ =  = 66.7 kN-m

Now in span AB moment at A due to sinking of support B

= 2
6EI

l

δ− ...(Minus sign due to right support sinking)

=
6 6

2
6 (200 10 ) (332 10 ) 0.005

(4)

−× × × × ×−  kN-m

= – 124.5 kN-m
Similarly, moment at B, due to sinking of support B

= – 124.5 kN-m
∴ Total moment at A in span AB

= – 66.7 – 124.5 = – 191.2 kN-m
and total moment at B in span AB

= + 66.7 – 124.5 = – 57.8 kN-m
In span BC, fixing moment at B due to loading

=
22 50 (3)

12 12
wl ×− = −  = – 37.5 kN-m

and fixing moment at C =
22 50 (3)

12 12
wl ×+ =  = + 37.5 kN-m

Now in span BC, moment at B due to sinking of support B

= 2
6EI

l

δ+ ...(Plus sign due to left support sinking)

* We have already solved this question by Theorem of there moments in Example 25.7.
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=
6 6

2
6 (200 10 ) (332 10 ) 0.005

(3)

−× × × × ×+  kN-m

= 221.3 kN-m

Similarly, moment at C, due to sinking of support B
= + 221.3 kN-m

∴ Total moment at B, in span BC

= – 37.5 – 221.3 = 183.8 kN-m
and total moment at C, in span BC

= + 37.5 – 221.3 = 258.8 kN-m

Now, let us find out the distribution factors at B. From the geometry of the figure, we find that the
stiffness factor for BA,

kBA =
4 4

4
EI EI
l

=  = 1 EI ...(ä  The beam is fixed at A)

and kBC =
3 3

3
EI EI
l

= ...(ä  The beam is simply suppoted at C)

Distribution factors for BA and BC will be 
1
2  and 

1
2 .

Now prepare the following table:

A B C

1
2

1
2

– 191.2 – 57.8 + 183.8 + 258.8 Fixed end moment

– 258.8 Release C

– 129.4 Carry over

– 191.2 – 57.8 + 54.4 0 Initial moments

+ 1.7 + 1.7 Distribute

+ 0.9 Carry over

0 0 0 0 Distribute

– 190.3 – 56.1 + 56.1 0 Final moments

The bending moments at the supports are given in the above table.        Ans.
Bending moment diagram

We know that the bending moment at the mid of the span AB, treating it as a simply supported
beam

=
22 50 (4)

8 8
wl ×=  = 100 kN-m

Similarly, bending moment at the mid of the span BC

=
22 50 (3)

8 8
wl ×=  = 56.25 kN-m

Now complete the final bending moment diagram as shown in Fig. 26.19 (b).
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Fig. 26.19

EXAMPLE 26.8.  A continuous beam is built-in at A and is carried over rollers at B and C as
shown in Fig. 26.20. AB = BC = 12 m.

It carries a uniformly distributed load of 3 kN/m over AB and a point load of 24 kN over BC,
4 m from the support B, which sinks 30 mm. Values of E and I are 200 GPa and 0.2 × 109 m4

respectively uniform throughout.

Calculate the support moments and draw bending moment diagram and shear force diagram,
giving critical values. Also draw the deflected shape of the centre line of the beam.

Fig. 26.20

*SOLUTION. Given : Length AB (l1) = 12 m ;  Length BC (l2) = 12 m ;  Uniformly distributed load
on AB (w) = 3 kN/m ;  Point load at D (W) = 24 kN ;  Sinking of support B (δB) = – 30 mm = – 0.03
m or δA = (δC) = + 0.03 m ;  Modulus of elasticity (E) = 200 GPa = 200 × 106 kN-m2 and moment of
inertia (I) = 0.2 × 109 mm4 = 0.2 × 10–3 m4.

Support moments at A, B and C
First of all, let us assume the continuous beam ABC to be split up into fixed beams AB and BC.
In span AB, the fixing moment at A due to loading

=
22 3 (12)

12 12
wl ×− = −  = – 36.0 kN-m

and fixing moment at B =
22 3 (12)

12 12
wl ×+ = +  = + 36.0 kN-m

Now in span AB, the moment at A due to sinking of support

* We have already solved this question by Three moments theorem in Example 25.8.
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= 2
6EI

l

δ− ... (Minus sign due to right support sinking)

=
6 3

2
6 (200 10 ) (0.2 10 ) 0.03

(12)

−× × × × ×−  = – 50.0 kN-m

Similarly, moment at B due to sinking of support B
= – 50.0 kN-m

∴ Total moment at A in span AB

= – 36.0 – 5.00 = – 86.0 kN-m
and total moment at B in span AB

M = + 36.0 – 50.0 = – 14.0 kN-m

Now in span BC, the fixing moment at B due to loading

=
22

2 2
24 4 (8)

(12)

Wab

l

× ×− = −  = – 42.67 kN-m

and fixing moment at B =
22

2 2
24 (4) 8

(12)

Wa b

l

× ×+ =  = + 21.33 kN-m

Now in span BC, the moment at B, due to sinking of support B

= 2
6EI

l

δ+ ... (Plus sign due to left support sinking)

=
6 3

2

6 (200 10 ) (0.2 10 ) 0.03

(12)

−× × × × ×+  = + 50.0 kN-m

Similarly, moment at C due to sinking of support B  = + 50.0 kN-m
∴ Total moment at B in span BC

=  – 42.67 + 50.0 = + 7.33 kN-m

and total moment at C in span BC

= + 21.33 + 50.0 = + 71.33 kN-m

Now, let us find out the distribution factors at B. From the geometry of the figure, we find that the
stiffness factor for BA,

kBA =
4 4

12 3
EI EI EI
l

= = ...(ä  The beam is fixed at A)

and kBC =
3 3

12 4
EI EI EI
l

= = ...(ä The beam is simply supported at C)

Distribution factors for BA and BC

= 3

3 4

EI

EI EI+
       and       4

3 4

EI

EI EI+
         =         4

7
       and       3

7
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Now prepare the following table:

A B C

4
7

3
7

– 86.00 – 14.00 + 7.33 + 71.33 Fixed end moment

– 71.33 Release C

– 35.67 Carry over

– 86.00 – 14.00 – 28.34 0 Initial moments

+ 24.20 + 18.14 Distribute

+ 12.10 Carry over

0 0 0 0 Distribute

– 73.9 + 10.2 – 10.2 0 Final moments

The bending moments at the supports are given in the above table.        Ans.
Bending moment diagram

From the geometry of the figure, we find that the bending moment at the mid of the span AB
treating it as a simply supported beam

=
22 3 (12)

8 8
wl ×=  = 54.0 kN-m

Fig. 26.21
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Similarly, bending moment under the 24 kN load

=
24 4 8

12
Wab

l
× ×=  = 64.0 kN-m

Now complete the bending moment as shown in Fig. 26.21 (b).

Shear force diagram
Let RA = Reaction at A,

RB = Reaction at B and

RC = Reaction at C.
Taking moments about B, and equating the same

RC × 12 – (24 × 4) = – 10.2 ...(ä  MB = – 10.2 kN-m)

∴ RC =
10.2 96.0

12
− +

 = 7.15 kN

Now taking moments about A, and equating the same

– 73.9 = (7.15 × 24) + RB × 12 – (24 × 16) – (3 × 12 × 6)

...(ä  Bending moment A = – 73.9 kN-m)
= 12RB – 428.4

∴ RB =
73.9 428.4

12
− +

 = 29.54 kN

and RA = (3 × 12 + 24) – (7.15 + 29.54) = 23.31 kN
Now complete the shear force diagram as shown in Fig. 26.21 (c).

The elastic curve i.e., deflected shape of the centre line of the beam is shown in Fig. 26.21 (d).

EXERCISE 26.2

1. A continuous beam ABCD is fixed at A and simply supported at B and C, the beam CD is
overhanging. The spans AB = 6 m, BC = 5 m and overhanging CD = 2.5 m. The moment of
inertia of the span BC is 2l and that of AB and CD is l. The beam is carrying a uniformly
distributed load 2 kN/m over the span AB, a point load of 5 kN in BC at a distance of 3 m from
B, and a point load of 8 kN at the free end.
Determine the fixing moments at A, B and C and draw the bending moment diagram.

[Ans. 8.11 kN-m ;  1.79 kN-m ;  20.0 kN-m]

2. A beam ABCD is continuous over three spans AB = 8 m, BC = 4 m and CD = 8 m. The beam AB
and BC is subjected to a uniformly distributed load of 1.5 kN/m, whereas there is a central point
load of 4 kN in CD. The moment of inertia of AB and CD is 2I and that of BC is I. The end A and
D are fixed. During loading the support A sinks down by 10 mm. Find the fixed end moments.
Take E = 200 Gpa and I = 16 × 106 mm4.

[Ans. –16.53 kN-m ;  – 30.66 kN-m ;  – 77.33 kN-m ;  – 21.33 kN-m]

3. A continuous beam ABCD 20 m long is supported at B and C and fixed at A and D. The spans
AB, BC and CD are 6 m, 8 m and 6 m respectively. The span AB carries a uniformly distributed
load of 1 kN/m, the span BC carries a central point load of 10 kN and the span CD carries a
point load of 5 kN at a distance of 3 m from C. During loading, the support B sinks by 10 mm.
Find the fixed end moments and draw the bending moment diagram. Take E = 10 mm and I = 3
× 109 mm4. The moment of inertia of the spans AB and CD is I and that of BC = 2I.

[Ans. – 5.74 kN-m ;  – 2.57 kN-m ;  – 9.2 kN-m ;  – 2.07 kN-m]
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QUESTIONS

1. Define the term ‘carry over factor’. Derive a relation for the stiffness factor for a beam simply
supported at its both ends.

2. What do you understand by the term ‘distribution factor’? Discuss its importance in the method
of moment distribution.

3. Explain the procedure for finding out the fixed end moments in:

(a) beams with fixed end supports. (b) beams with simply supported ends.

(c) beams with end span overhanging. (d) beams with a sinking support.

OBJECTIVE TYPE QUESTIONS

1. Stiffness factor for a beam fixed at one end and freely supported at the other is

(a)
3EI

l
(b)

4EI
l

(c)
6EI

l
(d)

8EI
l

2. Stiffness factor for beam simply supported at both the ends is“

(a)
3EI

l
(b)

4EI
l

(c)
6EI

l
(d)

8EI
l

3. If the end B of a continuous beam ABC sinks down, then the moment at A will be

(a) zero (b) negative (c) positive (d) infinity

ANSWERS

1. (b) 2. (a) 3. (b)
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27.1. Introduction
In workshops and factories, a turning force

is always applied to transmit energy by rotation.
This turning force is applied either to the rim of a
pulley, keyed to the shaft or at any other suitable
point at some distance from the axis of the shaft.
The product of this turning force and the distance
between the point of application of the force and
the axis of the shaft is known as torque, turning
moment or twisting moment. And the shaft is said
to be subjected to torsion. Due to this torque,
every cross-section of the shaft is subjected to
some shear stress.

27.2. Assumptions for Shear
Stress in a Circular Shaft
Subjected to Torsion

Following assumptions are made, while

27C h a p t e r
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finding out shear stress in a circular shaft subjected to torsion:
1. The material of the shaft is uniform throughout.

2. The twist along the shaft is uniform.

3. Normal cross-sections of the shaft, which were plane and circular before the twist, remain plane
and circular even after the twist.

4. All diameters of the normal cross-section, which were straight before the twist, remain straight
with their magnitude unchanged, after the twist.

A little consideration will show that the above assumptions are justified, if the torque applied is
small and the angle of twist is also small.

27.3. Torsional Stresses and Strains

Fig. 27.1

Consider a circular shaft fixed at one end and subjected to a torque at the other end as shown in
Fig. 27.1.

Let T = Torque in N-mm,

l = Length of the shaft in mm and
R = Radius of the circular shaft in mm.

As a result of this torque, every cross-section of the shaft will be subjected to shear stresses. Let
the line CA on the surface of the shaft be deformed to CA′ and OA to OA′ as shown in Fig. 27.1.

Let ∠ACA′ = φ in degrees
∠AOA′ = θ in radians

τ = Shear stress induced at the surface and

C = Modulus of rigidity, also known as torsional rigidity of the
shaft material.

We know that shear strain = Deformation per unit length

=
AA
l

′
 = tan θ

= φ  ...(φ being very small, tan φ = φ)
We also know that the arc AA′ = R · θ

∴ φ =
RAA

l l
′ ⋅ θ= ...(i)

If τ is the intensity of shear stress on the outermost layer and C the modulus of rigidity of the
shaft, then

φ =
C
τ

...(ii)
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From equations (i) and (ii), we find that

C
τ

=
R

l
⋅ θ

     or      
C

R l
τ ⋅θ=

If τX be the intensity of shear stress, on any layer at a distance x from the centre of the shaft, then

X

x
τ

=
C

R l
⋅ θτ = ...(iii)

27.4. Strength of a Solid Shaft
The term, strength of a shaft means the maximum torque or power, it can transmit. As a matter of

fact, we are always interested in calculating the torque, a shaft can withstand or transmit.
Let R = Radius of the shaft in mm and

τ = Shear stress developed in the outermost layer of the shaft in
N/mm2

Consider a shaft subjected to a torque T as shown in Fig. 27.2. Now let us consider an element of
area da of thickness dx at a distance x from the centre of the shaft as shown in Fig. 27.2.

∴ da = 2πx · dx ...(i)

and shear stress at this section,

∴ τX =
x
R

τ × ...(ii)

where τ = Maximum shear stress.

∴ Turning force = Shear Stress × Area
= τx · dx

=
x da
R

τ × ×

= 2 ·τ × πx
x dx

R

=
22 ·x x dx

R
π

We know that turning moment of this element,

dT = Turning force × Distance of element from axis of the shaft

=
2 32 2x dx x x dx

R R
π τ πτ⋅ = ⋅ ...(iii)

The total torque, which the shaft can withstand, may be found out by integrating the above
equation between 0 and R i.e.,

T =
3 2

0 0

2 2
R R

x dx x dx
R R
πτ πτ⋅ = ⋅∫ ∫

=
4

3 3

0

2
4 2 16

R
x R D

R

⎡ ⎤πτ π π= τ ⋅ = × τ ×⎢ ⎥
⎣ ⎦

   N-mm

where D is the diameter of the shaft and is equal to 2R.

EXAMPLE 27.1.   A circular shaft of 50 mm diameter is required to transmit torque from one
shaft to another. Find the safe torque, which the shaft can transmit, if the shear stress is not to
exceed 40 MPa.

SOLUTION. Given: Diameter of shaft (D) = 50 mm and maximum shear stress (τ) = 40 MPa
= 40 N/mm2.

Fig. 27.2
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We know that the safe torque, which the shaft can transmit,

T =
3 340 (50)

16 16
Dπ π× τ × = × ×  N-mm

= 0.982 × 106 N-mm = 0.982 kN-m      Ans.

EXAMPLE 27.2.  A solid steel shaft is to transmit a torque of 10 kN-m. If the shearing stress
is not to exceed 45 MPa, find the minimum diameter of the shaft.

SOLUTION. Given: Torque (T) = 10 kN-m = 10 × 106 N-mm and maximum shearing stress (τ) = 45
MPa = 45 N/mm2.

Let D = Minimum diameter of the shaft in mm.

We know that torque transmitted by the shaft (T),

10 × 106 =
3 345

16 16
D Dπ π× τ × = × ×  = 8.836 D3

∴ D3 =
610 10

8.836
×

 = 1.132 × 106

or D = 1.04 × 102 = 104 mm      Ans.

27.5. Strength of a Hollow Shaft
It means the maximum torque or power a hollow shaft can transmit from one pulley to another.

Now consider a hollow circular shaft subjected to some torque.

Let R = Outer radius of the shaft in mm,
r = Inner radius of the shaft in mm, and

τ = Maximum shear stress developed in the outer most layer of
the shaft material.

Now consider an elementary ring of thickness dx at a
distance x from the centre as shown in Fig. 27.3.

We know that area of this ring,

da = 2πx · dx ...(i)
and shear stress at this section,

τX =
x
R

τ ×

∴ Turning force = Stress × Area
= τX · dx

... X
x
R

⎛ ⎞τ = τ ×⎜ ⎟
⎝ ⎠
∵

= 2x xdx
R

τ × × π ...(ä da = 2π xdx)

= 22 x dx
R
πτ ⋅ ...(ii)

We know that turning moment of this element,

dT = Turning force × Distance of element from axis of the shaft

= 2 32 2x dx x x dx
R R
πτ πτ⋅ ⋅ = ⋅ ...(iii)

Fig. 27.3
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The total torque, which the shaft can transmit, may be found out by integrating the above equation
between r and R.

∴ T =
3 32 2

R R

r r

x dx x dx
R R
πτ πτ⋅ = ⋅∫ ∫

=
4 4 4 442 2 N-mm

4 4 16

R

r

R r D dx
R R D

⎛ ⎞ ⎛ ⎞⎡ ⎤ − −πτ πτ π= = × τ ×⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟
⎣ ⎦ ⎝ ⎠ ⎝ ⎠

where D is the external diameter of the shaft and is equal to 2R and 2d is the internal diameter of the
shaft and is equal to 2r.
NOTE: We have already discussed in Art. 27.3 that the shear stress developed at a point is proportional to its

distance from the centre of the shaft. It is thus obvious that in the central portion of a shaft, the shear
stress induced is very small. In order to utilize the material to the fuller extent, hollow shafts are used.

EXAMPLE 27.3.  A hollow shaft of external and internal diameter of 80 mm and 50 mm is
required to transmit torque from one end to the other. What is the safe torque it can transmit, if the
allowable shear stress is 45 MPa ?

SOLUTION. Given: External diameter (D) = 80 mm; Internal diameter (d) = 50 mm and allowable
shear stress (τ) = 45 MPa = 45 N/mm2.

We know that torque transmitted by the shaft,

T =
4 4 4 4(80) (50)

45
16 16 80

D d
D

⎡ ⎤ ⎡ ⎤− −π π× τ × = × ×⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 N-mm

= 3.83 × 106 N-mm = 3.83 kN-m        Ans.

27.6. Power Transmitted by a Shaft
We have already discussed that the main purpose of a shaft is to transmit power from one shaft to

another in factories and workshops. Now consider a rotating shaft, which transmits power from one
of its ends to another.

Let N = No. of revolutions per minute and
T = Average torque in kN-m.

Work done per minute = Force × Distance = T × 2πN = 2πNT

Work done per second =
2 kN-m

60
NTπ

Power transmitted = Work done in kN-m per second

=
2 kW

60
NTπ

NOTE: If the torque is in the N-m, then work done will also be in N-m and power will be in watt (W).

EXAMPLE 27.4. A circular shaft of 60 mm diameter is running at 150 r.p.m. If the shear
stress is not to exceed 50 MPa, find the power which can be transmitted by the shaft.

Solution. Given: Diameter of the shaft (D) = 60 mm ;  Speed of the shaft (N) = 150 r.p.m. and
maximum shear stress (τ) = 50 MPa = 50 N/mm2.
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We know that torque transmitted by the shaft,

T =
3 350 (60) N-mm

16 16
Dπ π× τ × = × ×

= 2.12 × 106 N-mm = 2.12 kN-m

and power which can be transmitted by the shaft,

P =
2 150 2.122

60 60
NT π × ×π =  = 33.3 kW        Ans.

EXAMPLE 27.5. A hollow shaft of external and internal diameters as 100 mm and 40 mm is
transmitting power at 120 r.p.m. Find the power the shaft can transmit, if the shearing stress is
not to exceed 50 MPa.

SOLUTION. Given: External diameter (D) = 100 mm; Internal diameter (d) = 40 mm ;   Speed of
the shaft (N) = 120 r.p.m. and allowable shear stress (τ) = 50 MPa = 50 N/mm2.

We know that torque the shaft can transmit,

T =
4 4 4 4(100) (40)50

16 16 100

D d
D

⎡ ⎤− ⎡ ⎤π π −× τ × = × ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 N-mm

= 9.56 × 106 N-mm = 9.56 kN-m

and power the shaft can transmit,

P =
2 120 9.562

60 60
NT π × ×π =  = 120 kW        Ans.

EXAMPLE 27.6. A solid circular shaft of 100 mm diameter is transmitting 120 kW at
150 r.p.m. Find the intensity of shear stress in the shaft.

SOLUTION. Given : Diameter of the shaft (D) = 100 mm ;  Power transmitted (P) = 120 kW and
speed of the shaft (N) = 150 r.p.m.

Let T = Torque transmitted by the shaft, and
τ = Intensity of shear stress in the shaft.

We know that power transmitted by the shaft (P),

120 =
2 1502

60 60
TNT π × ×π =  = 15.7 T

∴ T =
120
15.7  = 7.64 kN-m = 7.64 × 106 N-mm

We also know that torque transmitted by the shaft (T),

7.64 × 106 =
3 3(100)

16 16
Dπ π× τ × = × τ ×  = 0.196 × 106 τ

τ =
7.64

0.196
 = 39 N/mm2 = 39 MPa        Ans.

EXAMPLE 27.7. A hollow shaft is to transmit 200 kW at 80 r.p.m. If the shear stress is not to
exceed 60 MPa and internal diameter is 0.6 of the external diameter, find the diameters of the
shaft.

SOLUTION. Given : Power (P) = 200 kW ;  Speed of shaft (N) = 80 r.p.m. ;  Maximum shear stress
(τ) = 60 MPa = 60 N/mm2 and internal diameter of the shaft (d) = 0.6D (where D is the external
diameter in mm).
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We know that torque transmitted by the shaft,

T =
4 4 4 4(0.6 )

60
16 16

D d D D
D D

⎡ ⎤ ⎡ ⎤− −π π× τ × = × ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 N-mm

= 10.3 D3 N-mm = 10.3 × 10–6 D3 kN-m ...(i)

We also know that power transmitted by the shaft (P),

200 =
6 32 80 (10.3 10 )2

60 60
DNT

−π × × ×π =  = 86.3 × 10–6 D3

∴ D3 =
6

200

(86.3 10 )−×
 = 2.32 × 106 mm3

or D = 1.32 × 102 = 132 mm        Ans.
and d = 0.6 D = 0.6 × 132 = 79.2 mm        Ans.

EXAMPLE 27.8. A solid steel shaft has to transmit 100 kW at 160 r.p.m. Taking allowable
shear stress as 70 MPa, find the suitable diameter of the shaft. The maximum torque transmitted
in each revolution exceeds the mean by 20%.

SOLUTION. Given: Power (P) = 100 kW ;  Speed of the shaft (N) = 160 r.p.m. ;  Allowable shear
stress (τ) = 70 MPa = 70 N/mm2 and maximum torque (Tmax) = 1.2 T (where T is the mean torque).

Let D = Diameter of the shaft in mm.

We know that power transmitted by shaft (P),

100 =
2 1602

60 60
TNT π × ×π =  = 16.8 T

∴ T =
100
16.8  = 5.95 kN-m = 5.95 × 106 N-mm

and maximum torque, Tmax = 1.2T = 1.2 × (5.95 × 106) = 7.14 × 106 N-mm

We also know that maximum torque (Tmax),

7.14 × 106 =
3 370

16 16
D Dπ π× τ × = × ×  = 13.7 D3

∴ D3 =
67.14 10

13.7
×

 = 0.521 × 106

or D = 0.8 × 102 = 80 mm        Ans.

EXERCISE 27.1

1. A circular shaft of 80 mm diameter is required to transmit torque in a factory. Find the torque,
which the shaft can transmit, if the allowable shear stress is 50 MPa. (Ans. 5.03 kN-mm)

2. A solid steel shaft is required to transmit a torque of 6.5 kN-m. What should be the minimum
diameter of the shaft, if the maximum shear stress is 40 MPa? (Ans. 94 mm)

3. A solid shaft of 40 mm diameter is subjected to a torque of 0.8 kN-m. Find the maximum shear
stress induced in the shaft. (Ans. 63.7 MPa)

4. A hollow shaft of external and internal diameters of 60 mm and 40 mm is transmitting torque.
Find the torque it can transmit, if the shear stress is not to exceed 40 MPa. (Ans. 1.36 kN-m)

5. A circular shaft of 80 mm diameter is required to transmit power at 120 r.p.m. If the shear stress
is not to exceed 40 MPa, find the power transmitted by the shaft. (Ans. 50.5 kW)
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6. A hollow shaft of external and internal diameters as 80 mm and 50 mm respectively is transmitting
power at 150 r.p.m. Determine the power, which the shaft can transmit, if the shearing stress is
not to exceed 40 MPa. (Ans. 53.6 kW)

7. A hollow shaft has to transmit 53 kW at 160 r.p.m. If the maximum shear stress is 50 MPa and
internal diameter is half of the external diameter, find the diameters of the shaft.

(Ans. 70 mm; 35 mm)

27.7. Polar Moment of Inertia
The moment of inertia of a plane area, with respect to an axis perpendicular to the plane of the

figure, is called polar moment of inertia with respect to the point, where the axis intersects the plane.
In a circular plane, this point is always the centre of the circle. We know that

R
τ

=
C

l
⋅ θ

                          ...(i) ... (from Art. 27.3)

and T =
3

16
Dπ × τ ×                 ...(ii) ... (from Art. 27.3)

or τ = 3
16T

Dπ
Substituting the value of τ in equation (i),

3
16T

D Rπ ×
=

C
l
⋅ θ

or
3

16

T

D Rπ × ×
=

C
l
⋅ θ

       
4

32

T

Dπ ×
=

C
l
⋅ θ

... Radius,
2
DR⎛ ⎞=⎜ ⎟

⎝ ⎠

T
J

=
C

l
⋅ θ

...(iii)

where J =
4

32
Dπ × .  It is known as polar moment of inertia.

The above equation (iii) may also be written as :

R
τ

=
CT

J l
⋅ θ= ... C

R l
⋅ θτ⎛ ⎞=⎜ ⎟

⎝ ⎠
∵

NOTES. 1. In a hollow circular shaft the polar moment of inertia,

J =
4 4( )

32
D dπ −

where d is the internal diameter of the shaft.

2. The term 
J
R  is known as torsional section modulus or polar modulus. It is similar to section modulus

which is equal to 
I
y

.

3. Thus polar modulus for a solid shaft,

Zp =
4 32

32 16
D D

D
π π× =

and the polar modulus for a hollow shaft,

Zp =
4 4 4 42 ( ) ( )

32 16
D d D d

D D
π π− = −
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EXAMPLE 27.9.  Calculate the maximum torque that a shaft of 125 mm diameter can transmit,
if the maximum angle of twist is 1° in a length of 1.5 m. Take C = 70 GPa.

SOLUTION. Given: Diameter of shaft (D) = 125 mm ;  Angle of twist (θ) = 1° = 180
π

 rad ;  Length of

the shaft (l) = 1.5 m = 1.5 × 103 mm and modulus of rigidity (C) = 70 GPa = 70 × 103 N/mm2.

Let T = Maximum torque the shaft can transmit.
We know that polar moment of inertia of a solid circular shaft,

J =
4 4( ) (125)

32 32
Dπ π× =  = 24.0 × 106 mm4

and relation for torque transmitted by the shaft,

T
J

=
C

l
⋅ θ

624.0 10

T

×
=

3

3

(70 10 ) /180

1.5 10

× π
×

 = 0.814

∴ T = 0.814 × (24.0 × 106) = 19.5 × 106 N-mm

= 19.5 kN-m        Ans.

EXAMPLE 27.10. Find the angle of twist per metre length of a hollow shaft of 100 mm
external and 60 mm internal diameter, if the shear stress is not to exceed 35 MPa. Take C = 85
GPa.

SOLUTION. Given: Length of the shaft (l) = 1 m = 1 × 103 mm ; External diameter (D) = 100 mm;
Internal diameter (d) = 60 mm ; Maximum shear stress (τ) = 35 MPa = 35 N/mm2 and modulus of
rigidity (C) = 85 GPa = 85 × 103 N/mm2.

Let θ = Angle of twist in the shaft.
We know that torque transmitted by the shaft,

T =
4 4 4 4(100) (60)

35
16 16 100

D d
D

⎡ ⎤ ⎡ ⎤− −π π× τ × = × ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 N-mm

= 5.98 × 106 N-mm

We also know that polar moment of inertia of a hollow circular shaft,

J =
4 4 4 4[ ] [(100) (60) ]

32 32
D dπ π− = −  = 8.55 × 106 mm4

and relation for the angle of twist,

T
J

=
C

l
⋅ θ

   or  
6 3

6 3

5.98 10 (85 10 )

8.55 10 1 10

× × θ=
× ×

 = 85.θ

∴ θ =
6

6

5.98 10

(8.55 10 ) 85

×
× ×

 = 0.008 rad = 0.5°        Ans.

EXAMPLE 27.11. A solid shaft of 120 mm diameter is required to transmit 200 kW at 100
r.p.m. If the angle of twists not to exceed 2°, find the length of the shaft. Take modulus of rigidity
for the shaft material as 90 GPa.

SOLUTION. Given : Diameter of shaft (D) = 120 mm; Power (P) = 200 kW ;  Speed of shaft (N) = 100

r.p.m. ;  Angle of twist (θ) = 2° = 
2

180
π

 rad. and modulus of rigidity (C) = 90 GPa = 90 × 103 N/mm2.
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Let T = Torque transmitted by the shaft, and
l = Length of the shaft.

We know that power transmitted by the shaft (P),

200 =
2 1002

60 60
TNT π × ×π =  = 10.5T

∴ T =
200
10.5  = 19 kN-m = 19 × 106 N-mm

We also know that polar moment of inertia of a solid shaft,

J =
4 4( ) (120)

32 32
Dπ π× = ×  = 0.4 × 106 mm4

and relation for the length of the shaft,

T
J

=
C

l
⋅ θ

or
6 3

5

19 10 (90 10 ) (2 /180)

20.4 10 l
× × × π=
×

0.931 =
33.14 10

l
×

∴ l =
3(3.14 10 )

0.931
×

 = 3.37 × 103 = 3.37 m      Ans.

EXAMPLE 27.12. Find the maximum torque, that can be safely applied to a shaft of 80 mm
diameter. The permissible angle of twist is 1.5 degree in a length of 5 m and shear stress not to
exceed 42 MPa. Take C = 84 GPa.

SOLUTION. Given: Diameter of shaft (D) = 80 mm ;  Angle of twist (θ) = 1.5° = 
1.5
180

π
 rad ;  Length

of shaft (l) = 5 m = 5 × 103 mm ;  Maximum shear stress (τ) = 42 MPa = 42 N/mm2 and Modulus of
rigidity (C) = 84 GPa = 84 × 103 N/mm2.

First of all, let us find out the values of torques based on shear stress and angle of twist.

1. Torque based on shear stress
We know that the torque which can be applied to the shaft,

T1 =
3 342 (80)

16 16
Dπ π× τ × = × ×  = 4.22 × 106 N-mm ...(i)

2. Torque based on angle of twist
We also know that polar moment of inertia of a solid circular shaft,

J =
4 4( ) (80)

32 32
Dπ π= ×  = 4.02 × 106 mm4

and relation for the torque that can be applied:

2T
J

=
C

l
⋅ θ

or
3

2
6 3

(84 10 ) (1.5 /180)

4.02 10 5 10

T × × π=
× ×

 = 0.44

∴ T2 = 0.44 × (4.02 × 106) = 1.77 × 106 N-mm ...(ii)

We shall apply a torque of 1.77 × 106 N-mm (i.e., lesser of the two values).        Ans.

EXAMPLE 27.13. A solid shaft is subjected to a torque of 1.6 kN-m. Find the necessary
diameter of the shaft, if the allowable shear stress is 60 MPa. The allowable twist is 1° for every
20 diameters length of the shaft. Take C = 80 GPa.
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SOLUTION. Given: Torque (T) = 1.6 kN-m = 1.6 × 106 N-mm; Allowable shear stress (τ) = 60 MPa =

60 N/mm2 ;  Angle of twist (θ) = 1° = 
180

π
 rad ;  Length of shaft (l) = 20 D and modulus of rigidity (C)

= 80 GPa = 80 × 103 N/mm2.

First of all, let us find out the value of diameter of the shaft for its strength and stiffness.

1. Diameter for strength
We know that torque transmitted by the shaft (T),

1.6 × 106 =
3 3
1 160

16 16
D Dπ π× τ × = × ×  = 11.78 D1

3

∴ D1
3 =

61.6 10
11.78

×
 = 0.136 × 106 mm3

or D1 = 0.514 × 102 = 51.4 mm  ...(i)
2. Diameter for stiffness

We know that polar moment of inertia of a solid circular shaft,

J =
4

2( )
32

Dπ ×  = 0.098 D2
4

and relation for the diameter,

T
J

=
C

l
⋅ θ

or
6 3

4
22

1.6 10 (80 10 ) ( /180)
200.098 DD

× × × π=

∴ D2
3 =

6

3

(1.6 10 ) 20

0.098 (80 10 ) ( /180)

× ×
× × × π

 = 234 × 103 mm3

or D2 = 6.16 × 101 = 61.6 mm ...(ii)
We shall provide a shaft of diameter of 61.6 mm (i.e., greater of the two values).        Ans.

EXAMPLE 27.14. A solid shaft of 200 mm diameter has the same cross-sectional area as a
hollow shaft of the same material with inside diameter of 150 mm. Find the ratio of

(a) powers transmitted by both the shafts at the same angular velocity.

(b) angles of twist in equal lengths of these shafts, when stressed to the same intensity.

SOLUTION. Given: Diameter of solid shaft (D1) = 200 mm and inside diameter of hollow shaft (d)
= 150 mm.

(a) Ratio of powers transmitted by both the shafts
We know that cross-sectional area of the solid shaft,

A1 = 2 2
1 (200)

4 4
Dπ π× = ×  = 10 000 π mm2

and cross-sectional area of hollow shaft,

A2 = 2 2 2 2 2( ) [ (150) ] ( 22 500)
4 4 4

D d D Dπ π π× − = × − = −

Since the cross-sectional areas of both the shafts are same, therefore equating A1 and A2,

2(200)
4
π

= 2( 22 500)
4

Dπ −

∴ 40 000 = D2 – 22 500

D2 = 40 000 + 22 500 = 62 500 mm2

or D = 250 mm
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We also know that torque transmitted by the solid shaft,

T1 =
3 3
1 (200)

16 16
Dπ π× τ × = × τ ×  = 500 × 103 π τ N-mm ...(i)

Similarly, torque transmitted by the hollow shaft,

T2 =
4 4 4 4(250) (150)

N-mm
16 16 250

D d
D

⎡ ⎤ ⎡ ⎤− −π π× τ × = × τ ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= 850 × 103 π τ N-mm

∴ Power transmitted by hollow shaft
Power transmitted by solid shaft

=
3

2
3

1

50 10

500 10

T
T

× π τ=
× π τ

 = 1.7        Ans.

(b) Ratio of angles of twist in both the shafts
We know that relation for angle of twist for a shaft,

R
τ

=
C

l
⋅ θ

or θ = 
l

RC
τ

∴ Angle of twist for the solid shaft,

θ1 = 100
l l

RC C
τ τ= ... 1 200where 100 mm

2 2
D

R
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

Similarly angle of twist for the hollow shaft,

θ2 = 125
l l

RC C
τ τ= ... 1 250where 125 mm

2 2
D

R
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

∴ Angle of twist of hollow shaft
Angle of twist of solid shaft

= 2

1

100125
125

100

l
C

l
C

τ
θ

= =τθ  = 0.8        Ans.

27.8. Replacing a Shaft
Sometimes, we are required to replace a solid shaft by a hollow one, or vice versa. In such cases,

the torque transmitted by the new shaft should be equal to that by the replaced shaft. But sometimes,
there are certain other conditions which have also to be considered while designing the new shaft.

EXAMPLE 27.15. A solid steel shaft of 60 mm diameter is to be replaced by a hollow steel
shaft of the same material with internal diameter equal to half of the external diameter. Find the
diametres of the hollow shaft and saving in material, if the maximum allowable shear stress is
same for both shafts.

SOLUTION. Given: Diameter of solid shaft (D) = 60 mm.
Diameter of the hollow shaft

Let D = External diameter of the hollow shaft,

d = Internal diameter of the hollow shaft (equal to D1/2) and
τ = Shear stress developed in both the shafts.

We know that torque transmitted by the solid shaft,

T =
3 3(60)

16 16
Dπ π× τ × = × τ × ...(i)
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and torque transmitted by the hollow shaft,

T1 =
4 44 4
1 1

1 1

(0.5 )
16 16

D DD d
D D

⎡ ⎤⎡ ⎤ −−π π× τ × = × τ × ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=
3
10.9375

16
Dπ × τ × ...(ii)

Since the torque transmitted and allowable shear stress in both the cases are same, therefore
equating the equations (i) and (ii),

3(60)
16
π × τ × =

3
10.9375

16
Dπ × τ ×

∴ D1
3 =

3(60)
0.9375

 = 230400 mm3

or D1 = 61.3 mm        Ans.

and d =
61.3

2
 = 30.65 mm        Ans.

Saving in material
We know that saving in material

=

2 2 2

2

(60) ((61.3) (30.65) )
3600 28194 4

3600(60)
4

π π⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ =π

= 0.217 = 21.7%        Ans.

EXAMPLE 27.16. A solid shaft of 80 mm diameter is to be replaced by a hollow shaft of
external diameter 100 mm. Determine the internal diameter of the hollow shaft if the same power
is to be transmitted by both the shafts at the same angular velocity and shear stress.

SOLUTION. Given: Diameter of solid shaft (D) = 80 mm and external diameter of hollow shaft
(D1) = 100 mm.

Let d = Internal diameter of the hollow shaft, and
τ =  Shear stress developed in both the shafts.

We know that torque transmitted by the solid shaft,

T = 3 3(80)
16 16

Dπ π× τ × = × τ ×  ...(i)

and torque transmitted by the hollow shaft,

T1 =
4 4 4 4(100)

16 16 100
D d d

D

⎡ ⎤ ⎡ ⎤− −π π× τ × = × τ ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

...(ii)

Since both the torques are equal, therefore equating the equations (i) and (ii),

2(80)
16
π × τ × =

4 4(100)
16 100

d⎡ ⎤−π × τ × ⎢ ⎥
⎢ ⎥⎣ ⎦

(80)3 =
4 4 4

3(100)
(100)

100 100
d d− = −

4

100
d

= (100)3 – (80)3 = 488 × 103

d4 = (488 × 103) × 100 = 488 × 105 = 4880 × 104

∴ d = 8.36 × 10 = 83.6 mm      Ans.
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EXAMPLE 27.17. A solid aluminium shaft 1 m long and of 50 mm diameter is to be replaced by
a hollow shaft of the same length and same outside diameter, so that the hollow shaft could carry the
same torque and has the same angle of twist. What must be the inner diameter of the hollow shaft ?

Take modulus of rigidity for the aluminium as 28 GPa and that for steel as 85 GPa.
SOLUTION. Given: Length of aluminium shaft (lA) = 1 m = 1 × 103 mm ;  Diameter of aluminium shaft

(DA) = 50 mm ;  Length of steel shaft (lS) = 1 m = 1 × 103 mm ;  Outside diameter of steel shaft (DS) = 50
mm; Modulus of rigidity for aluminium (CA) = 28 GPa = 28 × 103 N/mm2 and modulus of rigidity for steel
= 85 GPa = 85 × 103 N/mm2.

Let dS = Inner diameter of steel shaft in mm.
We know that polar moment of inertia of the solid aluminium shaft,

JA = 4 4 4(50) mm
32 32

Dπ π× = ×

We also know that relation for angle of twist

T
J

=
C

l
⋅ θ

    or     θ = 
T l
JC

⋅

∴ θA =
4 3

rad.
(50) 28 10

32

A AT l⋅
π × × ×

and θS =
4 4 3

rad.
[(50) ( ) ] 85 10

32

S ST l

d

⋅
π × − × ×

Since both the angles of twists (i.e., θA and θB) are same, therefore equating these values,

4 3(50) 28 10
32

A AT l⋅
π × × ×

=
4 4 3[(50) ( ) ] 85 10

32

S ST l

d

⋅
π × − × ×

Substituting TA = TS          and          lA = lS in the above equation,

(50)4 × 28 = [(50)4 – d4] × 85
175 × 106 = (531.25 × 106) – 85 d4

85 d4 = (531.25 × 106) – (175 × 106) = 356.25 × 106

d4 =
6356.25 10

85
×

 = 4.191 × 106 mm4

∴ d = 45.25 mm        Ans.

EXAMPLE 27.18. A hollow steel shaft of 300 mm external diameter and 200 mm internal
diameter has to be replaced by a solid alloy shaft. Assuming the same values of polar modulus for
both, calculate the diameter of the latter and work out the ratio of their torsional rigidities. Take
C for steel as 2.4 C for alloy.

SOLUTION. Given: External diameter of steel shaft (D) = 300 mm ;  Internal diameter of steel shaft
(d) = 200 mm and modulus of rigidity for steel (CS) = 2.4  (where CA is the modulus of rigidity for the
alloy).

Diameter of the solid alloy shaft
Let D1 = Diameter of the solid alloy shaft.

We know that polar modulus of hollow steel shaft,

ZS =
4 4 4 4( ) [(300) (200) ]

16 16 300
D d

D
π π− = −

×  mm3
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=
6

38.125 10
mm

6
× π

 ...(i)

Similarly, polar modulus of solid alloy shaft,

ZA =
3 2
1 mm

16
Dπ

 ...(ii)

Since the polar modulus for both the shafts are the same, therefore equating (i) and (ii),
68.125 10

6
× π

=
3
116

Dπ

or D1
3 =

68.125 10 16
6

× ×
 = 21.67 × 106

∴ D1 = 278.8 mm        Ans.
Ratio of torsional rigidities

We know that the torsional rigidity of hollow steel shaft

= CS × JS = 
4 42.4 [(300) (200) ]

32AC π× − ...(iii)

Similarly, torsional rigidity for solid alloy shaft

= CA × JA = 
4 4(278.8)

32 32A AC D Cπ π× × = × × ...(iv)

∴ Torsional rigidity of hollow steel shaft
Torsional rigidity of solid alloy shaft

=

4 4

4

2.4 [(300) (200) ]
32

(278.8)
32

A

A

C

C

π× −

π×
 = 2.58        Ans.

EXERCISE 27.2

1. Find the torque a solid shaft of 100 mm diameter can transmit, if the maximum angle of twist is
1.5° in a length of 2 m. Take C = 70 GPa. (Ans. 9.0 kN-m)

2. A hollow shaft of external and internal diameters as 80 mm and 40 mm is required to transmit
torque from one pulley to another. What is the value of torque transmitted, if angle of twist is
not to exceed 1° in a length of 2 m. Take C = 80 GPa (Ans. 2.63 kN-m)

3. A solid shaft and a hollow circular shaft, whose inside diameter is 3/4 of the outside diameter
are of equal lengths and are required to transmit a given torque. Compare the weights of these
two shafts, if maximum shear stress developed in both the shaft is also equal. (Ans. 1.76)

4. A solid shaft of 150 mm diameter is to be replaced by a hollow shaft of the same material with
internal diameter equal to 60% of the external diameter. Find the saving in material, if maxi-
mum allowable shear stress is the same for both the shafts. (Ans. 30.9%)

5. A shaft is transmitting 100 kW at 180 r.p.m. If the allowable shear stress in the shaft material is
60 MPa, determine the suitable diameter for the shaft. The shaft is not to twist more than 1° in
a length of 3 metres. Take C = 80 GPa. (Ans. 103.8 mm)

27.9. Shaft of Varying Sections
Sometimes a shaft, made up of different lengths having different cross-sectional areas, is required

to transmit some torque (or horse power) from one pulley to another.
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A little consideration will show that for such a shaft, the torque transmitted by individual sections
have to be calculated first and the minimum value of these torques will be the strength of such a shaft.
The angle of twist for such a shaft may be found out as usual.

EXAMPLE 27.19. The stepped steel shaft shown in Fig. 27.4 is subjected to a torque (T) at
the free end, and a torque (2T) in the opposite direction at the junction of the two sizes.

Fig. 27.4

What is the total angle of twist at the free end, if maximum shear stress in the shaft is limited to
70 MPa? Assume the modulus of rigidity to be 84 GPa.

SOLUTION. Given: Torque at C = T (anticlockwise); Torque at B = 2T (clockwise) ;  Diameter of
shaft AB (DAB) = 100 mm ;  Diameter of shaft BC (DBC) = 50 mm ;  Maximum shear stress (τ) = 70
MPa = 70 N/mm2 and modulus of rigidity (C) = 84 GPa = 84 × 103 N/mm2.

Since the torques at B and C are in opposite directions, therefore the effect of these two torques
will be studied first independently, sum of the two twists (one in clockwise direction and the other in
anticlockwise direction).

First of all, let us first find out the value of torque T at C. It may be noted that if the value of
torque is obtained for the portion AB, it will induce more stress in the portion BC (because the portion
BC is of less diameter). Therefore we shall calculate the torque for the portion BC (because it will not
induce stress more than the permissible in the portion AB).

We know that the torque at C,

T =
3 3( ) 70 (50)

16 16BCDπ π× τ × = × ×  = 1.718 × 106 N-mm

We also know that polar moment of inertia of the solid circular shaft AB,

JAB =
4 4( ) (100)

32 32ABDπ π× = ×  = 9.82 × 106 mm4

Similarly, JBC =
4 4( ) (50)

32 32BCDπ π× = ×  = 0.614 × 106 mm4

∴ Angle of twist at C due to torque (T) at C,

θ = BCAB

AB BC

llT l T
J C C J J

⎛ ⎞⋅ = +⎜ ⎟⋅ ⎝ ⎠

=
6 3 3

3 6 6

1.718 10 1.2 10 1.8 10
rad

84 10 9.82 10 0.614 10

⎛ ⎞× × ×+⎜ ⎟⎜ ⎟× × ×⎝ ⎠

= 20.45 × (30.54 × 10–4) = 0.0624 rad  ...(i)
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Similarly, angle of twist at C due to torque (2T) at B,

θ =
6 3

3 6

2 (1.718 10 ) 1.2 102 rad
84 10 9.82 10

AB

AB

lT
C J

× × ×× = ×
× ×

= 40.9 × (1.222 × 10–4) = 0.005 rad ...(ii)

From the geometry of the shaft, we find that the twist at B (due to torque of 2T at B) will continue
at C also. Since the directions of both the twists are opposite to each other, therefore net angle of twist
at C

= 0.0624 – 0.005 = 0.0574 rad = 3.29°      Ans.

EXAMPLE 27.20. A shaft ABC of 500 mm length and 40 mm external diameter is bored, for
a part of its length AB to a 20 mm diameter and for the remaining length BC to a 30 mm diameter
bore as shown in Fig. 27.5. If the shear stress is not to exceed 80 MPa, find the maximum power,
the shaft can transmit at a speed of 200 r.p.m.

If the angle of twist in the length of 20 mm diameter bore is equal to that in the 30 mm diameter
bore, find the length of the shaft that has been bored to 20 mm and 30 mm diameter.

Fig. 27.5

SOLUTION. Given: Total length of the shaft (l) = 500 mm; External diameter of the shaft (D) = 40
mm ; Internal diameter of shaft AB (dAB) = 20 mm ;  Internal diameter of shaft BC (dBC) = 30 mm ;
Maximum shear stress (τ) = 80 MPa = 80 N/mm2 and speed of the shaft (N) = 200 r.p.m.

Maximum power the shaft can transmit
We know that torque transmitted by the shaft AB,

TAB =
4 4 4 4(40) (20)

80
16 16 40

ABD d
D

⎛ ⎞ ⎡ ⎤− −π π× τ × = × ×⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 N-mm

= 942.5 × 103 N-mm  ...(i)

Similarly, TBC =
4 4 4 4(40) (30)

80
16 16 40

BCD d
D

⎛ ⎞ ⎡ ⎤− −π π× τ × = × ×⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
N-mm

= 687.3 × 103 N-mm  ...(ii)

From the above two values, we see that the safe torque transmitted by the shaft is minimum of the
two, i.e., 687.3 × 103 N-mm = 687.3 N-m. Therefore maximum power the shaft can transmit,

P =
2 200 (687.3)2

60 60
NT × π × ×π =  = 14 394 W

= 14.39 kW        Ans.
Length of the shaft, that has been bored to 20 mm diameter

Let lAB = Length of the shaft AB (i.e., 20 mm diameter bore) and
lBC = Length of the shaft BC (i.e., 30 mm diameter bore) equal to (500 – lAB) mm.

We know that polar moment of inertia for the shaft AB,
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JAB =
4 4 4 4 4( ) [(40) (20) ] mm

32 32ABD dπ π× − = × −

Similarly, JBC =
4 4 4 4 4( ) [(40) (30) ] mm

32 32BCD dπ π× − = × −

We know that relation for the angle of twist:

T
J

=
C

l
θ

        or         θ = 
T l
JC

⋅

∴ θAB = AB

AB

T l
J C

⋅
⋅         and         θBC = BC

BC

T l
J C

⋅
⋅

Since θAB = θAC and T as well as C is equal in both these cases, therefore

AB

AB

l
J

= BC

BC

l
J      or      

4 4 4 4[(40) (20) ] [(40) (30) ]
32 32

BCAB ll
=π π× − × −

or AB

BC

l
l

=
4 4

4 4

(40) (20) 2400000
1750000(40) (30)

− =
−

 = 1.37

∴ lAB = 1.37 lBC

1.37 lBC + lBC = 500 ...(ä lAB + lBC = 500)

∴ lBC =
500
2.37  = 211 mm        Ans.

and lAB = 500 – 211 = 289 mm        Ans.

27.10. Composite Shaft
Sometimes, a shaft is made up of composite section i.e., one type of shaft rigidly sleeved over

another type of shaft. At the time of sleeving, the two shafts are joined together in such a way, that the
composite shaft behaves like a single shaft. The total torque transmitted by the composite shaft is
shared by the two shafts, depending upon their diameters and elastic properties.

EXAMPLE 27.21. A composite shaft consists of copper rod of 30 mm diameter enclosed
in a steel tube of external diameter 40 mm and 5 mm thick. The shaft is required to transmit
a torque of 0.5 kN-m. Determine the shearing stresses developed in the copper and steel, if
both the shafts have equal lengths and welded to a plate at each end, so that their twists are
equal. Take CC = 40 GPa and CS = 80 GPa.

SOLUTION. Given: Diameter of copper rod (DC) = 30 mm ;  External diameter of steel tube (DS) =
40 mm ;  Thickness of steel tube = 5 mm ;  Therefore internal diameter of steel tube (dS) = 40 – (2 ×
5) = 30 mm; Total torque to be transmitted (T) = 0.5 kN-m = 0.5 × 106 N-mm ;  Modulus of rigidity
for copper (CC) = 40 GPa = 40 × 103 N/mm2 and modulus of rigidity for steel (CS) = 80 GPa = 80 ×
103 N/mm2.

Let TC = Torque shared by copper rod,
τC = Shear stress developed in the copper rod and

TS, τS = Corresponding values for steel tube.

∴ Total torque (T)
TC + TS = 0.5 × 106 N-mm ...(i)

We know that polar moment of inertia of copper rod,

JC =
6

4 4 40.81 10
( ) (30) mm

32 32 32CD
× ππ π× = × =
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and polar moment of inertia of steel tube,

JS =
6

4 4 4 4 41.75 10
( ) [(40) (30) ] mm

32 32 32S SD d
× ππ π× − = − =

We also know that relation for angle of twist:

T
J

=
C

l
θ

        or        θ = 
T l
JC

⋅

∴ θC =
6 6

3
rad.

0.81 10 1012.5 10
(40 10 )

32

C C C

C C

T l T l T l
J C

⋅ ⋅ ⋅
= =

⋅ × π × π× ×

Similarly, θS =
6 6

3

rad.
1.75 10 4375 10

(80 10 )
32

S S S

S S

T l T l T l
J C

⋅ ⋅ ⋅
= =

⋅ × π × π× ×

Since θC is equal to θS, therefore equating these values,

61012.5 10
CT l⋅

× π
= 64375 10

ST l⋅
× π

        or         TC = 
81
350

ST

Substituting this value of TC in equation (i),

81
350

ST
 + TS = 0.5 × 106         or         

431
350

ST
 = 0.5 × 106

∴ TS =
6(0.5 10 ) 350

431
× ×

 = 0.406 × 106 N-mm

and TC =
681 81 (0.406 10 )

350 350
ST × ×=

= 0.094 ××××× 106 N-mm         Ans.
We know that torque transmitted by copper rod (TC),

0.094 × 106 =
3 3(30)

16 16C C CDπ π× τ × = × τ ×  = 5301 τC

∴ τC =
60.094 10

5301
×

 = 17.7 N/mm2 = 17.7 MPa        Ans.

Similarly, torque transmitted by steel tube (TS),

0.406 × 106 =
4 4 4 4(40) (30)

16 16 40
S S

S S
S

D d
D

⎛ ⎞ ⎛ ⎞− −π π× τ × = × τ ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 8590 τS

∴ τS =
60.406 10

8590
×

 = 47.3 N/mm2 = 47.3 MPa        Ans.

EXAMPLE 27.22. A composite shaft consists of a steel rod of 60 mm diameter surrounded
by a closely fitting tube of brass. Find the outside diameter of the brass tube, when a torque of
1 kN-m is applied on the composite shaft and shared equally by the two materials. Take C for
steel as 84 GPa and C for brass as 42 GPa.

Also determine the common angle of twist in a length of 4 metres.
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SOLUTION. Given: Diameter of steel rod (DS) = 60 mm ;  Inner diameter of brass tube (dS) = 60 mm ; Total

torque (T) = 1 kN-m = 1 × 106 N-mm ;  Torque shared by steel rod (TS) = 
1
2

 × (1 × 106) =  0.5 × 106 N-mm

;  Torque shared by brass tube (TB) = (1 × 106) – (0.5 × 106) = 0.5 × 106 N-mm ;  Modulus of rigidity for
steel (CS) = 84 GPa = 84 × 103 N/mm2 ;  Modulus of rigidity for brass (σB) = 42 GPa = 42 × 103 N/mm2 and
length of shaft (l) = 4 m = 4 × 103 mm.

Outside diameter of the brass tube
Let DB = Outside diameter of the brass tube in mm.

We know that polar moment of inertia of steel rod,

JS =
6

4 4 412.96 10
( ) (60) mm

32 32 32SD
× ππ π× = × =

and polar moment of inertia of brass tube,

JB =
4 4 4 4 4( ) [ (60) ] mm

32 32B B BD d Dπ π× − = × −

We also know that the relation for angle of twist:

T
J

=
C

l
θ

         or            θ = 
T l
JC

⋅

∴ θS =
4 3(60) (84 10 )

32
S S

T l T l
J C

⋅ ⋅= π⋅ × × ×
...(i)

Similarly, θB =
4 4 3[ (60) ] 42 10

32
B B

B

T l T l
J C D

⋅ ⋅= π⋅ × − × ×
...(ii)

Since θS is equal to θB, therefore equating these two values,

4 3(60) (84 10 )
32

T l⋅
π × × ×

=
4 4 3[ (60) ] 42 10

32 B

T l

D

⋅
π × − × ×

DB
4 – 12.96 × 106 = 2 × (12.96 × 106) = 25.92 × 106

or DB
4 = (25.92 × 106) + (12.96 × 106) = 38.88 × 106 mm4

∴ DB = 79 mm        Ans.
Common angle of twist

Let θ = Common angle of twist.
Substituting the values of T (equal to 0.5 × 106 N-mm) and l (equal to 4 × 103 mm) in equation (i),

θ =
6 3

4 3

(0.5 10 ) (4 10 )

(60) (84 10 )
32

× × ×
π × × ×

 = 0.0187 rad = 1.07°        Ans.

27.11. Strain Energy due to Torsion
We have already discussed in Chapter of Strain Energy that when a body is subjected to a shear

stress, the strain energy stored is,

U =
2

2
V

C
τ × ...(See Art. 8.10)

where τ = Shear stress,
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C = Modulus of rigidity or shear modulus and
V = Volume of the body.

But in the case of a solid circular shaft, the torsional stress varies from zero at the central axis to
a maximum τ at the surface. Now, consider a circular shaft of diameter D, subjected to shear stress (τ)
at its surface. Now, let us consider an elementary ring of thickness dx and a distance x from the axis of
the shaft.

∴ Area of the ring, da = 2πx dx
and its volume V = l · 2πx dx

We know that shear stress at this section,

θ =
x
R

τ ×
∴ Strain energy stored in this ring

=
2 2 2 2

3
2 2

2 2 2
2 2 2

q xl x dx l x dx l x dx
C C R CR

τ τ× ⋅ π = × ⋅ ⋅ π = ⋅ π ⋅

The total strain energy stored in the shaft may be found out by integrating the above equation
from zero to R.

∴ U =
2

3
2

0

2
2

R

l x dx
CR

τ ⋅ π ⋅∫

=

2 2 4
3

2 2
00

4

RR
l l xx dx

CR CR

⎡ ⎤τ π τ π= ⎢ ⎥
⎣ ⎦

∫

=
22 2 2

4 4 2
l R Dl
C C

τ π τ ⎛ ⎞= × π ×⎜ ⎟
⎝ ⎠

...
2
DR⎛ ⎞=⎜ ⎟

⎝ ⎠
ä

=
2

4
V

C
τ × ... 2

4
V D lπ⎛ ⎞= × ×⎜ ⎟

⎝ ⎠
ä

∴ For Solid Circular Shaft,  U =
2

4
V

C
τ ×

NOTE. If the shaft is a hollow one, then by integrating the equation between r and R instead of integrating it
from zero to R, we get the strain energy stored,

∴  For Hollow Circular Shaft,   U =
2 22

24
D d

V
C D

⎛ ⎞+τ ×⎜ ⎟
⎜ ⎟
⎝ ⎠

EXAMPLE 27.23. A solid steel shaft 120 mm diameter and 1.5 m long is used to transmit
power from one pulley to another. Determine the maximum strain energy that can be stored in the
shaft, if maximum allowable shear stress is 50 MPa. Take shear modulus as 80 GPa.

SOLUTION. Given: Diameter of shaft (D) = 120 mm ;  Length of shaft (l) = 1.5 m = 1.5 × 103 mm;
Allowable shear stress (τ) = 50 MPa = 50 N/mm2 and shear modulus (C) = 80 GPa = 80 × 103 N/mm2.

We know that volume of the shaft,

V = 2 3(120) (1.5 10 )
4
π × × ×  = 16.96 × 106 mm3

and strain energy stored in the shaft,

U =
22

6
3

(50)
16.96 10

4 4 (80 10 )
V

C
τ × = × ×

× ×
 N-mm

= 132.5 ××××× 103 N-mm        Ans.
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27.12. Shaft Couplings
Sometimes, due to the non-availability of a single shaft of the required length, it becomes necessary

to connect two shafts together. This is usually done by means of flanged couplings as shown in Fig.
27.6 (a) and (b).

The flanges of the two shafts are joined together by bolts and nuts or rivets and the torque is then
transferred from one shaft to another through the couplings. A little consideration will show that as
the torque is transferred through the bolts, it is thus obvious that the bolts are subjected to shear stress.
As the diameter of bolts is small, as compared to the diameter of the flanges, therefore shear stress is
as assumed to be uniform in the bolts. The design of a shaft coupling means (a) design of bolts and (b)
design of keys.

Fig. 27.6

Now we shall discuss the above two designs one by one.

27.13. Design of Bolts
Consider a shaft coupling, transmitting torque from one shaft to another.

Let τS = Shear stress in the shaft,

d = Diameter of the shaft,
D = Diameter of the bolt pitch circle,

(i.e., the circle on which the bolts are arranged)

db = Diameter of the bolts,
n = No. of bolts and

τb = Shear stress in the bolts.
We know that the torque transmitted by the shaft,

T =
3

16 S dπ × τ × ...(i)

and torque resisted by one bolt
= Area × Stress × Radius of bolt circle

=
2

2 2

4 4 2 8
b b

b b b b

d DDd R d
π × τ ⋅π π× × τ × = × × τ × =

 ∴ Total torque resisted by the bolts

=
2

8
b bd D

n
π × × τ

×  ...(ii)
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Since the torque resisted by the bolts should be equal to the torque transmitted by the shaft,
therefore equating (i) and (ii),

3

16 S dπ τ =
2

8
b bn d D× π ⋅ τ

This is the required equation for the number of bolts or the diameter of bolts.

27.14. Design of Keys
As a matter of fact, a flange is attached to a shaft by means

of a key. A rectangular notch is cut on the circumference of the
shaft and a similar notch is cut on inner side of the flange. The
flange is then placed over the shaft in such a way, that the two
notches form a rectangular hole. A rectangular key is then inserted
into the hole, and the flange is said to be keyed to the shaft is
shown in Fig. 27.7.

A little consideration will show that the torque is transmitted
by the shaft to the flange through the key. It is thus obvious that
the key is also subjected to the shear stress.

Let l = Length of the key,

b = Width of the key and
τK = Shear stress in the key.

We know that the torque resisted by the key,

T = Area × Stress × Radius

= l · b × τK × r = 
2

Kl b d⋅ ⋅ τ ⋅
 ...(i)

We also know that the torque transmitted by the shaft,

T =
3

16 S dπ × τ ×  ...(ii)

Since the torque resisted by the key should be equal to the torque transmitted by the shaft, therefore
equating (i) and (ii),

3

16 S dπ × τ × =
2

Kl b d⋅ ⋅ τ ⋅

This is the required equation for the length or width of the key.
NOTE. Sometimes the torque is not transmitted by flange coupling and key. But it is transmitted through gears.

In such a case, the gear ratio should also be taken into account, for calculating the revolutions of the
shaft.

EXAMPLE 27.24. A 80 mm shaft transmits power at maximum shear stress of 60 MPa when
the stress in key and coupling bolts is 50 MPa and 40 MPa respectively. The coupling has 4 bolts
arranged symmetrically along a circle of 200 mm diameter. Determine the diameter of bolts. If
the key is 20 mm wide, determine its length.

SOLUTION. Given: Diameter of shaft (d) = 80 mm ;  Shear stress in shaft (τS) = 60 MPa = 60 N/mm2;
Stress in key (τK) = 50 MPa = 50 N/mm2 ;  Stress in bolts (τb) = 40 MPa = 40 N/mm2 ;  No. of bolts
(n) = 4 ;  Bolt circle diameter (D) = 200 mm and width of the key (b) = 20 mm.
Diameter of bolts

Let db = Diameter of the bolts.

We know that relation for the diameter of bolts:

Fig. 27.7



676 � Strength of Materials

3

16 S dπ × τ × =
2

8
b bd D

n
π ⋅ τ ⋅

×

360 (80)
16
π × × =

2 40 200
4

8
bdπ × ×

×

1 920 000 = 4000 db
2

∴ db
2 =

1920 000
4000  = 480

or db = 21.9 mm    say    22 mm        Ans.
Length of the key

Let l = Length of the key in mm.

We know that relation for the length of the key:

3

16 S dπ × τ × =
2

Kl b d⋅ ⋅ τ ⋅

360 (80)
16
π × × =

20 50 80
2

l × × ×

1 920 000 π = 40 000 l

∴ l =
1 920 000

40 000
π

 = 150.8 mm        Ans.

EXAMPLE 27.25.    A motor shaft consists of a steel tube 30 mm external diameter and 3 mm
thick. The engine develops 10 kW at 2000 r.p.m. What will be the maximum stress in the tube,
when the power is transmitted through 4 : 1 gearing?

SOLUTION. Given: External diameter of shaft (D) = 30 mm ;  Thickness = 3 mm or internal
diameter (d) = 30 – (2 × 3) = 24 mm ;  Power (P) = 10 kW; Engine speed = 2000 r.p.m. and gearing
= 4 : 1.

Let τ = Torque transmitted by the shaft and

τ = Maximum shear stress in the shaft.
Since the power is transmitted through 4 : 1 gearing, therefore speed of the shaft,

N =
2000

4
 = 500 r.p.m.

We know that power transmitted by the shaft (P)

10 =
2 5002

60 60
TNT π × ×π =  = 52.36 T

∴ T =
10

52.36  = 0.19 kN-m = 0.19 × 106 N-mm

We also know that torque transmitted by the shaft (T)

0.19 × 106 =
4 4 4 4(30) (24)

16 16 30
D d

D

⎡ ⎤ ⎡ ⎤− −π π× τ × = × τ ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 = 3130 τ N-mm

= 3130 τ

∴ τ =
60.19 10

3130
×

 = 60.7 N/mm2 = 60.7 MPa        Ans.
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EXERCISE 27.3

1. A steel shaft ABC is subjected to two equal and opposite torques as shown in Fig. 27.8.

Fig. 27.8

If the shearing stresses developed in AB and BC are equal, then find the value of internal
diameter of the hollow shaft. (Ans. 72 mm)

2. A solid steel shaft AB of 30 mm diameter has enlarged ends at A and B. On this enlarged portion
is held a steel tube of internal diameter 6 cm and 2 mm thick. If a torque of is applied on the
composite shaft, determine torque shared by the shaft and sleeve. (Ans. 66 kN-m ; 14 kN-m)

3. A solid shaft 1 m long and 30 mm diameter is transmitting power from one pulley to another.
Find the strain energy that can be stored in the shaft, when the shaft is subjected to a shear stress
of 40 MPa. Take C as 80 GPa. (Ans. 3.53 × 103 N-mm)

4. Two 100 mm diameter shafts are to be connected by means of flanges with 20 mm diameter
bolts equally spaced in a circle of diameter 200 mm. If the maximum shear stress in the shaft is
not to exceed 75 MPa and the average shear stress in the bolts is not to exceed 60 MPa, deter-
mine the number of rivets. (Ans. 8)

QUESTIONS

1. Define the term ‘torque’.

2. Write the assumptions for finding out the shear stress in a circular shaft, subjected to torsion.

3. Prove 
C

R l
τ θ=  in case of torsion of a circular shaft.

4. Obtain a relation for the torque and power, a solid shaft can transmit.

5. Explain the term ‘polar modulus’.
6. Derive an expression for the angle of twist in the case of a member of circular cross-section

subjected to torsional moment.

OBJECTIVE TYPE QUESTIONS

1. Torque transmitted by a solid shaft of diameter (D), when subjected to a shear stress (τ) is
equal to

(a) 2

16
Dπ × τ × (b)

3

16
Dπ × τ × (c)

2

32
Dπ × τ × (d)

3

32
Dπ × τ ×

2. A shaft revolving at  r.p.m. transmits torque (T) in kg-m. The power developed is

(a) 2πNT kW (b)
2 kW

30
NTπ

(c)
2 kW

60
NTπ

(d)
2 kW
120

NTπ
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3. Polar moment of inertia of a solid shaft of diameter (D) is

(a) 3

16
Dπ × (b) 4

16
Dπ × (c) 3

32
Dπ × (d)

4

32
Dπ ×

4. When a solid shaft is subjected to torsion, the shear stress induced in the shaft at it centre is

(a) zero (b) minimum (c) maximum (d) average

5. Strain energy stored in a hollow shaft of external diameter D and internal diameter (d) when
subjected to a shearing stress (τ) is equal to

(a)
2 22 D d

C D

⎛ ⎞+τ
⎜ ⎟⎜ ⎟
⎝ ⎠

(b)
2 22

4
D d

C D

⎛ ⎞+τ
⎜ ⎟⎜ ⎟
⎝ ⎠

(c)
2 22 D d

C D

⎛ ⎞−τ
⎜ ⎟⎜ ⎟
⎝ ⎠

(d)
2 22

4
D d

C D

⎛ ⎞−τ
⎜ ⎟⎜ ⎟
⎝ ⎠

ANSWERS

1. (b) 2. (c) 3. (d) 4. (a) 5. (b)
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2. Stiffness of a Spring.

3. Types of Springs.

4. Bending Springs.

5. Torsion Springs.

6. Forms of Springs.

7. Carriage Springs or Leaf Springs
(Semi-elliptical Type).

8. Quarter-Elliptical Type Leaf
Springs.

9. Helical Springs.

10. Closely-coiled Helical Springs.

11. Closely-coiled Helical Springs
Subjected to an Axial Load.

12. Closely-coiled Springs Subjected
to an Axial Twist.

13. Open-coiled Helical Springs.

14. Springs in Series and Parallel.

28.1. Introduction
A spring is a device, in which the material is

arranged in such a way that it can undergo a
considerable change, without getting permanently
distorted. A spring is used to absorb energy due
to resilience, which may be restored as and when
required. The quality of a spring is judged from
the energy it can absorb e.g., in a watch the spring
is wound to absorb strain energy. This energy is
released to run the watch, when the spring regains
its original shape. A carriage spring is used to
absorb shocks. It is thus obvious that a spring,
which is capable of absorbing the greatest amount
of energy for the given stress is known to be the
best one.

28C h a p t e r
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28.2. Stiffness of a Spring
The load required to produce a unit deflection in a spring is called spring stiffness or stiffness of

a spring.

28.3. Types of Springs
We have already discussed that a spring is used for absorbing energy due to resilience. Thus in

general, the springs are of the following two types depending upon the type of resilience.

1. Bending spring and 2. Torsion spring.

28.4. Bending Springs
A spring, which is subjected to bending only and the resilience is also due to it, is known as

bending spring. Laminated springs or leaf springs are also called bending springs.

28.5. Torsion Springs
A spring, which is subjected to torsion or twisting moment only and the resilience is also due to

it, is known as a torsion spring. Helical springs are also called torsion springs. Some springs are
subjected to bending as well as torsion.

28.6. Forms of Springs
Though there are many forms of springs, which are made by the manufacturers, yet the following

types of springs are commonly used in Engineering practice.

1. Carriage springs or leaf springs 2. Helical springs.

28.7. Carriage Springs or Semi-elliptical Type Leaf Springs
These are also called laminated springs and are of two types: (1) semi-elliptical types (i.e., simply

supported at its ends subjected to central load) and (2) quarter-elliptical (i.e., cantilever) types.

The carriage springs are widely used in railway wagons, coaches and road vehicles these days.
These are used to absorb shocks, which give an unpleasant feeling to the passengers. The energy
absorbed by a laminated spring, during a shock, is released immediately without doing any useful
work.

A laminated spring, in its simplest form, consists of a number of parallel strips of a metal having
different lengths but same width and placed one over the other in laminations as shown in Fig. 28.1.

Carriage Springs or Leaf Springs
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All the plates are initially bent to the same radius and are free to slide one over the other. When the
spring is loaded to the designed load, all the plates become flat and the central deflection disappears.
The purpose of this type of arrangement of plates is to make the spring of uniform strength throughout.
This is achieved by tapering the ends of the laminations. The semi-elliptical type spring rests on the
axis of the vehicle and its top plate is pinned at the ends to the chassis of the vehicle.

Now consider a carriage spring pinned at its both ends, and carrying an upward load at its centre
as shown in Fig. 28.1.

Let l = Span of the spring,

t = Thickness of plates,
b = Width of the plates,

n = Number of plates,

W = Load acting on the spring,
σ = Maximum bending stress developed in the plates,

δ = Original deflection of the top spring and

R = Radius of the spring.

Fig. 28.1. Carriage spring

A little consideration will show, that the load will be acting on the spring on the lowermost plate
and it will be shared equally on the two ends of the top plate as shown in Fig. 28.1. We know that the
bending moment, at the centre of the span due to this load,

M =
4

Wl
...(i)

and moment resisted by one plate

=
· I
y

σ
... M

I y
⎛ ⎞σ=⎜ ⎟
⎝ ⎠
∵

=

3
2·12

6
2

σ × σ=
bt

bt
t ...

3

and
12 2
bt tI y

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∵

∴ Total moment resisted by n plates,

M =
2

6
n btσ

...(ii)

* For details please refer to Art. 19.2.
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Since the maximum bending moment due to load is equal to the total resisting moment, therefore
equating (i) and (ii),

4
Wl

=
2

6
n btσ

          or          2

3

2

Wl

nbt
σ =

From the geometry of the spring figure, we know that the central *deflection,

δ =
2

8
l
R ...(iii)

We also know that in the case of a bending beam,

y
σ

=
E
R

          or          ·
2

E y EtR = =
σ σ

...
2
ty⎛ ⎞=⎜ ⎟

⎝ ⎠
∵

Substituting this value of R in equation (iii)

δ =
22

· 48
2

ll
E t Et

σ=
×

σ
Now substituting the value of σ in the above equation,

δ =
32

2 3

3 3
42 8

Wl Wll
Etnbt Enbt

× =

EXAMPLE 28.1.  A laminated spring 1 m long is made up of plates each 50 mm wide and
10 mm thick. If the bending stress in the plates is limited to 100 MPa, how many plates are
required to enable the spring to carry a central point load of 2 kN. If modulus of elasticity for the
spring material is 200 GPa, what is the deflection under the load?

SOLUTION. Given : Length (l) = 1 m = 1 × 103 mm ;  Width (b) = 50 mm ;  Thickness (t) = 10 mm;
Bending stress (σb) = 100 MPa = 100 N/mm2 ;  Central point load (W) = 2 kN = 2 × 103 N and
modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

No. of plates required in the spring
Let n = No. of plates required in the spring.
We know that bending stress (σb)

100 =
3 3

2 2

3 3 (2 10 ) (1 10 ) 600

2 2 50 (10)

× × × ×= =
× ×

Wl
nnbt n

∴ n =
600
100  = 6        Ans.

Deflection under the load
We also know that deflection under the load

δ =
2 3 2

3

100 (1 10 )
4 4 (200 10 ) 10

b l
Et

σ × ×=
× × ×

 = 12.5 mm        Ans.

EXAMPLE 28.2.  A leaf spring is to be made of seven steel plates 65 mm wide and 6.5 mm
thick. Calculate the length of the spring, so that it may carry a central load of 2.75 kN, the
bending stress being limited to 160 MPa. Also calculate the deflection at the centre of the spring.
Take E for the spring material as 200 GPa.
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SOLUTION. Given : No. of plates (n) = 7 ;  Width (b) = 65 mm ;  Thickness (t) = 6.5 mm ;  Central
load (W) = 2.75 kN = 2.75 × 103 N ;  Maximum bending stress (σb) = 160 MPa = 160 N/mm2 and
modulus of elasticity for the spring material (E) = 200 GPa = 200 × 103 N/mm2.
Length of the spring

Let l = Length of the spring in mm.

We know that bending stress (σb),

160 =
3

2 2

3 3 (2.75 10 )

2 2 7 65 (6.5)

Wl l

nbt

× × ×=
× × ×

 = 0.215 l

∴ l =
160

0.215  = 744.2 mm        Ans.

Deflection at the centre of the spring
We also know that deflection at the centre of the spring,

δ =
22 160 (744.2)

4 4 (200 10 ) 6.53
×σ =

× × ×
l
Et  = 17.0 mm        Ans.

EXAMPLE 28.3.   A leaf spring 750 mm long is required to carry a central point load of 8 kN.
If the central deflection is not to exceed 20 mm and the bending stress is not greater than 200
MPa, determine the thickness, width and number of plates.

Also compute the radius, to which the plates should be curved. Assume width of the plate equal
to 12 times its thickness and E equal to 200 GPa.

SOLUTION. Given : Length (l ) = 750 mm ;  Point load (W) = 8 kN = 8 × 103 N ;  Central deflection
(δ) = 20 mm ;  Bending stress (σb) = 200 MPa = 200 N/mm2 ;  Width of plates (b) = 12 t (wheree t is
the thickness of the plates) and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Thickness of the plates
We know that central deflection (δ)

20 =
2 2

3

200 (750) 140.6
4 4 (200 10 )

b l
Et tt

σ ×= =
× × ×

∴ t =
140.6

20  = 7.0 mm        Ans.

Width of the plates
We know that width of the plates,

b = 12 t = 12 × 7 = 84 mm        Ans.
Number of plates

Let n = Number of plates

We also know that bending stress (σb)

200 =
3

2 2

3 3 (8 10 ) 750 2187

2 2 84 (7)

× × ×= =
× ×

Wl
nnbt n

∴ n =
2187
200  = 10.9 say 11        Ans.
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28.8 Quarter-Elliptical Type Leaf Springs
The quarter-elliptical type leaf springs are

rarely used, except as certain parts in some
machines. Like a carriage spring, a quarter-
elliptical type leaf spring consists of a number
of parallel strips of a metal having different
lengths but same width and placed one over the
other in laminations as shown in Fig. 28.2. All
the plates are initially bent to the same radius
and are free to slide one over the other.

Now consider a quarter-elliptical type leaf
spring subjected to a load at its free end as shown
in Fig. 28.2.

Let l = Length of the spring,

t = Thickness of the plates,
b = Width of the plates,

n = Number of plates,

W = Load acting at the free end of the spring, and
δ = Original deflection of the spring.

We know that the bending moment at the fixed end of the leaf,

M = Wl

and moment resisted by one plate ...(i)

=
· I
y

σ
... M

I y
⎛ ⎞σ=⎜ ⎟
⎝ ⎠
∵

=

3
2

12
6

2

bt
bt

t

σ × σ=
3

... and
12 2

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∵

bt tI y

∴ Total moment resisted by n plates,

M =
2

6
n btσ

...(ii)

Since the maximum bending moment due to load is equal to the total resisting moment, therefore,
equating (i) and (ii),

WI =
2

6
n btσ

          or          2

6WI

nbt
σ =

From the geometry of the spring figure, we know that

δ (2 R – δ) = l · l = l 2

∴ δ =
2

2
l
R

...(Neglecting δ2) ...(iii)

We know that in the case of a bending cantilever,

y
σ

=
E
R

Fig. 28.2. Quarter-elliptical spring.
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or R =
·

2
E y Et=

σ σ
...

2
ty⎛ ⎞=⎜ ⎟

⎝ ⎠
∵

Substituting this value of R in equation (iii),

δ =
22

2
2

ll
Et Et

σ=
×

σ
Now substituting the value of σ in the above equation,

δ =
32

2 3

6 6Wl Wll
Etnbt Enbt

× =

EXAMPLE 28.4.    A quarter-elliptic leaf spring 800 mm long is subjected to a point load of 10
kN. If the bending stress and deflection is not to exceed 320 MPa and 80 mm respectively, find the
suitable size and number of plates required by taking the width as 8 times the thickness. Take E as
200 GPa.

SOLUTION. Given : Length (l) = 800 mm ;  Point load (W) = 10 kN = 10 × 103 N ;  Bending stress
(σb) = 320 MPa = 320 N/mm2 ;  Deflection (δ) = 80 mm ;  Plate width b = 8 t (where t is the thickness
of the plates) and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Thickness of the plates
Let t = Thickness of plates in mm, and

n = Number of the plates

We know that bending stress (σb),

320 =
3 6

2 2 2

6 6 (10 10 ) 800 48 10Wl

nbt nbt nbt

× × × ×= = ...(i)

and deflection (δ), 80 =
3 3 3 6

3 3 2 3

6 6 (10 10 ) (800) 153.6 10

(200 10 )

Wl

Enbt nbt nbt

× × × ×= =
× ×

...(ii)

Dividing equation (ii) by (i),

80
320

=

6

3

6

2

153.6 10
3.2

48 10
nbt

t

nbt

×

=
×

∴ t =
3.2 320

80
×

 = 12.8    say     13 mm        Ans.

Width of plates
We know that width of the plates

b = 8 t = 8 × 13 = 104 mm        Ans.
Number of plates required

Substituting the values of t and b in equation (i)

320 =
6 3

2

48 10 2.731 10

104 (13) nn

× ×=
× ×

∴ n =
32.731 10

320
×

 = 8.5  say 9        Ans.



686 � Strength of Materials

EXERCISE 28.1

1. A laminated spring 1 m long is built in 100 mm × 10 mm plates. If the spring is to carry a load
of 10 kN at its centre, determine the number of plates required for the spring. Take allowable
bending stress as 150 MPa. [Ans. n = 10]

2. A leaf spring 1 m long is made up with steel plates with width equal to 6 times its thickness.
Design the spring for a load of 15 kN when the maximum stress is 100 MPa and deflection is
not to exceed 16 mm. [Ans. t = 12.5 mm ;  b = 75 mm ;  n = 12]

3. A carriage spring 800 mm long is made of 12 plates of 40 mm width. Determine the thickness
of the plates, if bending stress is not to exceed 200 MPa and spring is to carry a load of 6 kN at
its centre. Also determine the central deflection of the spring. Take E as 200 GPa.

[Ans. 9 mm ;  16.5 mm)

4. A laminated spring of the quarter elliptic type 600 mm long is to provide a deflection of 75 mm
under an end load of 1960 N. If the leaf material is 60 mm wide and 6 mm thick, find the number
of leaves required and the maximum stress. [Ans. 13 ;  252 N/mm2]

28.9. Helical Springs
It is a torsion springs and made up of a wire coiled into a helix.

Though, there are many types of helical springs, yet the following
are important from the subject point of view:

1. Closely-coiled helical springs and

2. Open-coiled helical springs.

28.10. Closely-coiled Helical Springs
In a closely coiled helical spring, the spring wire is coiled so

close that the each turn is practically a plane at right angles to the
axis of the helix and the wire is subjected to torsion. The bending
stress is negligible as compared to the torsional stress. A closely-
coiled helical spring may be subjected to (1) axial loading and (2)
axial twist. In this chapter, we shall discuss both the cases one by
one.

28.11. Closely-coiled Helical Springs Subjected to an Axial Load
Consider a closely-coiled helical spring subjected to an axial load as

shown in Fig. 28.3.

Let d = Diameter of the spring wire,
R = Mean radius of the spring coil,

n = No. of turns of coils,

C = Modulus of rigidity for the spring
material,

W = Axial load on the spring,

τ = Maximum shear stress induced in the wire
due to twisting,

θ = Angle of twist in the spring wire and
δ = Deflection of the spring, as a result of

axial load.
Fig. 28.3

Helical springs
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A little consideration will show that the load W will cause a twisting moment,
T = W · R       ...(i)

We know that the twisting moment,

T =
3

16
dπ × τ ×      ...(ii)

∴ W · R =
3

16
dπ × τ ×

We also know that the length of the wire,
l = Length of one coil × No. of coils

= 2 π R · n

We have discussed in Chapter of Torsion of Circular Shafts that

T
J

=
.C
l
θ

... (See Art. 27.7)

or θ =
4

· · 2
·

32

T l WR R n
J C d C

π= π ×
...(ä T = WR)

=
2

4

64 WR n

Cd
∴ Deflection of the spring,

δ = R · θ = 
2 3

4 4

64 64WR n WR n
R

Cd Cd
× =

We know that the energy stored in the spring,

U =
1 ·
2

W δ

and stiffness of the spring, s =
4

364

W Cd

R n
=

δ

EXAMPLE 28.5.   A close-coiled helical spring is required to carry a load of 150 N. If the
mean coil diameter is to be 8 times that of the wire, calculate these diameters. Take maximum
shear stress as 100 MPa.

SOLUTION. Given : Load (W) = 150 N ;  Diameter of coil (D) = 8d (where d is the diameter of the
wire) or radius (R) = 4 d and maximum shear stress (τ) = 100 MPa = 100 N/mm2.

We know that relation for the twisting moment,

WR =
3

16
dπ × τ ×

or 150 × 4 d =
3100

16
dπ × ×

or d2 =
150 4 16

100
× ×

π ×  = 30.6

or d = 5.53  say 6 mm        Ans.
and D = 8 d = 8 × 6 = 48 mm        Ans.
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EXAMPLE 28.6.    A closely-coiled helical spring of round steel wire 5 mm in diameter having
12 complete coils of 50 mm mean diameter is subjected to an axial load of 100 N. Find the
deflection of the spring and the maximum shearing stress in the material. Modulus of rigidity
(C) = 80 GPa.

SOLUTION. Given : Diameter of spring wire (d) = 5 mm ;  No. of coils (n) = 12 ;  Diameter of
spring (D) = 50 mm or radius (R) = 25 mm ;  Axial load (W) = 100 N and modulus of rigidity (C) = 80
GPa = 80 × 103 N/mm2.
Deflection of the spring

We know that deflection of the spring,

δ =
3 3

4 3 4

64 4 100 (25) 12

(80 10 ) (5)

6 × × ×=
× ×

WR n

Cd
 = 24 mm        Ans.

Maximum shearing stress in the material
Let τ = Maximum shearing stress in the material.

We also know that relation for the torque,

WR =
3

16
dπ × τ ×

or 100 × 25 =
3(5)

16
π × τ ×

2500 = 24.54 τ

∴ τ =
2500
24.54  = 101.9 N/mm2 = 101.9 MPa        Ans.

28.12. Closely-coiled Helical Springs Subjected to an Axial Twist
Consider a closely-coiled helical spring subjected to an axial twist as shown in Fig. 28.4.

Let d = Diameter of the spring wire,
R = Mean radius of the spring coil,

n = No. of turns of coils,

C = Modulus of rigidity for the
spring material and

M = Moment or axial twist applied on the
spring.

A little consideration will show that the number of spring coils
will tend to increase or decrease depending upon the sense of the
moment. Moreover, if the number of turns tend to increase then the
mean radius of the spring coil will decrease. Now let us consider
that the number of turns increase from n to n′ and the mean radius
decreases from R to R′.
Now length of the spring,

l = 2 π Rn = 2π R′ n′ ...(i)

∴ 1
R

=
2 n

l
π

          and          
21 n

R l
π ′=

′

Fig. 28.4.  Closely-coiled
helical spring
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We know that M
I

= E × Change of curvature

=
2 2 21 1 ( )

n n E
E E n n

R R l l l
π ′ π π⎛ ⎞⎛ ⎞− = − = ′ −⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

or 2π (n′ – n) =
Ml
EI

...(ii)

We also know that the total angle of bend,

φ = 2π (n′ – n)

Substituting the value of 2π (n′ – n) from equation (ii),

φ =
Ml
EI

Differentiating the above equation with respect to l,

d
dl
φ

=
M
EI

It is thus obvious that the change in curvature or angle of bend per unit length, is constant throughout
the spring.

We know that the energy stored in the spring,

U =
1 ·
2

M φ

EXAMPLE 28.7. A closely-coiled helical spring is made up of 10 mm diameter steel wire
having 10 coils with 80 mm mean diameter. If the spring is subjected to an axial twist of 10 kN-
mm, determine the bending stress and increase in the number of turns. Take E as 200 GPa.

SOLUTION. Given : Diameter of spring wire (d) = 10 mm ;  No. of coils (n) = 10 ;  Diameter of coil
(D) = 80 mm or radius (R) = 40 mm ;  Axial twist (M) = 10 kN-mm = 10 × 103 N-mm and modulus of
elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Bending stress in the wire
We know that moment of inertia of the spring wire section,

I =
4 4(10)

64 64
dπ π× = ×  = 490.9 mm4

∴ Bending stress in the wire

σ =
310 10

5
490.9

M y
I

×× = ×  = 101.9 N/mm2 = 101.9 MPa        Ans.

Increase in the number of turns
We know that length of the coil,

l = 2π Rn = 2π × 40 × 10 = 800 π  mm

and increase in the no. of turns,

n′ – n =
3

3

(10 10 ) 8001 1
2 2(200 10 ) 490.9

Ml
EI

× × π× = ×
π π× ×

 = 0.04        Ans.

28.13. Open-coiled Helical Springs
In an open helical spring, the spring wire is coiled in such a way, that there is large gap between

the two consecutive turns. As a result of this, the spring can take compressive load also. An open
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helical spring, like a closed helical spring, may be subjected to (1) axial loading or (2) axial twist. In
this chapter, we shall discuss only the first case.

Now consider an open coiled helical spring subjected to an axial
load as shown in Fig. 28.5.

Let d = Diameter of the spring wire,

R = Mean radius of the spring coil,
P = Pitch of the spring coils,

n = No. of turns of coils,

C = Modulus of rigidity for the
spring materials,

W = Axial load on the spring,

τ = Maximum shear stress induced
in the spring wire due to loading,

σb = Bending stress induced in the
spring wire due to bending,

δ = Deflection of the spring as a re-
sult of axial load and

α = Angle of helix.

A little consideration will show that the load W will cause a
moment WR. This moment may be resolved into the following two
components,

T = WR cos α  ...(It causes twisting of coils)

M = WR sin α  ...(It causes bending of coils)

Let δ = Angle of twist, as a result of twisting moment, and
φ = Angle of bend, as a result of bending moment.

We know that the length of the spring wire,

l = 2π nR sec α ...(i)
and twisting moment,

W · R cos α =
3

16
dπ × τ × ...(ii)

We also know that bending stress,

σb =
·M y

I
 

4

sin ·
2

64

dWR

d

α

π ×
... bM

I y
σ⎛ ⎞=⎜ ⎟

⎝ ⎠
∵

= 3

32 sin α
π

WR

d
...(iii)

and angle of twist θ =
cos ·WR lTl

JC JC
α= ... T C

J l
θ⎛ ⎞=⎜ ⎟

⎝ ⎠
∵

We have also seen in the previous article, that angle of bend due to bending moment,

φ =
sin ·α=WR lMl

EI EI
We know that the work done by the load in deflecting the spring, is equal to the stress energy of

the spring.

Fig. 28.5.  Open coiled
        helical spring
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∴ 1 ·
2

W δ =
1 1. .
2 2

T Mθ + φ

or W . δ = T . θ + M . φ

=
cos · sin ·

cos sin
WR l WR l

WR WR
JC EI

α α⎡ ⎤ ⎡ ⎤α × + α ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

or δ =
2 2

2 cos sin
WR l

JC EI

⎡ ⎤α α+⎢ ⎥
⎢ ⎥⎣ ⎦

...(iv)

Now substituting the values of l = 2πnR sec α, J = 4( )
32

dπ  and I = 4( )
64

dπ
 in the above

equation

δ = WR2 × 2πnR sec α 
2 2

4 4

cos sin

32 64
d C E d

⎡ ⎤
α α⎢ ⎥+⎢ ⎥π π×⎢ ⎥

⎣ ⎦

=
3 2 2

4

64 sec cos 2sinWR n
C Ed

⎡ ⎤α α α+⎢ ⎥
⎢ ⎥⎣ ⎦

...(v)

NOTE. If we substitute α = 0 in the above equation, it gives deflection of a closed coiled spring i.e.,

δ =
2

4
64 WR n

Cd

EXAMPLE 28.8.   An open coil helical spring made up of 10 mm diameter wire and of mean
diameter of 100 mm has 12 coils, angle of helix being 15°. Determine the axial deflection and the
intensities of bending and shear stresses under an axial load of 500 N. Take C as 80 GPa and E
as 200 GPa.

SOLUTION. Given : Diameter of wire (d) = 10 mm ;  Mean diameter of spring (D) = 100 mm or
radius (R) = 50 mm ;  No. of coils (n) = 12 ;  Angle of helix (α) = 15° ;  Load (W) = 500 N ;  Modulus
of rigidity (C) = 80 GPa = 80 × 103 N/mm2 and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Deflection of the spring
We know that deflection of the spring,

δ =
3 2 2

4

64 sec cos 2 sin⎡ ⎤α α α+⎢ ⎥
⎢ ⎥⎣ ⎦

WR n
C Ed

=
3 2 2

4 3 3

64 500 (50) 12 sec 15 cos 15 2sin 15

(10) 80 10 200 10

⎡ ⎤× × × ° ° °+⎢ ⎥
× ×⎢ ⎥⎣ ⎦

mm

= 4 800 000 × 1.0353 

22

3 3

2 (0.2588)(0.9659)

80 10 200 10

⎡ ⎤×+⎢ ⎥
× ×⎢ ⎥⎣ ⎦

mm

= 4969 440 × 3
2.467

200 10×
 = 61.3 mm        Ans.

Bending stress in the section
We know that bending moment in the coil,

M = WR sin α = 500 × 50 sin 15° N-mm
= 25 000 × 0.2588 = 6470 N-mm
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and moment of inertia of the spring wire,

I =
4 4( ) (10)

64 64
dπ π× = ×  = 490.9 mm4

∴ Bending stress in the section

σb =
6470 5
490.9

M y
I

× = ×  = 65.9 N/mm2 = 65.9 MPa        Ans.

Shear stress induced in the wire
Let τ = Shear stress induced in the wire in N/mm2.
We know that twisting moment (or torque) in the coil,

T = WR cos α = 500 × 50 cos 15° N-mm
= 25 000 × 0.9659 = 24 150 N-mm

We also know that twisting moment (T)

24 150 =
3 3(10) 196.4

16 16
dπ π× τ × = × τ × = τ

∴ τ =
24150
196.4  = 123 N/mm2 = 123 MPa        Ans.

28.14. Springs in Series and Parallel
In the previous articles, we have been discussing the use of one helical spring only. But sometimes

two (or even more) springs are used at one place. Though there are many ways of using these springs,
yet the springs in (i) series and (ii) parallel are important from the subject point of view.

(a) Springs in series (b) Springs in parallel
Fig. 28.6

1. Springs in series
In this case, the two springs are connected in series as shown in Fig. 28.6 (a). Each spring is

subjected to the same load applied at the end of one spring. A little consideration will show that the
total extension of the assembly is equal to the algebraic sum of the extensions of the two springs.

2. Springs in parallel
In this case, the two springs are connected in parallel as shown in Fig. 28.6 (b). The extension of

each spring is the same. A little consideration will show that the load applied on the assembly is
shared by the two springs.

EXAMPLE 28.9. Two-close coiled helical springs wound from the same wire, but with different
core radii having equal no. of coils are compressed between rigid plates at their ends. Calculate
the maximum shear stress induced in each spring, if the wire diameter is 10 mm and the load
applied between the rigid plates is 500 N. The core radii of the springs 100 mm and 75 mm
respectively.
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SOLUTION. Given : No. of coils in the outer spring (n1) = n2 (where n2 is the no. of coils in the
inner spring) ;  Diameter of spring wire (d) = 10 mm ;  Load (W) = 500 N ;  Radius of outer spring (R1)
= 100 mm and radius of inner spring (R2) = 75 mm.

Let τ1 = Shear stress developed in the outer spring,

W1 = Load shared by the outer spring and

τ2, W2 = Corresponding values for the inner spring.
We know that deflection of the outer spring,

δ1 =
3 3

1 1 1 1 1 1 1
4 4

64 64 (100) 6400

(10)

W R n W n W n
CCd C

× × ×
= =

×
...(i)

Similarly, δ2 =
3 3

2 2 2 2 2 2 2
4 4

64 64 (75) 2700

(10)

W R n W n W n
CCd C

× × ×
= =

×
...(ii)

Since the springs are held between two rigid plates, therefore deflections in both the springs must
be equal. Now equating (i) and (ii),

1 16400 W n
C

= 2 22700 W n
C

6400 W1 = 2700 W2 ...(ä n1 = n2)

or W1 = 227
64
W

We also know that W1 + W2 = 500

∴ 2
2

27
64

+
W

W = 500

or 291
64
W

= 500

∴ W2 =
500 64

91
×

 = 351.6 N

and W1 = 500 – W2 = 500 – 351.6 = 148.4 N

We know that relation for torque,

W1 R1 =
3

116
dπ × τ ×

or 148.4 × 100 =
3

1 (10)
16
π × τ ×

∴ τ1 = 3

148.4 100 16

(10)

× ×
π

 = 75.6 N/mm2 = 75.6 MPa        Ans.

Similarly, τ2 = 3

351.6 75 16

(10)

× ×
π

 = 134.3 N/mm2 = 134.4 MPa        Ans.

EXERCISE 28.2

1. A closely coiled helical spring of mean diameter 140 mm is made up of 12 mm diameter steel
wire. Calculate the direct axial load, the spring can carry if the maximum stress is not to exceed
100 MPa. [Ans. 484 N]
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2. A closely coiled helical spring is made of 6 mm wire. The maximum shear stress and deflection
under a 200 N load is not to exceed 80 MPa and 11 mm respectively. Determine the no. of coils
and their mean diameter. Take C = 84 MPa. [Ans. 20 ;  34 mm]

3. A open coil helical spring made of 10 mm diameter wire has 15 coils of 50 mm radius with a 20°
angle of helix. Determine the deflection of the spring, when subjected to an axial load of 300 N.
Take E = 200 GPa and  = 80 GPa.

[Ans. 47.4 mm]

QUESTIONS

1. What is a spring? Explain its uses.

2. What are various types of springs? Distinguish clearly between bending springs and torsion
springs.

3. What is a laminated spring? Where is it used?

4. Derive from first principles, making usual assumptions the formula for the maximum bending
stress and for the central deflection of a leaf spring consisting of n leaves and subjected to a
central load.

5. What are helical springs? Differentiate between a closely coiled helical spring and an open
coiled helical spring.

6. A closely coiled helical spring with D as diameter of the coil and d as diameter of the wire is

subjected to an axial load W. Prove that the maximum shear stress produced is equal to
3

8WD

dπ
.

7. Derive an equation for the deflection of an open coiled helical spring.

OBJECTIVE TYPE QUESTIONS

1. In a leaf spring, maximum bending stress developed in the plates is

(a)
2

Wl

nbt
(b) 2

2Wl

nbt
(c)

2

3Wl

nbt
(d)

2

3

2

Wl

nbt

2. The maximum deflection at the centre of a leaf spring is

(a) b l
Et

σ
(b)

2

2
b l
Et

σ
(c)

2

3
b l
Et

σ
(d)

2

4
b l
Et

σ

3. When a closely coiled spring is subjected to an axial load, it is said to be under“

(a) bending (b) shear (c) torsion (d) all of these

4. The deflection of a closely-coiled helical spring of diameter (D) subjected to an axial load (W)
is

(a)
3

4

64 WR n

Cd
(b)

2

4

64 WR n

Cd
(c)

4

64 WRn

Cd
(d)

2

4

64 WRn

Cd

ANSWERS

1. (d) 2. (d) 3. (c) 4. (a)
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29.1. Introduction
We see that in a steel structure, such as plate

girder, roof truss, boiler shells, ship-building, etc.,
its various members, which constitute the structure,
are connected to one another. These members are
connected either by welding or by rivets. In
riveting, specially made ductile metal pins, called
rivets, are inserted into the holes of the members.
The rivets are hammered for permanent fastenings.
It may be noted that a riveted joint is used in a
structure only when it is a must, as it weakens the
section due to hole.

29.2. Types of Riveted Joints
Following are two types of riveted joints,

depending upon the way in which the members
are connected:

1. Lap joint 2. Butt joint.

29C h a p t e r
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29.3. Lap Joint
It is a joint in which a part of one member overlaps the other and the two members are then

riveted together as shown in Fig. 29.1.

Fig. 29.1. Lap joint.

29.4. Butt Joint
It is a joint in which the edges of the two members butt (i.e., touch) against each other and a cover

plate is placed either on one side or on both sides of the two members. The cover plate is then riveted
together with both the members. Butt joints are of the following two types:

1.  Single cover butt joint,          2.  Double cover butt joint

29.5. Single Cover Butt Joint
It is a joint in which the edges of the two members butt against each other, and only one cover

plate is placed on one side of the members and riveted together as shown in Fig. 29.2.

Fig. 29.2. Single cover butt joint.

29.6. Double Cover Butt Joint
It is a joint in which the edges of the two members butt against each other, and two cover plates

placed on both the sides of the member and riveted together as shown in Fig. 29.3.

Fig. 29.3. Double cover butt joint.

In addition to the above, following are the types of the riveted joints, depending upon the way in
which the rivets are connected:

1. Single riveted joint,

2. Double riveted joint,

3. Multiple riveted joint,

4. Chain riveted joint and

5. Zig-zag riveted joint.
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29.7. Single Riveted Joint
It is a joint in which there is a single row of rivets in a lap joint as shown in Fig. 29.4(a). Or there

is a single row of rivets on each side in a butt joint as shown in Fig. 29.4(b).

(a) Lap joint (b) Butt joint

Fig. 29.4. Single riveted joint.

29.8. Double Riveted Joint
It is a joint in which there are two rows of rivets in a lap joint as shown in Fig. 29.5 (a). Or there

are two rows of rivets on each side in a butt joint as shown in Fig. 29.5 (b).

(a) Lap joint (b) Butt joint

Fig. 29.5. Double riveted joint.

29.9. Multiple Riveted Joint
It is a joint in which there are more than two rows of rivets in a lap joint or more than two rows

of rivets on each side in a butt joint. A multiple riveted joint may be a triple riveted joint or quadruple
riveted joint.
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29.10. Chain Riveted Joint
It is a joint in which every rivet of a row is opposite to other rivet of the other row as shown in

Fig. 29.6.

Fig. 29.6. Chain riveted joint. Fig. 29.7. Zig-zag riveted joint

29.11. Zig-zag Riveted Joint
It is a joint in which the spacing of the rivets is staggered, in such a way, that every rivet is in the

middle of the two rivets of the opposite row as shown in Fig. 29.7.

29.12. Diamond Riveted Joint
It is a joint in which the number of rivets decreases as we proceed from innermost row to the

outermost row as shown in Fig. 29.8. It will be interesting to know that a diamond riveted joint is
adopted in butt joint only.

Fig. 29.8. Diamond riveted joint.
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29.13. Pitch of Rivets
The centre to centre distance between the two consecutive rivets in a row, is called the pitch of

the rivets and is denoted by the letter p as shown in Fig. 29.9.

Fig. 29.9. Pitch of rivets

In some cases, the pitch is different for different rows. In such cases, the pitch is the least in the
innermost row.

29.14. Failure of Riveted Joint
A riveted joint may fail due to many ways. But the following are more important from the subject

point of view:
1. Failure of the rivets. 2. Failure of the plates.

We shall discuss both the above mentioned cases of failure, in more details, one by one.

29.15. Failure of the Rivets
A rivet may fail due to either of the following two reasons:
1. Shearing of the rivet. 2. Crushing of the rivet.

Now we shall discuss both the cases one by one.

29.16. Shearing of the Rivets
The plates, which are connected by the rivets, exert tensile stress on the rivets. If the rivets are

unable to resist the stresses, they may be sheared off as shown in Fig. 29.10. It will be interesting to
know that

Fig. 29.10. Shearing of rivets

1. The rivets are in single shear in a lap joint and in a single cover butt joint.

2. The rivets are in double shear in a double cover butt joint.

29.17. Crushing of the Rivets
Sometimes, the rivets do not actually shear off, under the tensile stress, but are crushed as shown

in Fig. 29.11. Such a failure of rivet is called crushing of the rivet.

Fig. 29.11. Crushing of rivets



700 � Strength of Materials

29.18. Failure of the plates
A plate may fail in many ways. But the following are important from the subject point of view:
1. Tearing off the plate across a row of rivets,

2. Tearing off the plate at an edge.

29.19. Tearing off the Plate across a Row of Rivets
Due to the tensile stresses, in the main plates, the main plate or cover plates may tear off across

a row of rivets as shown in Fig. 29.12. In such cases, we consider only one pitch length of the plate,
since every rivet is responsible for that much length of plate only.

Fig. 29.12. Tearing across a row of rivets

29.20. Tearing off the Plate at an Edge
A plate may also fail due to tearing at an edge as shown in Fig. 29.13. This can be avoided by

keeping the centre of the nearest rivet, from the edge of the plate, at least two times the diameter of the
rivet.

Fig. 29.13. Tearing off at an edge

29.21. Strength of a Rivet
We have seen in arts. 29.16 and 29.17 that a rivet may fail either due to its shearing off or due to

its crushing. Thus, while calculating the strength of a rivet we see as to how much resistance it can
offer. The resistance offered by a rivet is known as its strength or the value of the rivet. Following two
values of a rivet are important from the subject point of view:

1. Shearing value. 2. Bearing value.

1. Shearing value
The resistance offered by a rivet, to be sheared off is known as its shearing value. Mathematically,

pull required to shear off the rivet,

Ps = 2

4
dπ × × τ

where d = Diameter of the rivet and

τ = Safe permissible shear stress for the rivet material.

If the rivet is in double shear (i.e., in the case of a double cover butt joint), the corresponding
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equation becomes:

Ps = 22
4

dπ× × × τ

2. Bearing value
The resistance offered by a rivet to be crushed is known as the bearing value. Mathematically,

pull required to crush the rivet,

Pb = σb × t × d

where σb = Safe permissible bearing stress for the rivet material,
t = Thickness of the main plate and

d = Diameter of the rivet.
NOTE:  Sometimes, the bearing strength of a rivet is also termed as its crushing strength. And permissible

    bearing stress is termed as permissible crushing stress (σc).

29.22. Strength of a Plate
We have seen in Art. 29.19 that the plate may fail due to its tearing off across the row of rivets.

Thus, while calculating the strength of a plate, we see as to how much resistance it can offer. This
resistance offered by the plate, against tearing off, is known as the strength of the plate or value of the
plate. Mathematically, pull required to tear off the plate,

Pt = σt (p – d) t

where σt = Permissible tensile stress for the plate material,

p = Pitch of the rivet and
t = Thickness of the plate.

29.23. Strength of a Riveted Joint
The strength of a joint may be defined as the maximum force, which it can transmit, without

causing it to fail. We have seen in Arts. 29.21 and 29.22 that Ps, Pb and Pt are the pulls required to
shear of the rivet, crushing of the rivet and tearing of the plate. A little consideration will show that if
we go on increasing the pull on a riveted joint, it will fail when the least of these three pulls is reached;
because a higher value of the other pulls will never reach, since the joint has already failed, either by
shearing of the rivet or by crushing of the rivet or by tearing of the plate.

If the joint is continuous (as in the case of boilers) the strength is calculated per pitch length. But
if the length of the joint is small, the strength is calculated for the whole length of the plate.

29.24. Efficiency of a Riveted Joint
The efficiency of a riveted joint is the ratio of the strength of the joint, to the strength of the

unriveted plate. Mathematically

Efficiency η =
Least of , ands b tP P P

P
where P = σ1 × p × t

P = Pull required to tear off the unriveted plate,

σ1 = Permissible tensile stress for the plate material,

p = Pitch of the rivets and
t = Thickness of the plate.



702 � Strength of Materials

EXAMPLE 29.1. A single riveted lap joint is made in 12 mm thick plates with 22 mm diameter
rivets. Determine the strength of the rivet, if the pitch of the rivets is 60 mm. Take allowable
stresses in shearing as 60 MPa, in bearing as 150 MPa and in tearing as 80 MPa respectively.

SOLUTION. Given: Thickness of plates (t) = 12 mm; Diameter of rivets (d) = 22 mm ;  Pitch (p) =
60 mm ;  Allowable shear stress (τ) = 60 MPa = 60 N/mm2 ;  Allowable stress in bearing (σb) = 150 MPa
= 150 N/mm2 and allowable stress in tearing (σt) = 80 MPa = 80 N/mm2.

First of all, let us calculate the pulls required for shearing and crushing of the rivets as well as
tearing of the main plates.

1. Shearing of rivets. We know that in a lap joint, the rivets are in single shear. Thus, in a single
riveted lap joint, the strength of one rivet in single shear is taken. Therefore shearing strength of
the rivet,

Ps = 2( )
4

dπτ × ×  = 260 (22)
4
π× ×  = 22 810 N = 22.81 kN  ...(i)

2. Bearing of rivets. We know that in a single riveted joint, the strength of one rivet in bearing is
taken. Therefore bearing strength of the rivet,

Pb = σb × t × d = 150 × 12 × 22 = 39 600 N = 39.6 kN ...(ii)

3. Tearing of the plate. We also know that in a continuous joint, the strength of one pitch length is
taken. Therefore tearing strength of the main plate,

Pt = σt (p – d) t = 80 (60 – 22) 12 = 36 480 N = 36.48 kN ...(iii)

Thus strength of the rivet joint is the least of the above mentioned three values Ps, Pb and Pt. i.e.,
22.81 kN        Ans.

EXAMPLE 29.2.      Two plates 10 mm thick are joined by a double riveted lap joint. The pitch
of each row of rivets is 50 mm. The rivets are 20 mm diameter and the permissible stresses are:

Shearing of rivets = 70 MPa
Bearing of rivets = 160 MPa

Tearing of the plate = 100 MPa
Determine the maximum tensile force on the joint and efficiency of the joint.

SOLUTION. Given: Thickness of plates (t) = 10 mm ;  Pitch (p) = 50 mm; Diameter of rivets (d)
= 20 mm ;  Permissible stress in shearing (τ) = 70 MPa = 70 N/mm2 ;  Permissible stress in bearing
(σb) = 160 MPa = 160 N/mm2 and permissible stress in tearing (σt) = 100 MPa = 100 N/mm2.

Maximum tensile force of the joint
First of all, let us calculate the pulls required for shearing and crushing of the rivets as well as

tearing of the main plates.
1. Shearing of rivets. We know that in a lap joint, the rivets are in single shear. Thus, in a double

riveted lap joint, the strength of two rivets in single shear is taken. Therefore shearing strength
of the rivets.

Ps = 2 22 ( ) 2 70 (20)
4 4

dπ π× τ × × = × × ×  N

= 44 000 N = 44 kN  ...(i)

2. Bearing of rivets. We know that in a double riveted joint, the strength of two rivets is taken.
Therefore bearing strength of the rivets,

Pb = 2 × σb × t × d = 2 × 160 × 10 × 20 = 64 000 N = 64 kN...(ii)
3. Tearing of the plates. We know that in a continuous joint, the strength of one pitch length is

taken. Therefore tearing strength of the main plates,

Pt = σt (p – d) t = 100 (50 – 20) 10 N = 30 000 N = 30 kN ...(iii)
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Thus minimum tensile force on the joint is the least of the above mentioned three values Ps, Pb
and Pt , i.e., 30 kN.        Ans.

Efficiency of the joint
We also know that strength of the unriveted plate per pitch length,

P = σt × p × t = 100 × 50 × 10 N = 50 000 N = 50 kN ...(iv)
∴ Efficiency of the joint,

η = 30
50

 = 0.6 = 60%        Ans.

EXAMPLE 29.3.   A double riveted double cover butt joint is made in 20 mm thick plates with
25 mm diameter rivets and 100 mm pitch. The permissible stresses are;

τ = 80 MPa; σc = 160 MPa and σt = 100 MPa

Find the pull per pitch length of the joint and efficiency of the joint.

SOLUTION. Given: Thickness of Plate (t) = 20 mm ;  Diameter of rivets (d) = 25 mm; Pitch of
rivets (p) = 100 mm ;  Permissible shear stress in rivets (τ) = 80 MPa = 80 N/mm2 ;  Permissible
crushing stress of plates (σc)= 160 MPa = 160 N/mm2 and Permissible tearing stress of plates (σt) =
100 MPa =
100 N/mm2.

Pull per pitch length of the joint
First of all, let us calculate the pulls required for shearing and crushing of the rivets as well as

tearing of the main plates.

1. Shearing of rivets. We know that in a double cover butt joints, the rivets are in double shear.
Thus, in a double riveted double covered butt joint, the strength of two rivets in double shear is
taken. Therefore strength of the rivets,

Ps =
2 22 2 ( ) 4 80 (25)

4 4
dπ π× × τ × × = × × ×  = 157 100 N

= 157.1 kN ...(i)

2. Crushing of the rivets. We know that in a double riveted joint, the strength of two rivets in
crushing is taken. Therefore crushing strength of rivets,

Pc = 2 × σc × t × d = 2 × 160 × 20 × 25 = 160 000 N

= 160 000 N = 160 kN ...(ii)

3. Tearing of the plates. We know that in a continuous joint, the strength of one pitch length is
taken. Therefore tearing strength of the main plates,

Pt = σt (p – d) t = 100 (100 – 25) 20 = 150 000 N = 150 kN ...(iii)

Thus, pull per pitch length of the joint is the least of the above mentioned three values Ps, Pb and
Pt i.e., 150 kN.       Ans.

Efficiency of the joint
We also know strength of unriveted plate per pitch length,

P = σt × p × t = 100 × 100 × 20 = 200 000 N = 200 kN ...(iv)

∴ Efficiency of the joint,

η =
150
200  = 0.75 = 75%        Ans.
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EXAMPLE 29.4.     A 200 × 20 mm steel strap is spliced as shown in Fig. 29.14.

Fig. 29.14

The rivets are 30 mm in diameter. The allowable working stresses are 70 MPa in shear, 180
MPa in bearing and 90 MPa in tearing. What is the safe load on the spliced strap and efficiency
of the joint?

SOLUTION. Given: Width of plates (b) = 200 mm; Thickness of main plates (t )= 20 mm; diameters
of rivets (d) = 30 mm; Thickness of cover plates (tc) = 15 mm; Premissible shear stress in rivets (τ) =
70 MPa = 70 N/mm2; Permissible bearing stress in rivets (σb) = 180 MPa = 180 N/mm2 and permissible
tearing stress in plates (σt) = 90 MPa = 90 N/mm2.
Safe load on the spliced strap

First of all, let us calculate the pulls required for shearing and crushing of the rivets as well as
tearing of the main plate and cover plates. Since the joint is not a continuous one, therefore we shall
find out the strength of the joint for 3 rivets and full plate width.

1. Shearing of rivets. We know that in a double covered butt joints, the rivets are in double shear.
Therefore strength of 3 rivets in double shear,

Ps = 2 23 2 ( ) 6 70 (30)
4 4

dπ π× × τ × × = × × ×  = 297 000 N

= 297 kN ...(i)
2. Bearing of rivets. Since there are 3 rivets on either side of the joints, therefore bearing strength

of 3 rivets,
Pb = 3 × σb × t × d = 3 × 180 × 20 × 30 = 324 000 N = 324 kN

...(ii)
From the above two values (i.e., Ps and Pb), we find that strength of 3 rivets is lesser of these
values i.e., 297 kN. Therefore, strength of one rivet is 297/3 = 99 kN.

3. Tearing of the main plates. We know that as the joint is not continuous, therefore strength of the
whole plate is calculated as section (1-1) and (2-2) independently. We also know that at section
(1-1), there is only one rivet hole. Therefore tearing strength of the main plate at section (1-1),

Pt1 = σt [b – (1 × d)] t = 90 [200 – (1 × 30)] 20 = 306 000 N
= 306 kN ...(iii)

We know that at section (2-2), there are two rivet holes. Therefore tearing strength of the main
plate at section (2-2),

= σt [b – (2 × d)] t = 90 [200 – (2 × 30)] 20 = 252 000 N

= 252 kN
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From the above two values of Pt1 and Pt2, we find that tearing strength of the main plate appears
to be less at section (2-2). But it will be interesting to know that for tearing of the plate at section (2-
2), the rivet in front of it (i.e., at section 1-1) must first give way. Therefore actual strength of the main
plate at section (2-2),

Pt2 = 252 + Strength of one rivet = 252 + 99 = 351 kN ...(iv)

4. Tearing of cover plates. We know that the cover plates are weaker at section (2-2), where there
are 2 rivet holes. Therefore strength of two cover plates of section (2-2),

Ptc = σt [b – (2 × d)] 2tc = 90 [200 – (2 × 30)] 2 × 15 N
= 378 000 N = 378 kN ...(v)

Thus, safe load on the spliced strap is the least of above mentioned five values Ps, Pb, Pt1, *Pt2
and Ptc i.e., 297 kN        Ans.

Efficiency of the Joint
We also know that strength of the unriveted steel strap,

P = σt × b × t = 90 × 200 × 20 = 360 000 = 360 kN` ...(vi)

∴ Efficiency of the joint,

η = 297
360

 = 0.825 = 82.5%       Ans.

EXAMPLE 29.5. Two 300 mm × 16 mm plates are riveted together with 25 mm diameter
rivets and quadruple riveted double cover butt joint as shown in Fig. 29.15.

Fig. 29.15

Find the strength and efficiency of the joint, if the thickness of the cover plates be 10 mm. The
permissible stresses are:

Shearing (τ) = 80 MPa; Crushing (σc) = 160 MPa; Tearing (σt) = 100 MPa.

SOLUTION. Given : Width of plates (b) = 300 mm ;  Thickness of plates (t) = 16 mm ;  Diameter of
rivets (d) = 25 mm ;  Thickness of cover plates (tc) = 10 mm ;  Permissible shear stress (τ) = 80 MPa
= 80 N/mm2 ;  Permissible crushing stress (σc) = 160 MPa = 160 N/mm2 and permissible tearing
stress (σt) = 100 MPa = 100 N/mm2.

* The reason for taking the strength of 3 rivets is that, there are only 3 rivets on either side of the joint.
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Strength of the joint
First of all let, us calculate the pulls required for shearing and crushing of the rivets as well as

tearing of the main plate and cover plates. Since the joint is not a continuous one, therefore, we shall
find out the strength of the joint for 10 rivets and full plate width (as there are 10 rivets on either side
of the joints).

1. Shearing of rivets. We know that in a double covered butt joint, the rivets are in double shear.
Therefore strength of 10 rivets in double shear,

Ps = 2 210 2 ( ) 20 80 (25)
4 4

dπ π× × τ × = × × ×  N

= 785 000 N = 785.0 kN ...(i)
2. Crushing of rivets. Since, there are 10 rivets on either side of the point, therefore crushing

strength of 10 rivets,

Pc = 10 × σc × t × d = 10 × 160 × 16 × 25 = 640 000 N

= 640 kN ...(ii)
From the above two values (i.e., Ps and Pc), we find that strength of 10 rivets is lesser of these

values i.e., 640 kN. Therefore strength of one rivet = 640/10 = 64 kN.

3. Tearing of the main plate. We know that as the joint is not continuous, therefore strength of
the whole plate is calculated at sections (1-1), (2-2), (3-3) and (4-4) independently. We also
know that at section (1-1), there is only one rivet hole. Therefore tearing strength of the main
plate at section (1-1),

Pt1 = σt [b – (1 × d)] t = 100 [300 – (1 × 25)] 16 N
= 440 000 N = 440 kN ...(iii)

We know, that at section (2-2), there are two rivet holes. Therefore tearing strength of the main
plate at section (2-2)

= σt [b – (2 × d)] t = 100 [300 – (2 × 25)] 16 N
= 400 000 N = 400 kN

We also know, that for tearing of the plate at section (2-2), the rivet in front of it (i.e., at section
1-1) must first give way. Therefore actual strength of the main plate at section (2-2),

Pt2 = 400 + Strength of one rivet in front

= 400 + 64 = 464 kN ...(iv)

Similarly, at section (3-3) there are three rivet holes. Therefore tearing strength of the main plate
at section (3-3)

= σt [b – (3 × d)] t = 100 [300 – (3 × 25)] 16 N

= 360 000 N = 360 kN
But actual strength of the main plate at section (3-3),

Pt3 = 360 + Strength of three rivets in front

= 360 + (3 × 64) = 552 kN ...(v)

and at section (4-4) there are four rivet holes. Therefore tearing strength of the main plate at
section (4-4)

= σt [b – (4 × d)] t = 100 [300 – (4 × 25)] 16 N

= 320 000 N = 320 kN

But actual strength of the main plate at section (4-4),

σt4 = 320 + Strength of six rivets in front
= 320 + (6 × 64) = 704 kN ...(vi)
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It will be interesting to know that more and more pull is required for tearing of the main plate, as
we move from the outermost section towards the innermost section.

4. Tearing of cover plates. We know that the cover plates are weaker at section (4-4), where there
are 4 rivet holes. Therefore strength of two cover plates at section (4-4),

Ptc = σt [b – (4 × d)] 2tc = 100 [300 – (4 × 25)] 2 × 10 N

= 400 000 N = 400 kN
Thus strength of the joint is the least of the above mentioned seven values Ps, Pc, Pt1, Pt2, Pt3 Pt4

and Ptc i.e., 400 kN.        Ans.
Efficiency of the joint

We also know that strength of the unriveted plate,
P = σt × b × t = 100 × 300 × 16 = 480 000 N = 480 kN

∴ Efficiency of the joint,

η = 400
480

 = 0.833 = 83.3%       Ans.

EXERCISE 29.1

1. A single riveted lap joint is made in 10 mm thick plates with 20 mm diameter rivets. Determine
the strength and efficiency of the joint, if pitch of the rivets is 50 mm. Take τ = 60 MPa, σb = 150
MPa and σt = 80 MPa. [Ans. 18.85 kN ;  47.1%]

2. A double riveted lap joint is provided in 12 mm thick plates with 22 mm diameter rivets with a
pitch of 70 mm. What is the strength and efficiency of the joint? Take permissible stresses for
shearing of rivets, crushing of rivets and tearing of the plates 60 MPa, 160 MPa and 90 MPa
respectively. [Ans. 45.6 kN ;  60.3%]

3.  Find the efficiencies of the following riveted joints:

(i) Single riveted lap joint in 8 mm thick plates with 18 mm diameter rivets having a pitch
of 50 mm.

(ii) Double riveted joint in 10 mm thick plates with 20 mm diameter rivets having a pitch of
60 mm.

Take allowable stress as τ = 70 MPa, σc = 150 MPa and σt = 80 MPa. [Ans. 55.6%, 66.7%]

4. A double riveted double cover butt joint is proved in 12 mm thick plates with 22 mm diameter
rivets and 75 mm pitch. Find the strength and efficiency of the joint, if the given stresses are:
τ = 60 MPa ;  σb = 160 MPa and σt = 100 MPa [Ans. 63.6 kN ;  70.7%]

29.25. Design of a Riveted Joint
The design of riveted joints is an important job in one modern design office these days. A faulty

design can lead to lot many complications. While designing a riveted joint, for structural use, we
usually make the following assumptions:

1. The load on joint is equally shared by all the rivets.

2. Initial tensile or shearing stress in the rivets is neglected.
3. Frictional forces between the plates are neglected.

4. Plates are rigid.

5. The shearing stress in all the rivets is uniform.
6. The bearing stress is uniform.

7. Bending of rivets is neglected.
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It will be interesting to know that the above mentioned assumptions are very practical in actual
operations of the joint. As a matter of fact, we have to calculate a number of details for the given load.
But the following are important from the subject point of view:

1. Diameter of the rivets.

2. No. of rivets.

3. Pitch of rivets.
4. Thickness of the cover plates (in case of butt joints).

Following rules are observed, while designing a riveted joint:

1. Diameter of rivets
The diameter of the rivets in mm is obtained by the relation:

d = 6 t

where t = Thickness of the main plates in mm.
In no way, the diameter of the rivet is provided less than the thickness of the main plate.

2. Number of rivets
The number of rivets are usually calculated, when the length of the joint is small. But when the

joint is a continues one (as in the case of boilers), the number of rivets is not calculated. In a small
joint, the number of rivets

N =
v

P
R

where P = Thickness of the main plates in mm.
Rv = Rivet value (i.e., least of the rivet value for shearing and bearing).

Sometimes, the number of rivets calculated by the above relation is not an integer. Then the
number of rivets i.e., N is taken to the next higher integer (i.e., if by the above relation, we obtain the
value of N = 5.3, then we shall provide 6 rivets).

3. Pitch of rivets
It is an important factor, while designing a riveted joint. It is calculated on the basis that the plate

strength, with one rivet hole, which should not exceed the total value of the rivets in charge of a pitch
length. It is done in the following ways:

1. Calculate the shearing strength of the rivet with due consideration, whether the rivet is in single
shear or double shear and the number of rivets.

2. Calculate the shearing strength of the rivet with due consideration to the number of rivets.
3. Calculate the tearing strength of the main plate with one rivet hole.

4. The minimum value obtained from (1) and (2) is taken as the rivet value. The strength of the
plate obtained from (3) should not exceed the rivet value.

Note. In general, the pitch should be between 2.5 to 4 times the diameter of the rivet. From practical
considerations, the pitch should not be less than 2d + 12 mm, where d is the diameter of the rivet in mm.

A little consideration will show, that the strength of the joint in such a case, will be tearing strength of the
plate i.e., Pt (because the value of Pt is taken lesser than the rivet values in shearing and bearing).

∴ Efficiency n =
( ) ( )t t

t

P p d t p d
P p t p

σ − −= =
σ × ×

4. Thickness of cover plates
The two cover plates are provided each of thickness 0.625 t, where t is the thickness of the main

plate in mm.
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EXAMPLE 29.6. Design a single riveted lap joint to connect two plates of 10 mm thickness.
Also find efficiency of the joint. Take τ = 80 MPa, σb = 150 MPa and σt = 100 MPa.

SOLUTION. Given : Thickness of plate (t) = 10 mm ;  Permissible stress in shear (τ) = 80 MPa = 80
N/mm2 ;  Permissible stress in bearing (σb) = 150 MPa = 150 N/mm2 and permissible stress in tearing
(σt) = 100 MPa = 100 N/mm2.

Design of the riveted joint
We know that as the joint is a continuous lap joint, therefore  we have to find out diameter of the

rivets (d) and pitch of the joint (p) only.

1. Diameter of the rivets.
We know that diameter of the rivets,

d = 6 6 10t =  = 19    say    20 mm       Ans.

2. Pitch of rivets.
First of all, let us calculate the pulls required for shearing and crushing of the rivets as well as

tearing of the main plates.
We know that shearing strength of one rivet in simple shear (because of single riveted lap joint),

Ps =
2 2( ) 80 (20)

4 4
dπ πτ × × = × ×  N

= 25 132 N = 25.13 kN ... (i)

and bearing strength of one rivet (because of single riveted joint),

Pb = σb × t × d = 150 × 10 × 20 N
= 30 000 N = 30 kN ... (ii)

We know that strength of one rivet is lesser of these values (Ps and Pb) i.e., 25.13 kN. We also
know that tearing strength of the main plate in a continuous joint,

Pt = σt (p – d) t = 100 (p – 20) 10 N

= 1000 (p – 20) N = (p – 20) kN ... (iii)

We also know that tearing strength of the main plate should be greater than or equal to the
strength of one rivet. i.e.,

(p – 20) ≥ 25.13

∴ p ≥ 25.13 + 20 ≥ 45.13 mm
But the pitch (p) should not be less than 2.5 d (i.e., 2.5 × 20 = 50 mm). Moreover, it should

not be less than 2d + 12 [i.e., (2 × 20) + 12 = 52 mm]. Therefore let us provide a pitch of 52
mm say 55 mm.        Ans.
Efficiency of the joint

We also know that efficiency of the joint,

η =
55 20

55
p d

p
− −=  = 0.636 = 63%       Ans.

EXAMPLE 29.7. A single riveted double cover butt joint is to be provided in a structure for
connecting two plates of 12 mm thickness. Design the joints and find its efficiency. Take permissible
stresses in shearing as 75 MPa, in crushing as 175 MPa and in tearing as 100 MPa respectively.

SOLUTION. Given : Thickness of plates (t) = 12 mm ;  Permissible stress in shearing (τ) = 75 MPa
= 75 N/mm2 ;  Permissible stress in crushing (σc) = 175 MPa = 175 N/mm2 and permissible stress in
tearing (σt) = 100 MPa = 100 N/mm2.
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Design of the riveted joint
We know that as the joint is a continuous double cover butt joint, therefore we have to find out

diameter (d) of the rivets, pitch (p) of the joint and thickness of cover plates only.

1. Diameter of the rivets. We know that diameter of the rivets.

d = 6 6 12t =  = 20.8    say    22 mm       Ans.

2. Pitch of rivets. First of all, let us calculate the pulls required for shearing and crushing of the
rivets as well as tearing of the main plate. We know that shearing strength of one rivet in double shear
(because of single riveted butt joint),

Ps =
2 22 ( ) 2 75 (22)

4 4
dπ π× τ × × = × × ×  = 57 027 n

= 57.02 kN ...(i)
and crushing strength of one rivet (because of single riveted joint),

Pc = σ × t × d = 175 × 12 × 22 = 46 200 N = 46.2 kN ...(ii)

We know that strength of one rivet is lesser of these two values (Ps and Pc) i.e., 46.2 kN. We also
know that tearing strength of the main plate in a continuous plate,

Pt = σt (p – d) t = 100 (p – d) 12 = 1200 (p – d) N

= 1.2 (p – d) kN ...(iii)

We also know that tearing strength of the main plate should be greater than or equal to the
strength of one rivet, i.e.,

1.2 (p – d) ≥ 46.2

or p – 22  ≥ 46.2/1.2 = 38.5

∴ p ≥ 38.5 + 22 = 60.5 mm
But the pitch (p) should not be less than 2.5 d (i.e., 2.5 × 22 = 55 mm). Moreover, it should

not be less than 2d + 12 [i.e., (2 × 22) + 12] = 56 mm. Therefore let us provide a pitch of 60.5 mm
say 65 mm.        Ans.
3. Thickness of cover plates.

We know that thickness of cover plates,
tc = 0.625 t = 0.625 × 12 = 7.5 mm    say    8 mm       Ans.

Efficiency of the joint
We also know that efficiency of the joint,

η =
65 22

65
p d

p
− −=  = 0.662 = 66.2%       Ans.

EXAMPLE 29.8. Design a double cover butt joint to connect two plates 15 mm thick and
240 mm wide. The safe stresses are: τ = 80 MPa, σc = 160 MPa and σt = 100 MPa.

SOLUTION. Given: Thickness of plates (t) = 15 mm ;  Width of plates (b) = 240 mm ;  Safe stress
in shearing (τ) = 80 MPa = 80 N/mm2 ;  Safe stress in crushing (σc) = 160 MPa = 160 N/mm2 and safe
stress in tearing (σt) = 100 MPa = 100 N/mm2.

We know that as width of the plates is given, therefore, the joint is not a continuous one. Thus, it
is to be designed for the full width of the plate. Let us design a zig-zag joint with one rivet in the
outermost section.

Diameter of the rivets
We know that diameter of the rivets,

d = 6 6 15t =  = 23.2 mm    say    24 mm       Ans.
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No. of rivets
First of all, let us calculate the pulls required for shearing and crushing of the rivets as well as

tearing of the main plate. We know that shearing strength of one rivet in double shear (because of butt
joint),

Ps = 2 22 ( ) 2 80 (24)
4 4

dπ π× τ × × = × × ×

= 72 382 N = 72.38 kN ...(i)

and crushing strength of one rivet,

Pc = σc × t × d = 160 × 15 × 24 = 57 600 N = 57.6 kN ...(ii)

We know that strength of one rivet is lesser of these two values (Ps and Pc) i.e., 57.6 kN. In a zig-
zag joint, the strength of the plate is minimum at the outermost section with one rivet hole (as assumed
by us). We know that tearing strength of the plate at the outermost section,

Pt = σt [b – (1 × d)] t = 100 [240 – (1 × 24)] 15 N

= 324 000 N = 324 kN ...(iii)

∴ No. of rivets required for the joint

=
Tearing strength of the plate

Strength of one rivet
  =  

324
57.6

 = 5.6    say    6

Now let us provide a zig-zag joint with 6 rivets on either side of the joint as shown in Fig. 29.16.

Fig. 29.16

Thickness of cover plates
We know that thickness of each cover plate,

tc = 0.625 t = 0.625 × 15 = 9.4 mm    say    10 mm       Ans.
Pitch of rivets

Let us povide a pitch of 2.5 d = 2.5 × 24 = 60 mm       Ans.

EXERCISE 29.2

1. Design a single riveted joint to connect two plates of 8 mm thickness. Take τ = 70 MPa, σc =160
MPa and σt = 90 MPa. [Ans. d = 17 say 18 mm; p = 45 mm]

2. Design a double riveted lap joint to connect two plates of 10 mm thickness. Take τ = 60 MPa,
σc = 150 MPa and σt = 80 MPa. [Ans. d = 19 say 20 mm; p = 45 mm]

3. Design a double riveted double cover built joint to connect two plates 15 mm thick with 23 mm
diameter rivets. Take τ = 95 MPa, σt = 120 MPa and σb = 190 MPa. Also find efficiency of the
joint. [Ans.  p = 95 mm; η = 75.8%]
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29.26. Eccentric Riveted Connections
In the previous articles, we have discussed the cases

when the rivets have only to resist the linear displacement
of the plates. But sometimes, a rivet may have to resist
rotary displacement also in addition to linear
displacement.

Consider a bracket connection with a girder as
shown in Fig. 29.17. It may be noted that all the rivets
have to resist the following two types of displacement:

1. Linear displacement and

2. Rotary displacement.
1. Linear displacement

All the rivets have to offer resistance to the linear
displacement, due to the load P. This resistance i.e., force
is assumed to be uniform for all the rivets, and is equal
to

PL =
P
n

where P = Total load on the joint
and n = No. of rivets on the joint.

2. Rotary displacement
All the rivets of the joint have also to offer resistance to the rotary displacement due to the load

P. Following two assumptions are made for finding out the resistance to the rotary displacement:

1. The force on a rivet, to be resisted, is proportional to the
distance of the centre of the rivet, from the centre of all
the rivets (i.e., centroid of the rivet system).

2. The direction of the force on a rivet, to be resisted, is
perpendicular to the line joining the centre of the rivet
and the centre of all the rivets (i.e., centroid of the rivet
system).

Now consider an eccentric riveted connection as shown
in Fig. 29.18.

Let P = Eccentric load on the
joint

e = Eccentricity of the load i.e., the distance between the line of
action of the load and the centroid of the rivet system i.e., G.

Consider a rivet at a distance r from the centroid of the rivet system G. The force to be resisted by
this rivet due to the moment of P × e (i.e., load × distance), is directly proportional to the distance
between its centre and G, i.e.,

PR ∝ r
= kr ...(i)

where k is a constant.
The moment of this resistance about G

= PR × r = kr × r = kr2

and total moments of resistance by all the rivets about G
= Σkr2 = kΣr2 ...(ii)

Fig. 29.17. Eccentric riveted connection.

Fig. 29.18
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This total must be equal to the moment of the load about G
= P · e ...(iii)

Equating equations (ii) and (iii),

kΣr2 = P · e     or     k  =  2

P · e

r∑

Substituting the value of k in equation (i),

PR = kr  =  2

P er

r∑
...(iv)

If x and y are the co-ordinates of rivet (taking G as origin), then

r2 = x2 + y2

Substituting the value of r2 in equation (iv),

PR = 2 2( )

P er

x y∑ +
The direction of this force will be at right angles to the line joining the centre of the rivet and

centroid of the rivet system. Since, this force is directly proportional to r (as is clear from the relation)
therefore the rivet, which is at the farthest distance from the centroid of the rivet system, will be
subjected to the maximum force. It is thus obvious that while calculating the resistance of a rivet or
safety of the connection, a rivet which is at the farthest distance from G is studied, because all the
other rivets will be subjected to a lesser force than the farthest one.

The load PR is resolved horizontally as well as vertically. The resultant load on a rivet will be
given by the relation:

R = 2 2( ) ( )H V∑ + ∑

where ΣH = Horizontal component of PR and
ΣV = PL ± Vertical component of PR.

NOTE. Care should always be taken for the +ve or –ve sign. In general if the rivet, under consideration, is
between G and the load +ve sign is taken. But if the rivet is away from G, then –ve sign is taken.

EXAMPLE 29.9.     A bracket is riveted to a column by 6 rivets of equal size as shown in Fig
29.19.

It carries a load of 120 kN at a distance of 300 mm from the centre of the column. Calculate the
loads carried by two top rivets.

Fig. 29.19
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SOLUTION. Given: No. of rivets (n) = 6; Load (P) = 120 kN = 120 × 103 N and eccentricity
(e)=300 mm.
Load carried by the rivet A

We know that load on each rivet on account of linear displacement,

PL =
120

6
P
n

=  = 20 kN ...(i)

and total moment of resistance by all the rivets about G,
Σr2 + Σy2 = [6 × (80)2] + [2 × (100)2] + [2 × (0)2 + [2 × (100)2] mm2

= (38.4 × 103) + (20 × 103) + 0 + (20 × 103) mm2

= 78.4 × 103 mm2

Fig. 29.20

From the geometry of the riveted joint, we find that the distance between the centroid of the joint
and the rivet A (or B),

r = 2 2(100) (80)+  = 128 mm

∴ Load on account of rotation,

PR =
3

2 3

· · (120 10 ) 300 128

78.4 10

P e r

r

× × ×=
∑ ×

  =  58.8 × 103 N = 58.8 kN

Vertical component of this load

= 58.8 sin θ = 
8058.8

128
×  = 36.8 kN

and horizontal component of this load

ΣH = 58.8 cos θ = 
10058.8
128

×  = 45.9 kN

From the geometry of the riveted joint, we find that total vertical load carried by rivet A,
ΣV = 36.8 – 20 = 16.8 kN

and total horizontal load carried by the rivet A,

ΣH = 45.9 kN ... (As obtained earlier)
∴ Resultant load carried by the rivet A

= 2 2(16.8) (45.9)+  = 48.9 kN       Ans.
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Load carried by the rivet B
From the geometry of the riveted joint, we find that total vertical load carried by rivet B,

ΣV = 36.8 + 20 = 56.8 kN

and total horizontal load carried by the rivet B,
ΣH = 45.9 kN ...(As obtained earlier)

∴ Resultant load carried by the rivet A

= 2 2(56.8) (45.9)+  = 73 kN       Ans.

29.27. Transmission of Load Through Rods
In the previous articles, we have discussed the transmission of load through plates. While

calculating the transmission of load through plate, we used to discuss the strength of a riveted joint.
Now we shall discuss the transmission of load through rods.

29.28. Types of Rod Joints
Though there are numerous types of joints in the rods, yet the following two types are important

from the subject point of view:

1. Knuckle joint and 2. Cotter joint

29.29. Knuckle Joint
A knuckle joint or forked joint is used to connect two rods or bars, subjected to tensile load. It

may be readily connected or disconnected for adjustments or repairs. The knuckle joints are very
common in machines and structures.

In a knuckle joint, one end of one of the rods is made into an eye and the other end of the other
rod is made into a fork, with an eye in each of the fork legs. A pin, having a head, is passed through
the eyes and fixed by means of a cotter pin as shown in Fig. 29.21.

Fig. 29.21

Fig. 29.22
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Now consider a knuckle joint connecting two rods as shown in Fig. 29.22.
Let P = Load carried by the rods,

D = Diameter of the rods,

D1 = Diameter of rods near the eyes,
D0 = Outer diameter of the eye,

t = Thickness of the single eye,

t1 = Thickness of each fork leg,

d = Diameter of the pin (or internal diameter of the eye),

σt = Permissible tensile strength in the rods,

σs = Permissible shear stress in the pin material and

σb = Permissible bearing stress for the pin material.

As a matter of facts, the above data is calculated for each joint. But sometimes, a few thumb rules
are adopted for the design of the various components of the joint as discussed below:

1. The diameter of the bars near the eyes, is made at least 5 mm more than the bar diameter.
2. The diameter of the pin head is made 1.5 times the diameter of the pin.

3. The outer diameter of the eye is made two times its internal diameter.

Now we shall find out the strength of the knuckle joint, in the same way, as we used to do in the
case of the riveted joints.

1. Strength of the rods

Since the rod is of uniform diameter, therefore strength of rod is taken for tensile load.

∴ P = 2

4t Dπσ × × ...(i)

2. Shearing strength of the pin
Since the pin is in double shear, therefore strength of the pin in double shear is taken.

Ps = 22
4
π× τ × × d ...(ii)

3. Bearing strength of the pin
Since there is one pin only, therefore bearing strength of one pin is taken.
∴ Pb = σb × t × d ...(iii)

4. Tearing strength of the single eye
Since there is one hole only, therefore, tearing strength of the single eye with one hole is taken.
∴ Pt = σt (D0 – d) t ...(iv)

The load, which the joint can carry is the least of the above four values.

EXAMPLE 29.10.      A knuckle joint is required to withstand a tensile load of 250 kN. Design
the important parts of the joint. Take τ = 80 MPa, σt = 100 MPa and σb = 200 MPa.

SOLUTION. Given: Load (P) = 250 kN = 250 × 103 N ;  Shearing stress (τ) = 80 MPa = 80 N/mm2;
Tearing stress (σt) = 100 MPa = 100 N/mm2 and bearing stress (σb) = 200 MPa = 200 N/mm2.

Diameter of rods
Let D = Diameter of the rods in mm.

We know that the load (P),

250 × 103 =
2

4
πσ × ×t D  

2 2100 25
4
π= × × = πD D
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∴ D2 =
3250 10

25
×

π  = 3183

or D = 56.4 mm   say   60 mm       Ans.
Diameter of pin

Let d = Diameter of the pin in mm.

We know that the load (P),

250 × 103 = 2 2 22 ( ) 2 80 40
4 4
π π× τ × × = × × × = πd d d

∴ d2 =
3250 10

40
×

π  = 1989.17

or d = 44.6 mm   say   45 mm       Ans.
Thickness of the single eye

Let t = Thickness of the single eye in mm.

We know that the load (P),

250 × 103 = σb × t × d = 200 × t × 45 = 9000 t

∴ t =
3250 10

9000
×

 = 27.8 mm   say   28 mm       Ans.

Outer diameter of the eye
Let D0 = Outer diameter of the eye in mm.

We know that the load (P),

250 × 103 = σt (D0 – d) t = 100 × (D0 – 45) 28 = 2800 (D0 – 45)

∴ D0 =
3250 10

45
2800

× +  = 89.3 + 45 = 134.3 mm       Ans.

29.30. Cotter Joint
A cotter joint is used to connect two rods or bars subjected to tensile or compressive loads. Like

a knuckle joint, a cotter joint may also be
readily connected or disconnected for
adjustments or repairs. The cotter joints are
widely used in various types of machines.

In a cotter joint, one end of one of the
rods is made *spigot and the other end of
the other rod is made a socket. A rectangular
hole is made in the spigot as well as socket.
A cotter which is nothing but a piece of plate
with one edge straight and the other tapered
from 1 in 24 to 1 in 48, is inserted into the
hole and tightened till the socket end comes
in contact with the spigot end as shown in
Fig. 29.23.

* The end of the rod which goes inside is called a spigot and the other end of the other rod which receives
the spigot is called a socket.

Fig. 29.23
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Now consider a cotter joint connecting two rods as shown in Fig. 29.24.
Let P = Load carried by the rods,

D = Diameter of the rods,

D1 = Diameter of the spigot (or internal diameter of the socket),
D2 = External diameter of the socket,

b = Width of the cotter at the axis of the rods,

t = Thickness of the cotter,
σt = Permissible tensile strength in the rods,

τ = Permissible shear stress in the cotter material and

σb = Permissible bearing stress in the cotter material.

Fig. 29.24

As a matter of fact, the above data is calculated for each joint. But sometimes, a few thumb rules
are adopted for the design of the various components of the joint as discussed below:

1. The thickness of the cotter is made one-fourth of the diameter of the rods.

2. The diameter of the spigot (or internal diameter of the socket) is made 1.25 times the diameter
of the rods.

3. The external diameter of the socket is made 2.5 times the diameter of the rods.
Now we shall find out the strength of the cotter joint, in the same way as we used to do in the case

of riveted joints.

1. Strength of the rods
We know that the load on the rod,

P =
2

4t Dπσ × × ...(i)

2. Tearing strength of the spigot
Since the spigot is the weakest at a section on the hole for cotter, therefore tearing strength of the

spigot is taken at this section.

∴ Pt =
2
1 1( )

4t D D t⎡ π ⎤⎛ ⎞σ × −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
...(ii)

3. Shear strength of the cotter
Since the cotter is in double shear, therefore strength of the cotter in double shear is taken.
∴ Ps = 2 × t × b × t ...(iii)

4. Bearing strength of the cotter
Since there is one cotter only, therefore bearing strength of one cotter is taken.
∴ Pb = σb × t × D1 ...(iv)

5. Tearing strength of the socket
Since the socket is the weakest at a section on the hole for cotter, therefore tearing strength of the

socket is taken at this section.
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∴ Pt =
2 2
2 1 2 1( ) ( )

4t D D t D Dπ⎡ ⎤σ − − −⎢ ⎥⎣ ⎦
...(v)

The load which the joint can carry, is the least of the above five values.

EXAMPLE 29.11. Two steel rods are to be joined by means of a cotter joint. Design a suitable
joint, if the rods have to resist a load of 120 kN. Take τ = 70 MPa, σt = 100 MPa and σb =150MPa.

SOLUTION. Given: Load (P) = 120 kN = 120 × 103 N; Permissible shear stress (τ) = 70 MPa = 70
N/mm2; Permissible tearing stress (σt) = 100 MPa = 100 N/mm2 and permissible bearing stress (σb)
= 150 MPa = 150 N/mm2.

Diameter of the rods
Let D = Diameter of the rods in mm.
We know that the load (P)

120 × 103 = 2 2 2100 25
4 4t D D Dπ πσ × × = × × = π

∴ D2 =
3120 10

25
×

π  = 1527.6

or D = 39.1 mm    say    40 mm       Ans.
Diameter of spigot and thickness of cotter

Let D1 = Diameter of the spigot in mm and

t = Thickness of the cotter.
We know that the load (P),

120 × 103 = σb × t × D1 = 150 × t × D1 ...(i)

∴ t × D1 =
3120 10

150
×

 = 800

We also know that the load (P),

120 × 103 =
2 2
1 1 1100 800

4 4t D D t Dπ π⎛ ⎞ ⎛ ⎞σ × − = × −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

...(∵   D1 t = 800)

120 000 = 78.54 D1
2 – 80 000

∴ D1
2 =

120 000 80 000
78.54

+
 = 2546

or D1 = 50 mm       Ans.

and t = 800
50

 = 16 mm    say    20 mm       Ans.

Width of the cotter at the axis of the rod
Let b = Width of the cotter at the axis of the rod in mm.
We know that the load (P),

120 × 103 = 2 × t × b × t = 2 × 70 × b × 20 = 2800 b

∴ b =
3120 10

2800
×

 = 42.9    say    50 mm       Ans.

External diameter of the socket
Let D2 = External diameter of the socket in mm.

We also know that the load (P)

120 × 103 =
2 2
2 1 2 1( ) ( )

4t D D t D Dπ⎡ ⎤σ − − −⎢ ⎥⎣ ⎦
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=
2 2
2 2100 [ (50) ] 20 ( 50)

4
D Dπ⎡ ⎤− − −⎢ ⎥⎣ ⎦

1200 = 0.7854  D2
2 – 1964 – 20 D2 + 1000

     0.7854 D2
2 – 20 D2 – 2164 = 0

Solving this equation as a quadratic equation, we get

D2 =
220 (20) (4 0.7854 2164)
2 0.7854

+ ± + × ×
×  mm

= 66.7 mm   say   70 mm       Ans.

EXERCISE 29.3

1. A vertical load of 20 kN is applied to a bracket at an eccentricity of 200 mm as shown in Fig.
29.25

Fig. 29.25

Determine the maximum resistance offered by any rivet. (Ans. 13 kN)

2. Two rods are to be joined by knuckle joint, to withstand a tensile load of 25 kN. Design the
joint. Take τ = 40 MPa, σt = 56 MPa and σb = 70 MPa

(Ans. D = 24 mm ;  d = 20 mm ;  t = 18 mm; D0 = 45 mm)
3. Two rods are to be joined by a cotter joint. They are subjected to a tensile load of 300 kN.

Design the important points of the joint. Take τ = 40 MPa, σt = 60 MPa and σb = 80 MPa.

(Ans. D = 80 mm ;  D1 = 106 mm ;  t = 36 mm; b = 104 mm)

QUESTIONS

1. What do you understand by the term ‘riveted joint’? Explain the necessity of such a joint.
2. Describe the common types of riveted joints. Illustrate your answer with neat sketches.

3. Describe briefly the various ways, in which a riveted lap joint or butt joint can fail.

4. Explain briefly:
(a) Efficiency of a riveted joint. (b) Failure of riveted joint.

5. Explain the difference between the strength of a riveted joint and efficiency of a riveted joint.
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6. What is an eccentric riveted joint? How does it differ from an ordinary riveted joint? Describe
the procedure for bringing out the efficiency of such a joint.

7. Describe the procedure for designing a knuckle joint.

OBJECTIVE TYPE QUESTIONS

1. When one plate overlaps the other and both the plates are riveted with two rows of rivets, the
joint is known as

(a) single riveted lap joint (b) double riveted lap joint
(c) double riveted single cover butt joint (d) double riveted double cover butt joint

2. In a riveted joint, when the rivets in various rows are opposite to each other, the joint is said to
be

(a) chain riveted (b) zig-zag riveted
(c) diamond riveted (d) none of these

3. In a riveted joint, when the number of rivets decreases from the innermost to the outermost row,
the joint is said to be

(a) chain (b) zig-zag riveted
(c) diamond riveted (d) none of these

4. A riveted joint may fail due to

(a) shearing of rivets (b) crushing of rivets
(c) tearing of the plates (d) all of these.

5. In an eccentric riveted connection, if the magnitude of the load is increased it will effect

(a) linear displacement (b) rotary displacement
(c) both ‘a’ and ‘b’ (d) none of these

ANSWERS

1. (b) 2. (a) 3. (c) 4. (d)

5. (c)
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30.1. Introduction
The welding is a process of joining together

two or more metal parts. It is done by heating the
surfaces, to be connected, to a high temperature
and then adding additional molten metal, which
fuses with and combines the two surfaces. The
molten or fused metal is deposited between the
parent metal parts, which are also fused to a
specified depth. When the deposited fused metal
gets cooled, the parent metal parts are joined by
this new metal.

A number of methods are used for the process
of fusion. But oxyacetylene gas welding and

30C h a p t e r



Chapter 30 : Welded Joints � 723

electric arc welding are most commonly used. The welded joints have proved to be so reliable, that
they are replacing the riveted joints in structural and machine joints.

30.2. Advantages and Disadvantages of Welded Joints
Following are the advantages and disadvantages of welded joints over riveted joints:

Advantages
1. The welded structures are, usually, lighter than riveted structure. This is due to the reason, that

in welding gussets or other connecting components are not used.
2. The welding allows the arrangement of the structure components, in such a way, the joint pro-

vides maximum efficiency (may be 100%). But it is not possible in case of riveted joints.

3. Additions and alterations can be easily made in the existing structures.

4. As the welded structure is smooth in appearance, therefore it looks pleasing. Moreover, its
painting is easier and economical.

5. In welded connections, the tension members are not weakened as in the case of riveted or bolted
joint.

6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal
itself.

7. Sometimes, the members are of such a shape (e.g., circular steel pipes) that they afford diffi-
culty for riveting. But they can be easily welded.

8. The welding provides very rigid joints. This is in line with the modern trend of providing rigid
frames.

9. It is possible to weld any part of a structure at any point. But riveting requires enough clearance.

10. The noise produced in the process of riveting is a source of great nuisance. This is avoided in
the process of welding.

11. The process of welding takes less time than the riveting.

Disadvantages
1. As there is an uneven heating and cooling, during the fabrication, therefore the members may

get distorted or additional stresses may develop.
2. It requires a highly skilled labour and supervision.

3. As the welded joints are rigid joints, therefore they have to be treated as such in their design.

4. Since no provision is kept for expansion and contraction in the frame, therefore there is a pos-
sibility of cracks developing in it.

5. The inspection of welding work is more difficult than riveting work.

30.3. Types of Welded Joints
Though there are many types of welded joints, yet the following three types are important from

the subject point of view:

1. Butt weld point,
2. Fillet weld joint and

3. Plug or slot weld joint.

30.4. Butt Weld Joint
It is a joint, in which the edges of the two members butt (i.e., touch) against each other, the two

members are joined together by welding. It is used to make butt joint or the joint as shown in Fig.
30.1.
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Fig. 30.1

The butt weld is generally made convex on
either sides. This extra area (which is about 10%)
of the plate is called reinforcement. The butt weld
joints are rarely used in engineering structures,
except for T-joints.

30.5. Fillet Weld Joint
It is a joint, in which the two members either

overlap or meet each other at about 90° and the
two members are joined together by welding. It is
of approximately triangular cross-section and is
used for overlap joints and corner joints as shown
in Fig. 30.2. The fillet weld joints are widely used in various types of engineering structures.

Fig. 30.2

30.6. Plug or Slot Weld Joint
Sometimes, sufficient space is not available for providing the necessary length of the fillet weld.

In such cases, a circular hole is made, and a fillet weld is provided along the circumference of the
hole.

Sometimes, a circular hole or slotted hole is made in one of the members, and weld metal is filled
in the hole as shown in Fig. 30.3.

Fig. 30.3
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Fig. 30.4

Fig. 30.5

The minimum diameter of the circular hole (or width of the slotted hole) should not be less than
(thickness of the member in mm + 8 mm) of the member containing the hole; whereas the maximum
diameter should not be more than 2.25 times the thickness of the member.

30.7. Technical Terms
Before entering into the details of the welded joints, let us

discuss some of the technical terms, which are important from
the subject point of view.

1. Legs of the weld
The sides containing the right angle are called legs of the
weld. In Fig. 30.4, the sides AB and BC are called the
legs of the weld.

2. Size of the fillet weld
The minimum length of the leg of a weld is called size of the weld. In Fig. 30.4, the side  is
called size of the fillet weld.

3. Throat thickness
It is the perpendicular distance between the corner and hypotenuse of the weld cross-section as
shown in Fig. 30.4. The thickness of reinforcement is not included, in the throat thickness.
Effective throat thickness =  k × minimum leg length.
The value of k for different angles between fusion faces is given below:

Angle 60° to 90° 91° to 100° 101° to 106° 107° to 113° 114° to 120º

k 0.7 0.65 0.60 0.55 0.50

NOTES: 1. The fillet weld should not be used for connecting parts, whose fusion faces make an angle  less than
60° or more than 120°.

 2. If no angle between fusion faces is given, it is taken as 90° and the value of k is taken as 0.7.

4. Effective length of the weld
The actual length of the weld, which is of specified size and required thickness is called effec-
tive length of the weld. For the design purpose, the effective length of a weld is taken as the
actual length of the weld minus twice the size of the weld.

5. Side fillet weld
The fillet weld, placed parallel to the direction of the force is called a side fillet weld.

In Fig. 30.5, the welds A and C are the side
fillet welds.

6. End fillet weld
The fillet weld placed at the end of the mem-
ber, so that it is perpendicular to the force is
called end fillet weld. In fig. 30.5, the weld B is
the  end fillet weld.

30.8. Strength of a Welded Joint
We have already discussed the various types of welded joints. Now we shall discuss their strengths

(or in other words, forces of resistance), which are determined as given below:
1. Butt weld joints

The strength of a butt weld is specified by its throat thickness, which is taken as the thickness of
the thinner plate. In a butt weld joint, it is assumed that the weld can sustain the full working
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stresses in tension, compression and shear. The permissible stress in a butt weld, calculated on
throat area should not exceed the permissible stresses as given in table 30.1.

Table 30.1

S.No. Nature of stress Permissible stress (σ) in MPa (N/mm2)

1. Axial compression or tension 140

2. Fibre stress in bending 160

3. Shear stress 100

2. Fillet weld joint
The strength of a fillet weld is given by the relation :

P = l · t · σ = A · σ ...(ä A = l · t)

where l = Effective length of the weld,

t = Throat thickness,
σ = Permissible stress in the fillet weld as given in Table 30.1

A = Area of the weld.

3. Plug or slot weld joint
The strength of a plug or slot weld joint is given by the relation:

P = A · σ
where A = Cross-sectional area of the plug or slot,

σ = Permissible stress in the weld as given in Table 30.1.

Note: If a fillet weld is provided, its length is taken to be equal to the average length of the throat of the fillet.
This length is, generally, taken to be equal to the length of the line running parallel to the vertical leg of
the weld, at a distance of one-fourth the leg from it. In case of circular hole, the length of the fillet is

taken as 
2
hd⎛ ⎞π −⎜ ⎟

⎝ ⎠
, where d is the diameter of the hole and h is the height of the vertical leg.

The maximum length of the weld is limited to 10 times of the throat thickness.

EXAMPLE 30.1. A tie bar is welded to a plate as shown in Fig. 30.6.

Find the strength of the weld. Take size of the fillet as 6 mm and working stress of the fillet weld
as 100 MPa.

Fig. 30.6

SOLUTION. Given : Size of the weld (s) = 6 mm and stress of the fillet weld (σ) = 100 MPa = 100
N-mm2.

From the geometry of the weld, we find that length of the fillet weld,
l = 100 + 100 + 100 = 300 mm

and effective throat thickness, t = 0.7 s = 0.7 × 6 = 4.2 mm

∴ Strength of the weld, P = l · t · σ = 300 × 4.2 × 100 = 126 000 N = 126 kN        Ans.
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EXAMPLE 30.2. A welded lap joint is provided to connect two tie bars 150 mm × 10 mm as
shown in Fig. 30.7.

Fig. 30.7

The working stress in the tie bar is 120 MPa. Investigate the design, if the size of the fillet is
12 mm. Take the working stress in the end fillet as 100 MPa and that in the diagonal fillet as
70 MPa.

SOLUTION. Given : Size of the bar = 150 mm × 10 mm ;  Working stress in the bar = 120 MPa =
120 N-mm2 ;  Size of the weld (s) = 12 mm ;  Working stress in the end fillet (σe) = 100 MPa = 100
N-mm2 and working stress in the diagonal fillet (σd) = 70 MPa = 70 N/mm2.

We know that cross-sectional area of the bar,
A = 150 × 10 = 1500 mm2

∴ Strength of the bar = 1500 × 120 = 180 000 N = 180 kN ...(i)
We also know that effective throat thickness,

t = 0.7 s = 0.7 × 12 = 8.4 mm
From the geometry of the weld, we find that total length of the end fillets

le = 50 + 50 = 100 mm
and total length of the diagonal fillets,

ld = 2 24 (50) (50)× =  = 282.8 mm

∴ Strength of the end fillet,
Pe = le · t · σe = 100 × 8.4 × 100 = 84 000 N = 84 kN

and strength of the diagonal fillet,
Pd = ld · t · σd = 282.8 × 8.4 × 70 = 166 300 N = 166.3 kN

∴ Total strength of the fillet weld,
P = Pe + Pd = 84 + 166.3 = 250.3 kN

Since the strength of the weld is more than the strength of the bar, therefore the joint is safe.

EXAMPLE 30.3. A 100 mm × 10 mm plate is to be welded to another plate 150 mm × 10 mm
by fillet weld of 6 mm size on three sides as shown in Fig. 30.8.

Fig. 30.8

Determine the necessary overlap of the plate. Take allowable stresses in the plate as 140MPa
and  allowable stress in  the weld as 100 MPa.
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SOLUTION. Given : Size of smaller plate = 100 mm × 10 mm ;  Size of larger plate = 150 mm × 10
mm ;  Size of fillet weld (s) = 6 mm ; Allowable stress in plate = 140 MPa = 140 N/mm2 and allowable
stress in the weld (σ) = 100 MPa = 100 N/mm2

Let x = Necessary overlap of the plate in mm.

We know that strength of the plate (P)

= (100 × 10) × 140 = 140 000 N
We also know that total length of the weld,

l = (2x + 100) mm

and thickness of the weld,
t = 0.7 s = 0.7 × 6 = 4.2 mm

∴ *Strength of the fillet weld

= l · t · σ = (2x + 100) × 4.2 × 100 = 840x + 42 000
Equating strength of the plate and strength of the weld,

140 000 = 840x + 42 000

or x =
140000 42000

840
−

 = 116.7 mm    say    120 mm        Ans.

EXAMPLE 30.4. A tie bar (A) = 120 mm × 10 mm, welded to another tie bar (B) = 120 mm ×
15 mm, is subjected to a load of 120 kN as shown in Fig. 30.9.

Fig. 30.9

Determine the sizes of the end fillets, such that the stresses in both the fillets are the same. Take
allowable stresses in the weld as 100 MPa.

SOLUTION.  Given: Size of tie bar A = 120 mm × 10 mm ;  Size of tie bar B = 120 mm × 15 mm ;
Load on the plates (P) = 120 kN = 120 × 103 N and allowable stress in the weld (σ) = 100 MPa = 100
N/mm2.

We know that for equal stresses in the welds A and B, the loads shared by fillet welds should be
proportional to their effective throat thickness or size of the welds.

Let s = Size of the weld (A) in the upper plate (i.e., 10 mm thick plate) in mm

∴ Effective throat thickness of weld A,

tA = 0.7 s mm
and effective throat thickness of weld B,

tB = 0.7 s × 1.5 = 1.05 s mm

We know that strength of weld A,
PA = l · tA · σ = 120 × 0.7 s × 100 = 8400 s

Similarly, PB = l · tB · σ = 120 × 1.05 s × 100 = 12 600 s

∴ Total strength, P = PA + PB = 8400 s + 12 600 s  = 12 000 s
Equating the force in the joint to the total strength of the weld,

120 × 103 = 21 000 s

* Strength of the fillet weld is taken to be equal to the strength of the smaller plate.
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∴ s =
3120 10

21000
×

= 5.7 mm    say    6 mm        Ans.

EXAMPLE 30.5. A 100 mm × 12 mm plate is connected to another plate by fillet welds around
the end of the bar and also inside a machined slot as shown in Fig. 30.10. All the dimensions are
in mm.

Fig. 30.10

Determine the size of the weld, if the joint is subjected to a pull of 250 kN. Take working
stresses for the transverse welds and longitudinal welds as 100 MPa and 80 MPa respectively.

SOLUTION. Given : Plate size = 100 mm × 12 mm ;  Pull on the joint (P) = 250 kN = 250 × 103 N;
Working stress in transverse weld (σt) = 100 MPa = 100 N/mm2 and working stress in longitudinal
welds (σl) = 80 N/mm2.

Let s = Size of the welds in mm.

∴ Effective throat thickness of the welds,

t = 0.7 s mm
From the geometry of the welds, we find that total length of transverse weld,

lt = (2 × 200) + (2 × 50) = 500 mm

and total length of longitudinal welds
ll = 100 + (2 × 30) = 160 mm

We know that strength of the transverse welds,

Pt = lt · t · σt = 500 × 0.7 s × 100 = 35 000 s
Similarly, Pl = ll · t · σl = 160 × 0.7 s × 80 = 8960 s

∴ Total strength of the welds

P = Pt + Pl = 35 000 s + 8960 s = 43 960 s
Equating the pull in lthe joint to the strength of the welds

250 × 103 = 43 960 s

∴ s =
3250 10

43960
×

 = 5.6     say     6 mm        Ans.

EXERCISE 30.1

1. A tie bar is welded to a gusset plate by two side welds of 120 mm length and an end fillet weld
of 100 mm length. Find the safe load, which the tie bar can carry, if size of the weld is 7 mm.
Take working stress of the weld as 100 MPa. [Ans. 166.6 kN]

2. A tie bar 100 mm × 10 mm thick, carrying a load of 144 kN weld is to be connected to another
plate with 6 mm fillet weld on all the four sides as shown in Fig. 30.11.
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Fig. 30.11

Find the necessary overlap of the joint, if allowable stresses in the end fillet and side fillet are
110 MPa and 80 MPa respectively.

[Ans. 75 mm]
3. A tie bar 100 mm × 10 mm is connected to another by fillet welds as shown in Fig. 30.12.

Fig. 30.12

Find the size of the weld, if the permissible stress in the weld is 100 MPa. [Ans. 6 mm]

4. A tie bar, carrying a load of 105 kN is connected to a plate with 6 mm fillet welds provided on
two parallel sides only. Determine, the minimum lap of the joint, if the permissible stress in the
weld is 100 MPa. [Ans. 125 mm]

30.9. Unsymmetrical Section Subjected to an Axial Load
Sometimes, an unsymmetrical section (say angle section, T-section etc.) subjected to an axial

load is welded to a plate as shown in Fig. 30.13.

Fig. 30.13

In such cases, the load is applied along the neutral axis of the unsymmetrical section; in order to
avoid the effect of eccentricity. A little consideration will show, that whenever an unsymmetrical
section is welded to a plate, the fillet weld is applied in such a way that the centre of gravity of the
weld lies on the line of action of the load. Or in other words, the centre of gravity of the weld coincides
with the neutral axis of the section.
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Let P = Load acting on the section,
σ = Working stress of the weld,

 x1, x2 = Length of the top and bottom fillet welds respectively,

a, b = Distance between the top and bottom edges of the section
respectively from the neutral axis, and

s = Size of the weld.

∴ Effective throat thickness of the weld,

 t = 0.7 s
We know that the strength of the top weld,

P1 = x1 · t · σ = x1 × 0.7 s × σ = 0.7 x1 s · σ
Similarly strength of the bottom weld,

P2 = 0.7 x2 · s · σ
Since the load acting on the section is equal to the total strength of the weld, therefore

P = 0.7 x1 · s · σ + 0.7 x2 · s · σ
= 0.7 s · σ (x1 + x2)

Now equating the moments of the forces of resistance about the bottom,

P1 (a + b) = P · b

∴ P1 =
·

( )
P b
a b+

Substituting the value of P1 = 0.7 x1 s · σ in the above equation,

0.7 x1 s · σ =
·

( )
P b
a b+

∴ x1 =
· ·

0.7 · ( ) · ( )
P b P b

s a b t a b
=

σ + σ +

Similarly, x2 =
· ·

0.7 · ( ) · ( )
P a P a

s a b t a b
=

σ + σ +
where t is the effective throat thickness and equal to 0.7 s.
NOTE : Sometimes, the top edge of the angle section is termed as heel, whereas the bottom edge as toe.

EXAMPLE 30.6. A tie beam of a roof truss consists of an angle 90 mm × 90 mm × 8 mm is
subjected to a load of 120 kN. The tie is connected to the gusset plate by welding. Design the
joint, if the size of the weld is 6 mm. Take maximum allowable shear stress in the weld as 100
MPa. The distance between the neutral axis and the edges of the angle section are 28.7 mm and
61.3 mm respectively.

SOLUTION. Given : Size of the tie member = 90 mm × 90 mm × 8 mm ;  Load (P) = 120 kN = 120
× 103 N ;  Size of the weld (s) = 6 mm ; Allowable shear stress in the weld (σ) = 100 MPa = 100 N/
mm2; Distance between the neutral axis and top edge (a) = 28.7 mm and distance between the neutral
axis and bottom edge (b) = 61.3 mm.
Length of the fillet weld at the top of the angle iron

We know that effective throat thickness,

t = 0.7 s = 0.7 × 6 = 4.2 mm
∴ Length of the fillet weld at the top of the angle iron,

x1 =
3· (120 10 ) 61.3

· ( ) 4.2 100 (28.7 61.3)
P b

t a b
× ×=

σ + × × +  = 195 mm
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Let us provide length of the weld equal to 195 + (2 × 6) = 207 mm    say    210 mm.        Ans.
Length of the fillet weld at the bottom of the angle iron

We also know that length of the fillet at the bottom of the angle iron,

x2 =
3· (120 10 ) 28.7

· ( ) 4.2 100 (28.7 61.3)
P b

t a b
× ×=

σ + × × +  = 91 mm

Let us provide length of the weld equal to 91 + (2 × 6) = 103 mm    say    105 mm.        Ans.

EXAMPLE 30.7.  A tie bar in a truss consisting of a double angle section 100 mm × 65 mm ×
10 mm is subjected to a load of 250 kN and is welded to a gusset plate as shown in Fig. 30.14.

Fig. 30.14

Design the joint with 8 mm fillet weld, if the permissible stress in the weld is 100 MPa. Take the
distances between the neutral axis and the edges of the angle section as 33.7 mm and 66.3 mm
respectively.

SOLUTION. Given : Size of angle section = 100 mm × 65 mm × 10 mm ;  Total load = 250 kN =
250 × 103 N ;  Size of weld (s) = 8 mm ;  Permissible stress in the weld (σ) = 100 MPa = 100 N/mm2;
Distance between the neutral axis and top edge (a) = 33.7 mm and distance between the neutral axis
bottom edge (b) = 66.3 mm.
Length of the top fillet weld

We know that effective throat thickness,

t = 0.7 s = 0.7 × 8 = 5.6 mm
Since there are two angle sections, therefore load on each angle section

=
3250 10

2
×

 = 125 × 103 = 125 000 N

We know that strength of transverse weld AB

= l · t · σ = 100 × 5.6 × 100 = 56 000 N

∴ Force of rsistance of the top and bottom fillet welds,

P = 125 00 – 56 000 = 69 000 N
and length of the top fillet weld,

x1 =
· 69000 66.3

· ( ) 5.6 100 (33.7 66.3)
P b

t a b
×=

σ + × × +  = 81.7 mm

Let us provide length of the weld equal to 81.7 + (2 × 5.6) = 92.9 mm    say     95 mm.        Ans.
Length of the bottom fillet weld

We also know that length of the bottom fillet weld,

x2 =
· 69000 33.7

· ( ) 5.6 100 (33.7 66.3)
P a

t a b
×=

σ + × × +  = 41.5 mm
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Let us provide length of the weld equal to 41.5 + (2 × 5.6) = 52.7    say    55 mm.        Ans.

30.10. Eccentric Welded Joints
In the previous articles, we have discussed the cases, where the weld has to resist only the linear

displacement of the plate or member connected. But, sometimes, a weld may have to offer resistance
to bending or torsion in addition to the linear displacement of the plate. Such welded connections are
called eccentric welded connections. Though there are many types of welded connections, yet the
following two are important from the subject point of view:

1. Eccentric welded joint subjected to moment, and

2. Eccentric welded joint subjected to torsion.

30.11. Eccentric Welded Joint Subjected to Moment
We have already discussed that if load or force acting on a welded joint, does not pass through

the centroid of the weld lines, it will cause some bending moment to the weld joint, in addition to the
direct load.

Now consider an eccentric welded connection for a bracket carrying a load  as shown in Fig.
30.15. In this case, the moment (due to load ) is acting in a plane perpendicular to that of welds. A
little consideration will show that the weld has to offer resistance to the following two types of
displacements:

(a) Linear displacement, and (b) Horizontal displacement.

Fig. 30.15

(a) Resistance against linear displacement
This resistance (or stress) is assumed to be uniform in all the weld lines and is given by the

relation:

μσ1 = ·
P

t l

where l = Effective throat thickness and

l = Length of the total weld line.
(b) Resistance against horizontal displacement

The eccentric load will cause a moment,

M = P · e
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where e = Eccentricity of the load.
This moment will cause tension in the weld at A and compression in the weld at B. The stress due

to this moment is given by the relation:

σ2 =
· ·P e yM y

I I
× =

where I = Moment of inertia os the weld lines and

y = Distance of the extreme fibre of angle (or in other words weld
lines) for neutral axis of the weld.

Now the resultant stress will be given by the relation:

σR = 2 2
1 2( ) ( )σ + σ

EXAMPLE 30.8. A bracket is welded to a column carrying a load of 150 kN at an eccentricity
of 75 mm as shown in Fig. 30.16.

Fig. 30.16

Find the maximum stress developed in the weld per mm length.

SOLUTION. Given : Load (P) = 150 kN = 150 × 103 N ;  Eccentricity (e) = 75 mm and depth of the
bracket = 200 mm.

Let t = Effective throat thickness of the weld in mm.

Since the bracket is welded to the column at its top and bottom, therefore total length of the fillet
weld,

l = 2 × 150 = 300 mm
and distance of the weld from the neutral axis of the weld,

y =
200

2
 = 100 mm

We know that resistance of the weld against linear motion,

R1 =
3150 10 500

· 300
P

t l t t
×= =

×  N/mm2

∴ Linear stress per mm length,

σ1 = R1 × t = 
500 t

t
×  = 500 N/mm

We know that moment due to eccentricity of the load,
M = P · e = (150 × 103) × 75 = 11 250 × 103 N/mm
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and moment of inertia of both the welds about x-x axis (neglecting moments of inertia of both the
welds about their own centres of gravity),

l = 2 × (150 × t) × (100)2 = 3 × 106 t mm4

∴ Resistance of the weld against horizontal motion,

*R2 =
3

6

11250 10

3 10

M y
I t

×= =
×

 × 100 N/mm2

=
375

t
N/mm2

and horizontal stress per mm length,

σ2 = R2 × t = 
375 t

t
×  = 375 N/mm

∴ Resultant stress per mm length,

σR = 2 2 2 2
1 2( ) ( ) (500) (375)σ + σ = +  = 625 N/mm        Ans.

EXAMPLE 30.9.   A bracket consisting of an I-section is connected to the flange of a vertical
column as shown in Fig. 30.17.

Fig. 30.17

The bracket carries a load of 100 kN at an eccentricity of 150 mm. Find the size of the weld
required for the bracket, if the permissible stress in the weld is 100 MPa.

SOLUTION. given : Load (P) = 100 kN = 100 × 103 N ;  Eccentricity (e) = 150 mm ;  Permissible
stress in the weld (σ) = 100 MPa = 100 MPa = 100 N/mm2 ;  Total length of weld lines (l) = 2 (150 +
140) = 580 mm and depth of the bracket = 200 mm.

Let s = Size of the weld in mm.
We know that effective depth of the weld,

t = 0.7 s

* The value of R2 may also be found out by equating the moment due to load and moment due to resistance
about the bottom weld i.e.,

11 250 × 103 = R2 × 150 × 200 × t

R2 =
311250 10 375

150 200 t t
× =

× ×
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and distance of the horizontal welds from the neutral sxis of the total weld,

y =
200

2
 = 100 mm

∴ Resistance of the weld against linear motion,

R1 =
3100 10 172.4

· 580
×= =

×
P

t l t t N/mm2

and linear stress per mm length,

σ1 = R1 × t = 
172.4

t
t

×  = 172.4 N/mm

We know tha moment due to load,
M = P · e = (100 × 103) × 150 = 15 × 106 N/mm

and moment of inertia of the welds about x-x axis (neglecting moments of inertia of the horizontal
welds about their own centres of gravity),

I =
32 (150)

12
t ×

 + 2t × 140 × (100)2 = 3362.5 × 103 t mm4

∴ Resistance of the weld against horizontal motion,

R2 =
6

3

15 10 446.1100
3362.5 10

M y
I tt

×× = × =
×

 N/mm2

and horizontal stress per mm length,

σ2 = R2 × t = 
446.1 t

t
×  = 446.1 N/mm

∴ Resultant stress per mm length,

σR = 2 2 2 2
1 2( ) ( ) (172.4) (446.1)σ + σ = +  = 478.3 N/mm

and strength of the weld per mm length

= t · σ = 0.7 s × 100 = 70 s
Now equating the strength of the weld per mm length to the resultant stress per mm length of the

weld,

70 s = 478.3

or s =
478.3

70
 = 6.8    say    7 mm        Ans.

30.12. Eccentric Welded Joint Subjected to Torsion
In the previous article, we have discussed the eccentric welded joint subjected to bending moment.

But in this article, we shall discuss the eccentric welded joint subjected to torsion also. A bracket
connection is an example of this type of connection. Now consider an eccentric welded joint carrying
a load as shown in Fig. 30.18. In this case, the moment (due to load P) is acting in a plane containing
the welds. A little consideration will show that the weld has to offer resistance to the following two
types of displacements:
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Fig. 30.18

(a) Linear displacement and     (b)   Rotary displacement.

(a) Resistance against linear displacement
This resistance (or stress) is assumed to be uniform in all the weld lines and is equal to

Rl = ·
P

t l

where  t = Effective throat thickness and

l = Length of the total weld line.
(b) Resistance against rotary displacement

Following two assumptions are made for finding out the resistance against the rotary displacement:

(i) The force of resistance at any point in a weld is proportional to its distance from the centroid of
the weld lines.

(ii) The direction of the force of resistance is perpendicular to the line joining the point and the
centroid of the weld lines.

Now consider an eccentric welded connection as shown in Fig. 30.18.

Le P = Load acting on the connection,
e = Eccentricity of the load and

r = Distance between the centroid of the weld lines and the point,
where the resistance is required to be found out.

∴ Twisting moment, T = P · e
and resistance against twisting or rotary displacement,

or RT =
· ·

XX YY

P e rT r
J I I

× =
+

where J is the polar moment of inertia and is equal to IXX + IYY.

The direction of this force of resistance will be at right angles to the line joining the centroid of
weld lines and the point, where this resistance is required to be found out. This force is resolved
horizontally as well as vertically. The resultant force against rotary displacement will be given by the
relation:

R = 2 2( ) ( )H VΣ + Σ
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where ∑H = Horizontal component of P and
∑V = R1 = Vertical component of P.

The maximum force of resistance will occur at C and D because these points are at the farthest
distance from the centroid of the weld lines.
NOTES: Generally, bracket is welded on the sides i.e., AB, AC and BD as shown in Fig. 30.18.

1. The centre of gravity of such a welded system from the face CD,

x =
22

2
( 2 ) ( ) 2

bt b t d b
b bd

t b t d b d

⎛ ⎞× × + × ×⎜ ⎟ +⎝ ⎠ =
× + × +

∴   Eccentricity,            e   =  a + x
2. In such a case, the moment of inertia about x-x axis,

IXX =
2 3

2
4 12

d td
bt

⎛ ⎞ ⎛ ⎞
× × +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

    and IYY =
3 2

22
2 · ( )

12 2
t b bbt x t d b x

× ⎛ ⎞+ − + −⎜ ⎟
⎝ ⎠

EXAMPLE 30.10. Figure 30.19 shows an eccentric welded connection with 8 mm fillet welds.

Fig. 30.19

Calculate the maximum load (P), which the bracket can carry safely. Maximum permissible
stress in the weld is 100 MPa.

SOLUTION. Given : Size of weld (s) = 8 mm ;  Maximum stress in the weld (s) = 100 MPa = 100
N/mm2;  Width of the weld (b) = 100 mm and depth of the weld (d) = 200 mm.

We know that effective depth of the weld

t = 0.7 s = 0.7 × 8 = 5.6 mm

∴ Resistance of the weld against linear motion,

Rl =
6446.4 10

· 400 5.6
P P P

t l
−= = ×

×  N/mm2

and linear stress per mm length,

σ1 = R1 × t = (446.4 × 10–6 P) × 5.6 = 2.5 × 10–3 P  N/mm
We know that distance between the centre of gravity of the weld and D,

x =
2 2(100) (100 200)

2 (2 100) 200
b bd

b d
+ + ×=
+ × +  = 75 mm

∴ Eccentricity, e = 100 + 75 = 175 mm
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We also know that moment of inertia of the weld about x-x axis

IXX =
2 2

2
4 12

d tdbt
⎡ ⎤ ⎡ ⎤

× +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

=
32 5.6 (200)(200)

2 100 5.6
4 12

⎡ ⎤⎡ ⎤ ×× × × = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

mm4

= (11.2 × 106) + (3.73 × 106) = 14.93 × 106 mm4

Similarly, IYY =
23

22 2 ( )
12 2
tb bbt x td b x

⎡ ⎤⎡ ⎤ ⎛ ⎞× + − + −⎢ ⎥⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦
mm4

=
235.6 (100) 1002 2 100 5.6 75

12 2

⎡⎡ ⎤× ⎛ ⎞× + × × −⎢⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥ ⎢⎣ ⎦ ⎣

25.6 200 (100 75) ⎤+ × −
⎦ mm2

= (0.93 × 106) + [(0.7 × 106) + (0.7 × 106)] = 2.33 × 106 mm4

From the geometry of the weld, we find that maximum stress
will occur at C or D, because these points are at the farthest distance
from the centre of gravity (G) of the weld. We also find that the
distance GC.

r = 2 2(100) (75)+  mm

= 125 mm

∴ cos θ =
5 0.6

125
7 =

and sin θ =
100 0.8
125

=

∴ Resistance of the weld against rotation,

RT = 6 6

· · 175 125

(14.93 10 ) (2.33 10 )XX YY

P e e P
I I

× ×=
+ × + ×

= 1267.4 × 10–6 P   N/mm2

and rotational stress per mm length

= RT × t = 1267.4 × 10–6 P × 5.6 = 7097.4 × 10–6 P   N/mm

∴ Horizontal component of this stress,
∑H = 7097.4 × 10–6 P sin θ = (7097.4 × 10–6 P) × 0.6    N/mm

= 4.26 × 10–3 P   N/mm

and vertical component of this stress
= 7097.4 × 10–6 P sin θ = (7097.4 × 10–6 P) × 0.8   N/mm
= 5.68 × 10–3 P   N/mm

∴ Total vertical stress,
∑V = (2.5 × 10–3 P) + (5.68 × 10–3 P) = 8.18 × 10–3 P   N/mm

and resultant stress per mm length,

R = 2 2H VΣ + Σ

Fig. 30.20
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= 3 2 3 2(4.26 10 ) (8.18 10 )P p− −× + × N/mm

= 9.22 × 10–3  P   N/mm

We know that strength of the weld per mm length

= t · σ = 5.6 × 100 = 560  N/mm
Now equating strength of the weld per mm length of the resultant force per mm length of the weld,

560 = 9.22 × 10–3 P

∴ P = 3
560

9.22 10−×
 = 60.7 × 103 N = 60.7 kN        Ans.

EXERCISE 30.2

1. An unequal angle bracket is welded to a column by 10 mm fillet welds as shown in Fig. 30.21.

Fig. 30.21

Determine the maximum eccentricity, at which a load of 120 kN can be placed on the bracket,
if the stress in the weld is limited to 80 MPa. [Ans. 100 mm]

2. An angle iron 80 mm  80 mm  8 mm is to be connected to a plate by 5 mm weld. Design the joint,
if the angle iron is subjected to tensile load of 110 kN. The permissible stress in the weld is 100
MPa. The distance of the edges of the angle section from the neutral axis are 22.7 mm and 57.3
mm respectively. [Ans. 200 mm ;  90 mm]

3. A bracket carrying a load of 40 kN is welded to a column by four fillet welds as shown in Fig.
30.22.

Fig. 30.22

Find the maximum stress per mm length of the weld, so that maximum stress induced in the
weld does not exceed 80 MPa. [Ans. 333 N/mm]
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QUESTIONS

1. Give the advantages and disadvantages of welded joints.

2. Explain the various types of welded joints.
3. Explain the difference between

(a) Size of the fillet weld and throat thickness

(b) Legs of the weld and length of the weld
(c) Side fillet weld and end fillet weld.

4. What do you understand by the term strength of a welded joint? Give the relation for the same.

5. How will you find out the length of the weld lines, when an unsymmetrical section subjected to
an axial load is welded to a plate?

6. What is meant by eccentric welded joint?

7. Derive relation for the resultant stress in the weld lines of an eccentric welded connection, when
it is subjected to a

(i) moment and (ii) torsion.

OBJECTIVE TYPE QUESTIONS

1. The effective thickness of a fillet weld is

(a) 0.5 s (b) 0.6 s (c) 0.7 s (d) 0.8 s

2. In case of slot weld joint, the shape of the hole is
(a) circular (b) square (c) rectangular (d) any one of these

3. The strength of a welded joint depends upon

(a) length of weld (b) size of weld (c) stress of the weld (d) all of these
4. The strength of a welded joint is equal to

(a) l t σ (b) lt
σ

(c)
l
t
σ

(d) t
l
σ

ANSWERS

1. (c) 2. (d) 3. (d) 4. (a)
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31.1. Introduction
In engineering field, we daily come across

vessels of cylindrical and spherical shapes
containing fluids such as tanks, boilers,
compressed air receivers etc. Generally, the walls
of such vessels are very thin as compared to their
diameters. These vessels, when empty, are
subjected to atmospheric pressure internally as
well as externally. In such a case, the resultant
pressure on the walls of the shell is zero. But
whenever a vessel is subjected to internal pressure
(due to steam, compressed air etc.) its walls are
subjected to tensile stresses.

In general, if the thickness of the wall of a
shell is less than 1/10th to 1/15th of its diameter,
it is known as a thin shell.

31C h a p t e r
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31.2. Failure of a Thin Cylindrical Shell due to an Internal Pressure
We have already discussed in the last article that whenever a cylindrical shell is subjected to an

internal pressure, its walls are subjected to tensile stresses.
It will be interesting to know that if these stresses exceed the permissible limit, the cylinder is

likely to fail in any one of the following two ways as shown in Fig. 31.1 (a) and (b).

(a) Split into two troughs. (b) Split into two cylinders.
Fig. 31.1

1. It may split up into two troughs and

2. It may split up into two cylinders.

31.3. Stresses in a Thin Cylindrical Shell
We have already discussed that whenever a cylindrical shell is subjected to an internal pressure,

its walls are subjected to tensile stresses. A little consideration will show that the walls of the cylindri-
cal shell will be subjected to the following two types of tensile stresses:

1. Circumferential stress and

2. Longitudinal stress.

In case of thin shells, the stresses are assumed to be uniformly distributed throughout the wall
thickness. However, in case of thick shells, the stresses are no longer uniformly distributed and the
problem becomes complex. In this chapter, we shall discuss the stress in thin shells only.
NOTE: The above theory also holds good, when the shell is subjected to compressive stress.

31.4. Circumferential Stress

Fig. 31.2

Consider a thin cylindrical shell subjected to an internal pressure as shown in Fig. 31.2(a) and
(b). We know that as a result of the internal pressure, the cylinder has a tendency to split up into two
troughs as shown in the figure.

Let l = Length of the shell,
d = Diameter of the shell,
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t = Thickness of the shell and
p = Intensity of internal pressure.

Total pressure along the diameter (say X-X axis) of the shell,

P = Intensity of internal pressure × Area = p  ×  d × l

and circumferential stress in the shell,

σc =
Total pressure

Resisting section
 = 2 2

pdl pd
tl t

= ...(ä  of two sections)

This is a tensile stress across the X-X. It is also known as hoop stress.
NOTE. If η is the efficiency of the riveted joints of the shell, then stress,

σc =
2
pd
t η

31.5. Longitudinal Stress
Consider the same cylindrical shell, subjected to the same internal pressure as shown in

Fig. 31.3 (a) and (b). We know that as a result of the internal pressure, the cylinder also has a tendency
to split into two pieces as shown in the figure.

Let p = Intensity of internal pressure,
l = Length of the shell,

d = Diameter of the shell and

t = Thickness of the shell.

Fig. 31.3. Longitudinal stress.

Total pressure along its length (say Y-Y axis) of the shell

P = Intensity of internal pressure × Area

=
2( )

4
p dπ×

and longitudinal stress in the shell,

σl =

2( )Total pressure 4
Resisting section 4

p d pd
dt t

π×
= =

π
This is also a tensile stress across the section Y-Y. It may be noted that the longitudinal stress is

half of the circumferential or hoop stress.
NOTE. If η is the efficiency of the riveted joints of the shell, then the stress,

σl =
4
pd
t η
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EXAMPLE 31.1.  A stream boiler of 800 mm diameter is made up of 10 mm thick plates. If the
boiler is subjected to an internal pressure of 2.5 MPa, find the circumferential and longitudinal
stresses induced in the boiler plates.

SOLUTION. Given : Diameter of boiler (d) = 800 mm ;  Thickness of plates (t) = 10 mm and
internal pressure (p) = 2.5 MPa = 2.5 N/mm2.

Circumferential stress induced in the boiler plates
We know that circumferential stress induced in the boiler plates,

σc =
2.5 800

2 2 10
pd

t
×=
×  = 100 N/mm2 = 100 MPa        Ans.

Longitudinal stress induced in the boiler plates
We also know that longitudinal stress induced in the boiler plates,

σl =
2.5 800

4 4 10
pd

t
×=
×  = 50 N/mm2 = 50 MPa        Ans.

EXAMPLE 31.2. A cylindrical shell of 1.3 m diameter is made up of 18 mm thick plates. Find
the circumferential and longitudinal stress in the plates, if the boiler is subjected to an internal
pressure of 2.4 MPa. Take efficiency of the joints as 70%.

SOLUTION. Given: Diameter of shell (d) = 1.3 m = 1.3 × 103 mm ;  Thickness of plates (t) = 18
mm; Internal pressure (p) = 2.4 MPa = 2.4 N/mm2 and efficiency (η) = 70% = 0.7.
Circumferential stress

We know that circumferential stress,

σc =
32.4 (1.3 10 )

2 2 18 0.7
pd
t

× ×=
η × ×  = 124 N/mm2 = 124 MPa        Ans.

Longitudinal stress
We also know that longitudinal stress,

σl =
32.4 (1.3 10 )

4 4 18 0.7
pd
t

× ×=
η × ×  = 62 N/mm2 = 62 MPa        Ans.

EXAMPLE 31.3. A gas cylinder of internal diameter 40 mm is 5 mm thick. If the tensile
stress in the material is not to exceed 30 MPa, find the maximum pressure which can be allowed
in the cylinder.

SOLUTION. Given: Diameter of cylinder (d) = 40 mm ; Thickness of plates (t) = 5 mm and tensile
stress (σc) = 30 MPa = 30 N/mm2.

Let p = Maximum pressure which can be allowed in the cylinder.
We know that circumferential stress (σc),

30 =
40

2 2 5
ppd

t
×=
×  = 4p

∴ p =
30
4

 = 7.5 N/mm2 = 7.5 MPa        Ans.

NOTE:1. Since the circumferential stress (σc) is double the longitudinal stress (σl), therefore in order to find the
maximum pressure the given stress should be taken as circumferential stress.

2. If however, we take the given tensile stress of 30 N/mm2 as the longitudinal stress, then

30 =
40

4 4 5
ppd

t
×=
×  = 2p
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∴ p =
30
4

 = 15 N/mm2 = 15 MPa

Now we shall provide a pressure of 7.5 MPa i.e. (Lesser of the two values) obtained by using the tensile
stress as circumferential stress and longitudinal stress.

31.6. Design of Thin Cylindrical Shells
Designing of thin cylindrical shell involves calculating the thickness (t) of a cylindrical shell for

the given length (l), diameter (d), intensity of maximum internal pressure (p) and circumferential
stress (σc). The required thickness of the shell is calculated from the relation.

  t =  
2 c

pd
σ ... (See Article 31.4)

If the thickness so obtained, is not a round figure, then next higher value is provided.
NOTE: The thickness obtained from the longitudinal stress will be half of the thickness obtained from circum-

ferential stress. Thus, it should not be accepted.

EXAMPLE 31.4. A thin cylindrical shell of 400 mm diameter is to be designed for an internal
pressure of 2.4 MPa. Find the suitable thickness of the shell, if the allowable circumferential
stress is 50 MPa.

SOLUTION. Given: Diameter of shell (d) = 400 mm ;  Internal pressure (p) = 2.4 MPa = 2.4 N/mm2

and circumferential stress (σc) = 50 MPa = 50 N/mm2.
We know that thickness of the shell,

t =
2.4 400

2 2 50c

pd ×=
σ ×  = 9.6 mm    say    10 mm        Ans.

EXAMPLE 31.5.  A cylindrical shell of 500 mm diameter is required to withstand an internal
pressure of 4 MPa. Find the minimum thickness of the shell, if maximum tensile strength in the
plate material is 400 MPa and efficiency of the joints is 65%. Take factor of safety as 5.

SOLUTION. Given: Diameter of shell (d) = 500 mm ; Internal pressure (p) = 4 MPa = 4 N/mm2;
Tensile strength = 400 MPa = 400 N/mm2 ; Efficiency (η) = 65% = 0.65 and factor of safety = 5.

We know that allowable tensile stress (i.e., circumferential stress),

σc =
Tensile strength 400
Factor of safety 5

=  = 80 N/mm2

and minimum thickness of shell,

t =
4 500

2 2 80 0.65c

pd ×=
σ η × ×  = 19.2 mm    say    20 mm        Ans.

31.7. Change in Dimensions of a Thin Cylindrical Shell due to an
Internal Pressure

We have already discussed in the chapter on Elastic Constants that lateral strain is always accom-
panied by a linear strain. It is thus obvious that in a thin cylindrical shell subjected to an internal
pressure, its walls will also be subjected to lateral strain. The effect of the lateral strains is to cause
some change in the dimensions (i.e., length and diameter) of the shell. Now consider a thin cylindrical
shell subjected to an internal pressure.

Let l = Length of the shell,

d = Diameter of the shell,

t = Thickness of the shell and
p = Intensity of the internal pressure.
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We know that the circumferential stress,

σc =
2
pd

t

and longitudinal stress, σl =
4
pd

t
Now let δd = Change in diameter of the shell,

δl = Change in the length of the shell and

1
m

= Poisson’s ratio.

Now changes in diameter and length may be found out from the above equations, as usual (i.e.,
by multiplying the strain and the corresponding linear dimension).

∴ δd = ε1 · d = 
21 11 1

2 2 2 2
pd pd

d
tE m tE m

⎛ ⎞ ⎛ ⎞− × = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and δl = ε2 · l = 
1 1 1 1

2 2 2 2
pd pdl

l
tE m tE m

⎛ ⎞ ⎛ ⎞− × = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

EXAMPLE 31.6.   A cylindrical thin drum 800 mm in diameter and 4 m long is made of 10 mm
thick plates. If the drum is subjected to an internal pressure of 2.5 MPa, determine its changes in
diameter and length. Take E as 200 GPa and Poisson’s ratio as 0.25.

SOLUTION. Given: Diameter of drum (d) = 800 mm ; Length of drum (l) = 4 m = 4 × 103 mm ;
Thickness of plates (t) = 10 mm ;  Internal pressure (p) = 2.5 MPa = 2.5 N/mm2 ;  Modulus of

elasticity (E) = 200 GPa = 200 × 103 N/mm2 and poisson’s ratio 
1
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.25.

Change in diameter
We know that change in diameter,

δd =
22

3

2.5 (800)1 0.251 1 mm
2 2 22 10 (200 10 )

pd
tE m

×⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠× × ×

= 0.35 mm        Ans.
Change in length

We also know that change in length,

δl =

3

3

2.5 800 (4 10 )1 1 1 0.25 mm
2 2 22 10 (200 10 )

pdl
tE m

× × ×⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠× × ×

= 0.5 mm        Ans.

31.8. Change in Volume of a Thin Cylindrical Shell due to an
Internal Pressure

We have already discussed in the last article, that there is always an increase in the length and
diameter of a thin cylindrical shell due to an internal pressure. A little consideration will show that
increase in the length and diameter of the shell will also increase its volume. Now consider a thin
cylindrical shell subjected to an internal pressure.

Let l = Original length,
d = Original diameter,

δl = Change in length due to pressure and

δd = Change in diameter due to pressure.
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We know that original volume,

V =
2 2 2( ) ( )

4 4 4
d l d d l l d lπ π π⎡ ⎤× × = + δ × × δ − × ×⎢ ⎥⎣ ⎦

=
2( 2 )

4
d l dl dπ ⋅ δ + ⋅ δ ...(Neglecting small quantities)

∴
V

V
δ

=

2

2

( 2 ) 24

4

d l dl d l d
l dd l

π ⋅ δ + ⋅ δ δ δ= +π × ×
 = εl + 2εc

or δV = V (εl + 2εc)

where εc = Circumferential strain and

εl = Longitudinal strain.

EXAMPLE 31.7. A cylindrical vessel 2 m long and 500 mm in diameter with 10 mm thick
plates is subjected to an internal pressure of 3 MPa. Calculate the change in volume of the vessel.
Take E = 200 GPa and Poisson’s ratio = 0.3 for the vessel material.

SOLUTION. Given: Length of vessel (l) = 2 m = 2 × 103  mm ;  Diameter of vessel (d) = 500 mm
; Thickness of plates (t) = 10 mm ; Internal pressure (p) = 3 MPa = 3 N/mm2 ; Modulus of elasticity

(E) = 200 GPa = 200 × 103 N/mm2 and poisson’s ratio 
1
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.3.

We know that circumferential strain,

εc = 3

3 5001 0.31 1
2 2 22 10 (200 10 )

pd
tE m

×⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠× × ×

 = 0.32 × 10–3 ...(i)

and logitudinal strain, εl = 3

3 5001 1 1 0.3
2 2 22 10 (200 10 )

pd
tE m

×⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠× × ×

 = 0.075 × 10–3 ...(ii)

We also know that original volume of the vessel,

V = 2 2 3( ) (500) (2 10 )
4 4

d l
π π× = × ×  = 392.7 × 106 mm3

∴ Change in volume,

δV = V (εc + 2εl) = 392.7 × 106 [0.32 × 10–3 + (2 × 0.075 × 10–3)] mm3

= 185 ××××× 103 mm3        Ans.

EXERCISE 31.1

1. A cylindrical shell 2 m long and 1 m internal diameter is made up of 20 mm thick plates. Find
the circumferential and longitudinal stresses in the shell material, if it is subjected to an internal
pressure of 5 MPa. (Ans. 125 MPa ;  62.5 MPa)

2. A steam boiler of 1.25 m in diameter is subjected to an internal pressure of 1.6 MPa. If the
steam boiler is made up of 20 mm thick plates, calculate the circumferential and longitudinal
stresses. Take efficiency of the circumferential and longitudinal joints as 75% and 60%
respectively.

(Ans. 67 MPa ;  42 MPa)
3. A pipe of 100 mm diameter is carrying a fluid under a pressure of 4 MPa. What should be the

minimum thickness of the pipe, if maximum circumferential stress in the pipe material is 12.5
MPa. (Ans. 16 mm)
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4. A cylindrical shell 3 m long has 1 m internal diameter and 15 mm metal thickness. Calculate the
circumferential and longitudinal stresses, if the shell is subjected to an internal pressure of 1.5
MPa. Also calculate the changes in dimensions of the shell. Take E = 200 GPa and Poisson’s
ratio = 0.3. (Ans. 50 MPa ;  25 MPa ;  δd = 0.21 mm ;  δl = 0.15 mm)

5. A cylindrical vessel 1.8 m long 800 mm in diameter is made up of 8 mm thick plates. Find the
hoop and longitudinal stresses in the vessel, when it contains fluid under a pressure of 2.5 MPa.
Also find the changes in length, diameter and volume of the vessel. Take E = 200 GPa and
1/m = 0.3. (Ans. 125 MPa ;  62.5 MPa ;  0.42 mm ;  0.23 mm ;  1074 mm3)

31.9. Thin Spherical Shells
Consider a thin spherical shell subjected to an internal pressure as shown in Fig. 31.4.

Let p = Intensity of internal pressure,
d = Diameter of the shell and

t = Thickness of the shell,

As a result of this internal pressure, the shell is likely to be torn
away along the centre of the sphere. Therefore, total pressure acting
along the centre of the sphere,

P = Intensity of internal pressure × Area

=
2

4
p dπ× ×

and stress in the shell material,

σ =

2
Total pressure 4

Resisting section 4

p d pd
d t t

π× ×
= =

π ×
Note. If  η is the efficiency of the riveted joints of the spherical shell, then stress,

σ =
4
pd
tη

EXAMPLE 31.8.  A spherical gas vessel of 1.2 m diameter is subjected to a pressure of
1.8 MPa. Determine the stress induced in the vessel plate, if its thickness is 5 mm.

SOLUTION. Given: Diameter of vessel (d) = 1.2 m = 1.2 × 103 mm ; Internal pressure (p) = 1.8
MPa = 1.8 N/mm2 and thickness of plates (t) = 5 mm.

We know that stress in the vessel plates,

σ =
31.8 (1.2 10 )

4 4 5
pd

t
× ×=

×  = 108 N/mm2 = 108 MPa        Ans.

EXAMPLE 31.9. A spherical vessel of 2 m diameter is subjected to an internal pressure of
2 MPa. Find the minimum thickness of the plates required, if the maximum stress is not to exceed
100 MPa. Take efficiency of the joint as 80%.

SOLUTION. Given: Diameter of vessel (d) = 2 m = 2 × 103 mm ; Internal pressure (p) = 2 MPa =
2 N/mm2 ; Maximum stress (σ) = 100 MPa = 100 N/mm2 and efficiency of joint (η) = 80% = 0.8.

Let t = Minimum thickness of the plates in mm.

We know that stress in the plates (σ),

100 =
32 (2 10 ) 1250

4 4 0.8
pd
t t t

× ×= =
η × ×

∴ t =
1250
100

 = 12.5 mm         Ans.

Fig. 31.4. Spherical shell
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31.10. Change in Diameter and Volume of a Thin Spherical Shell
due to an Internal Pressure

Consider a thin spherical shell subjected to an internal pressure.
Let d = Diameter of the shell,

p = Intensity of internal pressure and
t = Thickness of the shell.

We have already discussed in the last article that the stress in a spherical shell,

σ =
4
pd

t
and strain in any one direction,

ε =
E mE
σ σ− ...(ä σ1 = σ2 = σ)

=
11

4 4 4
pd pd pd
tE tEm tE m

⎛ ⎞− = −⎜ ⎟
⎝ ⎠

∴ Change in diameter,

δd = ε · d = 
21 11 1

4 4
pd pd

d
tE m tE m

⎛ ⎞ ⎛ ⎞− × = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

We also know that original volume of the sphere,

V =
3( )

6
dπ ×

and final volume due to pressure,

V + δV =
3( )

6
d dπ × + δ

where (d + δd) = Final diameter of the shell.
∴ Volumetric strain,

V
V
δ

=

3 3

3

( )( ) 6 6

6

d d dV V V
V d

π π+ δ − ×+ δ − = π ×

=
3 2 3

3

(3 )d d d d

d

+ ⋅ δ −

...(Ignoring second and higher power of δd)

=
3 d

d
⋅ δ

 = 3ε

and δV = V · 3ε = 
4

3 1 1( ) 3 1 1
6 4 8

pd pd
d

tE m tE m
ππ ⎛ ⎞ ⎛ ⎞× × − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
EXAMPLE 31.10. A spherical shell of 2 m diameter is made up of 10 mm thick plates.

Calculate the change in diameter and volume of the shell, when it is subjected to an internal
pressure of 1.6 MPa. Take E = 200 GPa and 1/m = 0.3.

SOLUTION. Given: Diameter of shell (d) = 2 m = 2 × 103 mm ; Thickness of plates (t) = 10 mm ;
Internal pressure (p) = 1.6 MPa = 1.6 N/mm2 ;  Modulus of elasticity (E) = 200 GPa = 200 × 103

N/mm2 and Poisson’s ratio (1/m) = 0.3.

Change in diameter
We know that change in diameter,

δd =
3 22

3

1.6 (2 10 )11 (1 0.3)
4 4 10 (200 10 )

pd
tE m

× ×⎛ ⎞− = −⎜ ⎟
⎝ ⎠ × × ×

= 0.56 mm        Ans.
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Change in volume
We also know that change in volume,

δV =
3 44

3

1.6 (2 10 )11 (1 0.3)
8 8 10 (200 10 )

pd
tE m

π × × ×π ⎛ ⎞− = −⎜ ⎟
⎝ ⎠ × × ×  mm3

= 3.52 ××××× 106 mm3        Ans.

31.11. Riveted Cylindrical Shells
Sometimes, boilers of the desired capacity are made

of cylindrical shape by joining different plates usually
by rivets. This is generally done :  (i) by bending the
plates to the required diameter and then joining them by
a butt joint and (ii) by joining individually fabricated
shells by a lap joint as shown in Fig. 31.5 (a) and (b). A
little consideration will show that in this case, the plate is
weakened by the rivet hole.

The circumferential stress in a riveted cylindrical
shell,

δc = 2
pd
tη

Similarly, longitudinal stress,

δl = 4
pd
tη

where η is the efficiency of the riveted joint.

NOTES:1. If the efficiency of the joint is different i.e., the joint has different longitudinal efficiency and circum-
ferential efficiency, then the respective values should be used in the above relation.

2. For designing the shell i.e., determining the thickness of shell, the efficiency of the joint should also
be considered.

EXAMPLE 31.11. A boiler shell of 2 m diameter is made up of mild steel plates of 20 mm
thick. The efficiency of the longitudinal and circumferential joints is 70% and 60% respectively.
Determine the safe pressure in the boiler, if the permissible tensile stress in the plate section
through the rivets is 100 MPa. Also determine the circumferential stress in the plate and longitu-
dinal stress through the rivets.

SOLUTION. Given: Diameter of boiler (d) = 2 m = 2 × 103 mm ;  Thickness (t) = 20 mm ;  Longi-
tudinal efficiency (ηl) = 70% = 0.7 ;  Circumferential efficiency (ηc) = 60% = 0.6 and permissible
stress (σ) = 100 MPa = 100 N/mm2.

Safe pressure in boiler
Let p = Safe pressure in boiler in N/mm2

We know that permissible stress in boiler (σ),

100 =
3(2 10 ) 500

2 2 20 0.7 7l

ppd p
t

× ×= =
η × ×

p =
100 7

500
×

 = 1.4 N/mm2 = 1.4 MPa        Ans.

Fig. 31.5 (b) Joining by Lap Joint

Fig. 31.5 (a) Joining by Butt Joint
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Circumferential stress in the rivets
We know that circumferential stress in the rivets,

σc =
31.4 (2 10 )

2 2 20 0.6l

pd
t

× ×=
η × ×  = 116.7 N/mm2 = 116.7 MPa        Ans.

Longitudinal stress in the rivets
We also know that longitudinal stress in the rivets,

σl =
31.4 (2 10 )

4 4 20 0.7l

pd
t

× ×=
η × ×  = 50 N/mm2 = 50 MPa      Ans.

31.12. Wire-Bound Thin Cylindrical Shells
Sometimes, we have to strengthen a cylindrical shell against bursting in longitudinal section

(i.e., due to hoop or circumferential stress). This is done by winding a wire under tension, closely
round the shell as shown in Fig. 31.6. Its effect will be to put the cylinder wall under initial com-
pressive stress.

Fig. 31.6

A little consideration will show that now if the internal pressure of the shell is increased, the
bursting force will be resisted jointly by the shell section and the wires. It is thus obvious that a wire-
bound shell can withstand a greater internal pressure than an ordinary shell. In actual practice the
winding wire is made of a high tensile material.

In such cases, the bursting force (due to internal pressure) per cm length is equal to the resisting
force (due to pipe section + wire section). The circumferential strain in the pipe is also equal to the
strain in the steel wire. The following example will illustrate the above mentioned statements.

EXAMPLE 31.12.  A cast iron pipe of 300 mm internal diameter and 12 mm thick is wound
closely with a single layer of circular steel wire of 5 mm diameter under a tension of 60 MPa.
Find the initial compressive stress in the pipe section. Also find the stresses set up in the pipe and
steel wire, when water under a pressure of 4 MPa is admitted into the pipe.

Take E for cast iron and steel as 100 GPa and 200 GPa respectively. Poisson’s ratio = 0.3.

SOLUTION. Given: Diameter of pipe (d) = 300 mm ;  Pipe Thickness (t) = 12 mm ;  Diameter of
wire = 5 mm ; Tension in wire = 60 MPa = 60 N/mm2 ;  Pressure of water (p) = 4 MPa = 4 N/mm2 ;
Modulus of elasticity for cast iron (Ec) = 100 GPa = 100 × 103 N/mm2 ;  Modulus of elasticity for

steel (Es) = 200 GPa = 200 × 103 N/mm and poisson’s ratio 
1
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 0.3.

Initial compressive stress in the pipe section
A little consideration will show that the pipe will be subjected to compression (due to tension in

the wire), before the water under pressure is admitted into the pipe. Now consider one mm length of
the pipe. We know that number of wire sections for 1 mm pipe length

=
2 2

Diameter of wire 5
=  = 0.4
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∴ Initial compressive force in the wire (i.e., before the water under pressure is admitted into
the pipe)

= 20.4 (5) 60
4
π⎡ ⎤× × ×⎢ ⎥⎣ ⎦

 = 471.3 N

∴ Initial compressive stress in the pipe section,

σc =
471.3
2 12×  = 19.6 N/mm2       Ans.

Stresses set up in the pipe and steel wire
Let σp = Stress in the pipe section in N.mm2 and

σw = Stress in the steel wire in N/mm2.
We know that the bursting force per mm length of the pipe, when water under pressure is

admitted
= p × d × l = 4 × 300 × 1 = 1200 N ...(i)

and total resisting force = Resisting force in pipe + Resisting force in wire

=
2[2 ] 0.4 (5)

4p wt l π⎡ ⎤σ + σ × × ×⎢ ⎥⎣ ⎦

= [2 × σp × 12 × 1] + [σw × 0.1 × 3.1416 × 25]
= 24 σp + 7.854 σw  ...(ii)

Since the bursting force is in the pipe is equal to the total resisting force, therefore equating (i)
and (ii),

1200 = 24 σp + 7.854 σw ...(iii)
We know that circumferential strain in the pipe

=
7.54 3001 1 1 0.3

4 4 12
p p

p
c c c c

bd
E m t E E E

σ σ −⎡ ⎤ ×⎡ ⎤− × × = σ − × =⎢ ⎥ ⎢ ⎥×⎣ ⎦⎣ ⎦
...(iv)

and strain in the steel wire = w

sE
σ

...(v)

Since the circumferential strain in the pipe is equal to the strain in the steel wire, therefore equat-
ing (iv) and (v),

 
7.5p

cE

σ −
= w

sE
σ

σw =
3

3

2 10
( 7.5) ( 7.5)

1 10
s

p p
c

E
E

×× σ − = × σ −
×

 = 2 (σp – 7.5) ...(vi)

Substituting this value of σw in equation (iii),
1200 = (24 σp) + [7.854 × 2 (σp – 7.5) = 39.71 σp – 117.8

or σp =
1200 117.8

39.71
+

 = 33.2 N/mm2

and σw = (2 × 33.2) – 15 = 51.4 N/mm2

∴ Final stress in the pipe section
= 33.2 – 19.6 = 13.6 N/mm2 = 13.6 MPa     Ans.

and final stress in steel wire

= 60 + 51.4 = 111.4 N/mm2 = 111.4 MPa      Ans.
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EXERCISE 31.2

1. A spherical shell of 1 m diameter is subjected to a pressure of 2.4 MPa. What is the stress
induced in the vessel plate, if its thickness is 15 mm ? (Ans. 40 MPa)

2. A spherical shell of 800 mm diameter is subjected to an internal pressure of 1.5 MPa. What
should be the minimum thickness of the shell, if the tensile stress is not to exceed 40 MPa ?

(Ans. 7.5 mm)

3. A spherical container of 1 m diameter has 15 mm thick plates. Calculate the change in its
diameter, if it contains a fluid under a pressure of 2 MPa. Take E = 200 GPa and μ = 0.28.

(Ans. 0.12 mm)

4. A cast iron cylinder of 200 mm internal diameter and 12.5 mm thick is closely wound with a
wire of 4 mm, diameter under a stress of 55 MPa. What are the stresses developed in the cylin-
der and steel wire, when water under a pressure of 3 MPa is admitted into the cylinder. Take Es
= 200 GPa, Ec = 100 GPa and 1/m = 0.25. (Ans. 3.2 MPa ;  83 MPa)

QUESTIONS

1. Distinguish between circumferential stress and longitudinal stress in a cylindrical shell, when
subjected to an internal pressure.

2. Show that in the case of a thin cylindrical shell subjected to an internal fluid pressure, the
tendency to burst lengthwise is twice as great as in a transverse section.

3. Derive a relation for the changes of diameter and length of a thin cylindrical shell, when sub-
jected to an internal pressure.

4. Distinguish between cylindrical shell and spherical shell.

5. Derive a formula for the hoop stress in a thin spherical shell subjected to an internal pressure.

OBJECTIVE TYPE QUESTIONS

1. A thin cylindrical shell of diameter (d), length (l) is subjected to an internal pressure (p). The
circumferential stress in the shell is

(a)
2
pd

t
(b)

4
pd

t
(c)

6
pd

t
(d)

8
pd

t
2. In a thin shell, the ratio of longitudinal stress to the circumferential stress is

(a) 1/2 (b) 3/4 (c) 1 (d) 2
3. The design of a thin cylindrical shell is based on

(a) internal pressure (b) diameter of shell

(c) longitudinal stress (d) all of these
4. A thin spherical shell of diameter (d) and thickness (t) is subjected to an internal pressure (p).

The tensile stress in the shell plates will be

(a)
2
pd

t
(b)

4
pd

t
(c)

2
pt
d

(d)
4
pt
d

ANSWERS

1. (a) 2. (a) 3. (d) 4. (b)
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6. Thick spherical shells.

32.1. Introduction
In the last chapter, we have discussed thin

cylindrical and spherical shells. We have studied
that in a thin shell, the stresses are assumed to
be uniformly distributed throughout the wall
thickness. But it is not so in the case of thick
shells, and it varies with the thickness.

Thick shells are, generally, used to withstand
high pressures. Sometimes, even, compound thick
shells are used to withstand very high pressures
or to contain chemicals under high pressure.

32.2. Lame’s Theory
The problem of thick cylinders is somewhat

complex and is solved on the following
assumptions:

32C h a p t e r
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1. The material of the shell is homogeneous and isentropic.
2. The plane sections of the cylinder, perpendicular to the longitudinal axis, remain plane under

the effect of pressure i.e. the longitudinal strain is constant and is independent of the radius
of the shell.

The theory derived after the above mentioned assumptions is popularly known as Lame’s Theory.

32.3. Stresses in a Thick Cylindrical Shell
Consider a thick cylindrical shell subjected to an internal pressure as shown in Fig. 32.1 (a).

Fig. 32.1

Let r1 = Outer radius of the cylinder,

r2 = Inner radius of the cylinder, and

l = Length of the cylinder.
Now consider an elementary ring of the cylinder of thickness dx, and of a radius x as shown

Fig. 32.1 (a) and (b).

Let px = Intensity of pressure on the inside of the ring

(px + dpx) = Intensity of pressure on the outside of the ring and
σx = Intensity of hoop stress induced in the ring.

We know that the bursting force on any longitudinal section say (X–X),

P = px · 2xl – (px + dpx) · 2(x + dx)l ...(i)
and resisting force = σx · 2 · dx · l ...(ii)

Since the bursting force is equal to the resisting force, therefore equating (i) and (ii),

σx · 2 · dx · l = px · 2xl – (px + dpx) · 2(x + dx)l
∴ σx · dx = px · x – (px · x + px · dx + dpx · x + dpx · dx)

= – px · dx – dpx · x (Neglecting dpx . dx)

or σx = –
−

− x
x

x dp
p

dx
...(iii)

Now let us obtain another relation between radial pressure (px) and hoop stress (σx) in order to
solve the above equation with the help of the assumption in Lame’s theory i.e. the longitudinal strain
is constant. The equation given in this theory for longitudinal tensile stress,

p0 =
2

2
2 2

1 2

pr

r r−
∴ Longitudinal strain

= 0 σ
− +x xp p

E mE mE
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Since the longitudinal strain is constant (i.e. it is independent of x), therefore,

0 σ
− +x xp p

E mE mE
= Constant

∴ σx – px = Constant (Since p0, m and E are constants)

or σx – px = 2a (where a is constant)

∴ σx = px + 2a ...(iv)
Equating the values of σx from equations (iii) and (iv),

px + 2a = – px – xx dp

dx

⋅

∴ xdp

dx
=

2( )+
− xp a

x

or
( )+

x

x

dp

p a
=

2− dx

x

Integrating both sides of the above equation,
loge (px + a) = – 2 loge x + loge b ...(where loge b is constant of integration)

∴ (px + a) =
2

b

x

or px =
2

−b
a

x
...(v)

Now substituting the value of px in equation (iv),

σx =
2 2

2− + = +b b
a a a

x x
...(vi)

NOTES: 1. The values of a and b in the above equation are evaluated from the given conditions.
2. The above two equations (v) and (vi) are called Lame’s equations.
3. It should be remembered that the values px is compressive, and that of σx is tensile in the above

equations.
4. Intensity of pressure outside the thick cylinder is taken to be zero, though it has some hoop stress

due to pressure inside the thick cylinder.

EXAMPLE 32.1.  A cast iron pipe of 400 mm internal diameter and 100 mm thickness carries
water under a pressure of 8 N/mm2. Determine the maximum and minimum intensities of  hoop
stress across the section. Also sketch the radial pressure distribution and hoop stress distribution
across the section.

SOLUTION.  Given : Internal diameter (d2) = 400 mm     or      internal radius (r2)   = 200 mm;

Thickness  = 100 mm ; Internal pressure ( px )  = 8 N/mm2

We know that External radius = 200 + 100 = 300 mm
Let σx = Hoop stress at any section.

From the geometry of the pipe, we find that when x = 200 mm then  px = 8 N/mm2. Also when
x = 300 mm then  px = 0.
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We know from the Lame’s equation that pressure at inner surface

8 =
( )2 2 40000200

− = − = −b b b
a a a

x

or a = 8
40000

−b
...(i)

We also know from the Lame’s equation that pressure at outer surface

0 =
( )2 2 90000300

− = − = −b b b
a a a

x

or a =
90000

b
...(ii)

Equating the two values of a from equation (i) and (ii)

8
40000

−b
=

90000
b

or 320000
40000

−b =
90000

b

or 9b – 9 × 320000 = 4 b
or 5 b = 9 × 320000

∴ b =
9 320000

576000
5

× =

and a =
576000

6.4
90000 90000

= =b

Now hoop stress at inner surface

σ200 =
2 2

576000
6.4

(200)
+ = +b

a
x

= 20.8 N/mm2       Ans.

and  hoop stress at outer surface

σ300 =
2 2

576000
6.4

(300)
+ = +b

a
x

 = 12.8 N/mm2      Ans.

Now draw the radial pressure (px) and hoop stress (σx) distribution across the section as shown in
Fig. 32.2.

(a) (b)
Fig. 32.2
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EXAMPLE 32.2.  A thick metallic cylindrical shell of 150 mm internal diameter is required to
withstand an internal pressure of 8 N/mm2. Find  the necessary thickness of the shell, if the
permissible tensile stress in the section is 20 N/mm2.

SOLUTION.  Given : Internal diameter of cylindrical shell (d2) = 150 mm or internal radius (r2)
= 75 mm ; Internal pressure (px) = 8 N/mm2 and permissible tensile stress (σx) = 20 N/mm2.

Let r1 = Outer diameter of the shell.

From the geometry of the shell, we find that when x = 75 mm then  px = 8 N/mm2 and σx = 20
N/mm2.

We know from the Lame’s equation that internal pressure (px)

8 = 2 2 5625(75)

b b b
a a a

x
− = − = −

∴ a =
5625

b
– 8 ...(i)

We also know from the Lame’s equation that permissible stress (σx)

20 = 2 2 5625(75)
+ = + = +b b b

a a a
x

∴ a = 20
5625

− b
...(ii)

Equating the two values of a from equations (i) and (ii),

8
5625

−b
= 20

5625
− b

∴ 2
5625

b
= 20 + 8 = 28

or b =
28 5625

2
×

= 78750

Now substituting the value of b in equation (i),

a =
78750

8 6
5625

− =

We know from Lame’s equation that internal pressure (px)

0 =
2

1

78750
6−

r
...(for outer conditions)

∴ r1 =
78750

6
= 114.6      say      115 mm

Therefore thickness of the shell,

t = r1 – r2 = 115 – 75 = 40 mm      Ans.

32.4. Stresses in Compound Thick Cylindrical Shells
We have already discussed in Art. 25.10 that in order to withstand a very high pressure, the thin

cylindrical shell is wound with a wire under tension. The effect of the wire is to put the cylinder wall
under an initial compressive stress. The same principle is used in thick cylindrical shells. This is done
by shrinking one thick shell over another. A little consideration will show, that the outer shell will
produce some initial compressive stress in the  inner one. The inner shell, in turn, will exert some
tensile stress in the outer one. This principle is commonly used in the design of gun tube.
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Now when the compound shell is subjected to an internal pressure, both the inner and outer
shells will be subjected to hoop tensile stress. The net effect of the initial
stresses and those due to internal pressure is to make the resultant stresses
more or less uniform.

Now consider a compound thick cylindrical shell made up of two tubes
as shown in Fig. 32.3.

Let r1 = Outer radius of the outer shell,
r2 = Inner radius of the inner shell,
r3 = Outer radius of the inner shell, (also

inner radius of the outer  shell),
and

P1 = Radial pressure at  the junction of the
two shells (i.e., at radius r3)

Now the Lame’s equations may be applied in this case for the initial conditions (i.e., when the
outer tube exerts pressure on the inside shell, or in other words before the fluid under pressure is
admitted into the inner shell.

(i) For inner tube

px = 1
12

−
b

a
x

We know that when x = r2 , then  px = 0.

∴ 0 = 1
12

2

−
b

a
r

...(i)

Also when x = r3 , then  px = p1.

∴ p1 = 1
12

3

−
b

a
r

...(ii)

(ii) For outer tube

px = 2
22

−
b

a
x

and σx = 2
22

+
b

a
x

We know that when x = r3 , then  px = p1.

∴ p1 = 2
22

3

−
b

a
r

...(iii)

Also when x = r1 , then px = 0.

∴ 0 = 2
22

1

−
b

a
r

...(iv)

The  values of a1, b1, a2 and b2 may be found out from the above four equations, if the radial
pressure p1 at the junction of the two shells is known. The hoop stress (σx) may also be obtained with
the help of relative expressions.

Now, when the fluid under pressure (p) is admitted inside the compound shell it will be resisted
jointly by both the shells. The hoop stresses may be calculated by the Lame’s formulae as usual. The
resultant stresses will be the algebraic sum of the initial stresses an those due to fluid pressure.

EXAMPLE 32.3.  A compound cylinder is made by shrinking a tube of 160 mm internal diameter
and 20 mm thick over another tube of 160 mm external diameter and 20 mm thick. The radial
pressure at the common surface, after shrinking, is 8 N/mm2. Find the final stresses set up across
the section, when the compound cylinder is subjected to an internal fluid pressure of 60 N/mm2.

Fig. 32.3
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SOLUTION.  Given : Inner diameter of outer cylinder = 160 mm ; Thickness of outer cylinder =
20 mm ; Outer diameter of inner cylinder (d3) = 160 mm or radius r3 = 80 mm ; Thickness of inner
cylinder = 20 mm ; Pressure due to shrinkage at the junction of the two cylinders (p1) = 8 N/mm2 and
internal fluid pressure in the compound cylinder (px) = 60 N/mm2.

Outer diameter of outer cylinder = 160 + 20 + 20 = 200 mm

or radius, r1 = 100 mm

Inner diameter of inner cylinder = 160 – 20 – 20 = 120 mm
or radius, r2 = 60 mm

Let σx = Hoop stress at a radius x in the compound cylinder.

First of all, let us apply all the Lame’s four equations for the inner and outer cylinders before the
fluid under pressure is admitted.

0 = 1 1
1 12 2

2 (60)
− = −

b b
a a

r

∴ 0 = 1
13600

−
b

a ...(i)

Similarly p1 = 1 1
1 12 2

3 (80)
− = −

b b
a a

r

8 = 1
16400

−
b

a ...(ii)

and p1 = 2 2
2 22 2

3 (80)
− = −

b b
a a

r

8 = 2
26400

−
b

a ...(iii)

and 0 = 2 2
2 22 2

1 (100)
− = −

b b
a a

r

0 = 2
210000

−
b

a ...(iv)

Solving equations (i) and (ii) simultaneously, we find that b1 = – 65830 and a1 = – 18.3.

Similarly solving equations (iii) and (iv) simultaneously, we find that b2 = 142200 and a2 = 14.2.

We know from Lame’s equation that permissible stress (σx),

σ =
2

+b
a

x

σ60 =
2

65830
( 18.3)

(60)
− + − (For inner tube)

=
65830

18.3
3600

− −  = – 36.6 N/mm2 ...(v)

and σ80 =
2

65830
( 18.3)

(80)
− + − (For inner tube)
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=
65830

18.3
6400

− −  = – 28.6 N/mm2 ...(vi)

Similarly

σ80 =
2

142200
14.2

(80)
+ (For outer tube)

=
142200

14.2
6400

+  = 36.4 N/mm2 ...(vii)

and σ100 =
2

142200
14.2

(100)
+ (For outer tube)

=
142200

14.2
10000

+ = 28.4 N/mm2 ...(viii)

Now let us apply Lame’s equation for the inner cylinder only after the fluid under pressure of
60 N/mm2 is admitted. i.e.

px =
2

−b
a

x

60 =
2 3600(60)

− = −b b
a a ...(ix)

and 0 =
2 10000(100)

− = −b b
a a ...(x)

Subtracting equation (x) from equation (ix)

3600 10000
−b b

= 60

64

360000

b
= 60 or b = 337500

and a =
337500

33.75
10000 10000

= =b

We know from Lame’s equation that permissible stress

σx =
2

+b
a

x

=
2

337500
33.75+

x

∴ σ60 =
2

337500
33.75

(60)
+  = 127.5 N/mm2

σ80 =
2

337500
33.75

(80)
+  = 86.5 N/mm2

σ100 =
2

337500
33.75

(100)
+  = 67.5 N/mm2

Now tabulate the hoop (i.e. circumferential) stress at different points as given below:

[(+ve for tension; –ve for compression)]
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Hoop stress Inner cylinder Outer cylinder

N/mm2 x = 60 mm x = 80 mm x = 80 mm x = 100 mm

Initial –36.6 –28.6 +36.4 +28.4

Due to fluid +127.5 +86.5 +86.5 +67.5
pressure

Final +90.9 +57.9 +122.9 +95.9

32.5. Difference of Radii of Shrinkage
We have discussed in the last article, that in the case of compound cylinders the outer shell is

shrunk, over the inner one, to produce some initial compressive stress in the inner shell. This is done
by making the inner diameter of the outer tube slightly less than the outer diameter of the inner tube.
Then the outer cylinder is heated and the inner cylinder is inserted into it. After cooling, the outer
cylinder shrinks over the inner one. sometimes, the inner cylinder is also forced into the outer one
with the help of machines to obtain the necessary grip or initial stresses. This principle is used in
fixing sleeves in automobile engine heads.

Let r1 = Outer radius of the outer shell,
r2 = Inner radius of the inner shell, and
r3 = Common radius of the outer shell at the junction after

shrinking.
A little consideration will show, that * before shrinking, the outer radius of the inner shell is

slightly more than r3 and inner radius of the outer shell is slightly less than r3.
Now Lame’s equations may be applied in this case also. Therefore at the junction, the radial

pressure, (p1) is the same for the shells.

∴ 1
12

3

−
b

a
r

= 2
22

3

−
b

a
r

or 2 1
2

3

−b b

r
= (a2 – a1)

We know that the tensile strain at any point in the shell

= x xp

E mE

σ
+

∴ Increase in the inner radius of the outer shell

= 3

σ⎡ ⎤+⎢ ⎥
⎣ ⎦

x xp
r

E mE

=
2 2

3 2 22 2
3 3

1 1⎡ ⎤⎛ ⎞ ⎛ ⎞+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

b b
r a a

E mEr r

Similarly, decrease in the outer radius of the inner shell

= 3

σ⎡ ⎤− +⎢ ⎥⎣ ⎦
x p

r
E mE

(Taking decrease as –ve)

= 1 1
3 12 2

3 3

1 1⎡ ⎤⎛ ⎞ ⎛ ⎞− + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

b b
r a a

E mEr r

* After shrinking, there is some change in the outer radius of the outer shell and inner radius of the inner
shell. But this change, being very small, is neglected.
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Now we know that the original difference in the outer radius of the inner shell and inner radius of
the outer shell

= Increase in inner radius of outer shell
+  Decrease in outer radius of the inner shell

= 2 2
3 2 22 2

3 3

1 1⎡ ⎤⎛ ⎞ ⎛ ⎞+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

b b
r a a

E mEr r

1 1
3 1 12 2

3 3

1 1⎡ ⎤⎛ ⎞ ⎛ ⎞− + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

b b
r a a

E mEr r

= 3 2 1
2 12 2

3 3

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

r b b
a a

E r r
3 2 1

2 12 2
3 3

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

r b b
a a

mE r r

Since 1 2
1 22 2

3 3

,− = −
b b

a a
r r

 therefore second part of the above equation is zero. Therefore original

difference of radii at the junction,

= 3 2 1
2 12 2

3 3

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

r b b
a a

E r r

= 3 2 1
2 12

3

−⎡ ⎤+ −⎢ ⎥
⎣ ⎦

r b b
a a

E r

= 3
2 1 2 1( )− + −⎡ ⎤⎣ ⎦

r
a a a a

E

= 3
2 1

2
( )−

r
a a

E
NOTE:  The values of a1 and a2 are evaluated from the given conditions.

EXAMPLE 32.4.   A compound thick cylinder is formed by shrinking a tube of external diameter
300 mm over another tube of internal diameter 150 mm.  After shrinking, the diameter at the
junction of the tubes is found to be 250 mm and radial compression as 28 N/mm2. Find the
original difference in radii at the junction. Take E for the cylinder metal as 200 GPa.

SOLUTION.  Given : Outer diameter of outer cylinder (d1) = 300 mm or radius (r1) = 150 mm ;
Inner diameter of inner cylinder (d2) = 150 mm or radius (r2) = 75 mm ; Diameter of the junction of
the two cylinders (d3) = 250 mm or radius (r3) = 125 mm ; Radial compression at the junction (px) =
28 N/mm2 and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

Let dr = Original difference in radii.

First of all, consider the inner cylinder. From geometry of the figure, we find that when x =
125 mm, then px = 28 N/mm2. Also when x = 75 mm, then px = 0.

We know from the Lame’s equation that internal pressure (px)

28 = 1 1
12 15625(125)

b b
a− =  – a1

∴ a1 = 1 28
15625

b
− ...(i)
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Similarly, 0 = 1 1
1 12 5625(75)

b b
a a− = −

∴ a1 = 1

5625

b
...(ii)

Equating the two values of a1 from equations (i) and (ii),

1 28
15625

b
− = 1

5625

b

1 437500

15625

−b
= 1

5625

b

5625 b1 – 2.461 × 109 = 15625 b1

∴ 10000 b1 = – 2.461 × 109

or b1 = – 2.461 × 105

and a1 =
5

1 2.461 10
5625 5625

×− = −
b

 = – 43.75

Now consider the outer cylinder. From the geometry of the figure, we find that when x = 125 mm,
then px = 28 N/mm2. Also when x = 150 mm, then px = 0.

We also know from Lame’s equation that internal pressure (px)

28 =
2

b
a

x
−

28 = 2 2
2 22 15625(125)

b b
a a− = −

∴ a2 = 2 28
15625

b
− ...(iii)

Similarly,

0 = 2 2
2 22 22500(150)

b b
a a− = −

∴ a2 = 2

22500

b
...(iv)

Equating the two values of a2 from equations (iii) and (iv),

2 28
15625

b
− = 2

22500

b

2 437500

15625

b −
= 2

22500

b

22500 b2– 9.84 × 109 = 15625 b2

∴ 6875 b2 = 9.84 × 109

or b2 =
99.84 10

6875
×

= 1.432 × 106

and a2 =
6

2 1.432 10
63.64

22500 22500

b ×= =
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Therefore original difference in radii

dr = 3
2 1

2
( )

r
a a

E
−

=
3

2 125

200 10

×
×

[63.64 – (–43.75)] = 0.13 mm      Ans.

EXAMPLE 32.5.  A steel tube 240 mm external diameter is to be shrunk on another steel tube
of 80 mm internal diameter. After shrinking, the diameter at the junction is 160 mm. Before
shrinking on, the difference of diameter at the junction was 0.08 mm.

Calculate the radial pressure at the junction and hoop stresses developed in the two tubes
after shrinking on. Take E as 200 kN/mm2.

SOLUTION.  Given : External diameter of outer tube (d1) = 240 mm or radius (r1) = 120 mm ;
Internal  diameter of the tube (d2) = 80 mm or radius (r2) = 40 mm ; Diameter at junction of two
tubes (d3) = 160 mm or radius (r3) = 80 mm ; Difference of diameter at junction = 0.08 mm or
difference in radius (dr) = 0.04 mm ; Modulus of elasticity (E) = 200 kN/mm2 = 200 × 103 N/mm2.
Radial pressure at the junction

Let p1 = Radial pressure at the junction.

First of all, consider the inner tube. From the geometry of the figure, we find that when
x = 40 mm, then  px = 0. Also when x = 80 mm, then  px = p1 (where p1 is the radial pressure at the
junction).

We know from Lame’s equation that internal pressure (px)

0 =
1 1

1 12 1600(40)

b b
a a− = −

∴ b1 = 1600 a1 ...(i)

Similarly, p1 =
1 1

1 12 6400(80)

b b
a a− = − ...(ii)

Now consider the outer tube. From the geometry of the figure, we find that when x = 120 mm,
then  px = 0. Also when x = 80 mm, then px = p1 (where p1 is the radial pressure at the junction).

We also know from Lame’s equation that internal pressure (px)

0 =
2 2

2 22 14400(120)

b b
a a− = −

∴ b2 = 14400 a2 ...(iii)

Similarly, p1 =
2 2

2 22 6400(80)

b b
a a− = − ...(iv)

Equating the two values of p1 from equations (ii) and (iv),

1
16400

b
a− = 2

26400

b
a−

Substituting the values of b1 = 1600 a1 from equation (i) and b2 = 14400 a2 from equation (iii) in
the above equation,

1
1

1

1600

6400
−

a
a

a
= 2

2

14400

6400
−

b
a
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13

4

a
− = 25

4

a

a1 = 25

3

a
− ...(v)

We know that difference in radius

dr = 32r

E
(a2 – a1)

or 0.04 = 2 2
23

5 42 80
3 1875200 10

a a
a
⎡ ⎤⎛ ⎞× − − =⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦×

∴ a2 =
0.04 1875

18.75
4
× =

and b2 = 14400 a2 = 14400 × 18.75 = 270 × 103

Now a1 = 25 5 18.75
31.25

3 3
×− = − = −

a

and b1 = –1600 a1 = – 1600 × 31.25 = –50 × 103

Now substituting the values of a1 and b1 in equation (i),

p1 =
3

1
1

50 10
( 31.25)

6400 6400
×− = − − −

b
a

= – 23.44 N/mm2

= 23.44 N/mm2 (compressive)    Ans.
Hoop stresses developed in the two tubes

We know that loop stress

σx =
2

+b
a

x

Now σ40 =
3

2

50 10
31.25

(40)

− × −  N/mm2 (for inner tube)

= –62.5 N/mm2

= 62.5 N/mm2  (compressive)      Ans.

and σ80 =
3

2

50 10
31.25

(80)

− × − N/mm2 (for inner tube)

= –39.1 N/mm2

= 39.1 N/mm2 (compressive)       Ans.

Similarly, σ80 =
3

2

270 10
18.55

(80)

× + N/mm2 (for outer tube)

= 60.94 N/mm2 (tensile)       Ans.

and σ120 =
3

2

270 10
18.75

(120)

× +  N/mm2 (for outer tube)

= 37.5 N/mm2 (tensile)       Ans.
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32.6 Thick Spherical Shells
Consider a thick spherical shell subjected to an internal fluid

pressure as shown in Fig. 32.4.
Let r1 = External radius,

r2 = Internal radius, and

p = Internal fluid pressure.
Now consider an elemental disc of the spherical shell of

thickness dx and at a radius x. Let this elemental part subtend an
angle dθ at the centre of the shell. As a result of the internal fluid
pressure, let the radius of the disc be increased from x to (x + u).

∴ Circumferential strain

eY =
( )x u d x d u

x d x

+ θ − ⋅ θ =
⋅ θ ...(i)

and radial strain, ex =
( )d x u dx du

dx dx

+ − = ...(ii)

= ( )Y
d

x e
dx

⋅ (from equation (i) u = x eY)

=
Y

Y

x de
e

dx

⋅
+ ...(iii)

Now consider an elemental spherical shell of thickness and at a distance x.

Let px = Radial pressure at radius x,

(px + dpx) = Radial pressure at radius (x + dx), and
σx = Circumferential stress (which is equal in all directions).

The bursting force on any diameteral plane of the elemental spherical shell

= px · πx2 – π(px + dpx) (x + dx)2 ...(iv)
and resisting force = σx · 2πx · dx ...(v)

Since the bursting force is equal to the resisting force, therefore equating (i) and (ii),

σx · 2π · dx = px · πx2 – π(px + dpx) (x + dx)2

2σx · xdx = px · x2 – (px + dpx) [x
2 + 2x · dx + (dx)2]

= px · x2 –  (px · x2 + 2px · x · dx  + dpx · x2)
(Neglecting small quantities)

= px · x2 – px · x2 – 2px · x · dx – dpx · x2

2σx · dx = – 2px · dx  –  dpx · x (Dividing both sides by x)

σx =
· 

2
x

x
x

x dp
p

d
− ...(vi)

Differentiating the above equation,

x

x

d

d

σ
=

2

2

1
2

x x xdp d p dp
x

dx dxdx

⎡ ⎤
− − +⎢ ⎥

⎣ ⎦
Now a little consideration will show, that at any point in the elementary shell at a radius x, the

three principal stresses are:

(a) Radial pressure (px) compressive,
(b) Hoop stress (σx) tensile and

(c) Hoop stress (σx) on a plane at right angles also tensile.

Fig. 32.4
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∴ Radial strain,

ex =
2x xp

E mE

σ
− (compressive) ...(vii)

=
21 σ⎛ ⎞− +⎜ ⎟

⎝ ⎠
x

xp
E m

(tensile)

and circumferential strain.

eY = x x xp

E mE mE

σ σ
+ − (tensile)

=
( 1)1 x xm p

E m m

σ −⎡ ⎤+⎢ ⎥
⎣ ⎦

(tensile) ...(viii)

Now substituting the values of ex and eY from equations (vii) and (viii) in equation (iii),

21 x
xp

E m

σ⎛ ⎞− +⎜ ⎟
⎝ ⎠

=
( 1)1 x xm p

E m m

σ −⎡ ⎤+⎢ ⎥
⎣ ⎦

( 1) 1x xd dpmx

E m dx m dx

σ⎡ ⎤−+ ⋅ + ⋅⎢ ⎥
⎣ ⎦

Simplifying and rearranging the above equation,

(m + 1) (px + σx) + (m – 1) 0x xd dp
x x

dx dx

σ
+ =

Now substituting the value of σx and dσx from equation (vi) in the above equation and simplifying it,
2

2

4x xd p dp
x

dxdx
+ = 0

Substituting xdp

dx
 = a (i.e., any constant) in the above equation

4+da
x a

dx
= 0

or
4da a

dx x
+ = 1 ...(Dividing by x)

∴ da

a
=

4dx

x
−

Integrating the above equation,

loge a = – 4 loge x + loge C1

where C1 is the  first constant of integration.

∴ loge = 1

4
loge

C

x

⎛ ⎞
⎜ ⎟
⎝ ⎠

or a =
1

4

C

x
...(Taking antilog)

∴ xdp

dx
=

1

4

C

x
xdp

a
dx

⎛ ⎞=⎜ ⎟
⎝ ⎠

or dpx =
1

4

C dx

x

⋅

ä
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Integrating the above equation,

px = – 1
33

C
C

x
+ ...(ix)

where C2 is the second constant of integration. Substituting this value of px in equation (iv),

σx = 1 1
23 33 2

C C
C

x x
− −

= 1
236

C
C

x
− − ...(x)

Substituting the values of C1 = – 6 b and C2 = – a in equations (ix) and (x) respectively,

px =
3

2b
a

x
−

and σx =
3

b
a

x
+

NOTE: The values of a and b are evaluated from the given conditions.

EXAMPLE 32.6.  A thick spherical shell of 400 mm inside diameter is subjected to an internal
pressure of 1.5 N/mm2. Determine the necessary thickness of the shell, if the permissible stress in
the shell material is 3 N/mm2.

SOLUTION.  Given :  Inside diameter of the shell (d2) = 400 mm or radius (r2) = 200 mm ; Internal
pressure (px) = 1.5 N/mm2 and permissible tensile stress (σx) = 3 N/mm2.

Let r1 = Outer radius of the shell.
From the geometry of the shell, we find the that when x = 200 mm then px = 1.5 N/mm2 and

σx = 3 N/mm2.

We know from Lame’s equation that pressure at inner surface is

px =
3

2b
a

x
−

or 1.5 = 3 6

2 2

(200) 8 10

b b
a a− = −

×

∴ a = 6

2
1.5

8 10

b −
×

...(i)

We also know from Lame’s equation that permissible stress in the shell material (σx)

3 =
3 3 6(200) 8 10

b b b
a a a

x
+ = + = +

×

∴ a =
6

3
8 10

b−
×

...(ii)

Equating two values of a from equations (i) and (ii)

6

2
1.5

8 10

b −
×

= 6
3

8 10

b−
×

or
6

3

8 10

b

×
= 3 + 1.5

or b =
( )6

6
4.5 8 10

12 10
3

×
= ×
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Now substituting the value of b in equation (i)

a =
( )6

6

2 12 10
1.5 1.5

8 10

×
− =

×
We know that from Lame’s equation that pressure at outer surface is

px = 3

2 p
a

x
−

or 0 =
6

3
1

2(12 10 )
1.5

( )r

× −

or 1.5 =
6

3
1

2(12 10 )

( )r

×

or r1 =
6

3 63 2(12 10 )
16 10

1.5

× = ×

= 252 mm
Therefore thickness of the shell

t = r1 – r2 = 252 – 200 = 52 mm Ans.

EXERCISE 32.1

1. A cast iron pipe of 200 mm internal diameter and 50 mm thick carries water under a pressure of
5N/mm2. Find the maximum and minimum intensities of circumferential stress across the sec-
tion. Also sketch the radial pressure distribution and circumferential stress distribution across
the section. [Ans. 13 N/mm2; 8 N/mm2]

2. A thick cylindrical shell of 160 mm internal diameter is 45 mm thick. The shell is subjected to
an internal pressure of 52.5 N/mm2. Find the maximum and minimum intensities of hoop stress
across the section. [Ans.  127.5 N/mm2; 75 N/mm2]

3. A thick metallic cylindrical shell of internal diameter 200 mm required to withstand a pressure
of 40 N/mm2. Determine the necessary thickness of the shell, if permissible hoop stress in the
section is 150 N/mm2. [Ans. 31.5 mm]

4. A compound cylinder is formed by shrinking a tube of 200 mm internal diameter and 20 mm
thick over another tube of 120 mm diameter and 40 mm thick. If radial pressure at the common
surface, after shrinking is 12 N/mm2, then determine the final stresses across the section when  a
fluid under a pressure of 45 N/mm2 is admitted into the cylinder.

[Ans.

Final stresses Inner tube Outer tube
(N/mm2) x = 60 mm x = 100mm x = 100 mm x = 120 mm

Initial –37.5 –25.5 +66.6 +54.6

Due to fluid +75.0 +36.6 +36.6 +30.0
pressure

Final +37.5 +11.1 +101.2 +84.6
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5. A compound cylinder is made by shrinking a cylinder of external diameter 300 mm over another
cylinder of external diameter 250 mm and internal diameter 150 mm.  After shrinking, the
radial compression at the common junction was 280 N/mm2. Find the original difference in the
radii at the junction, if E = 200 GPa. [Ans.  0.15 mm]

6. A thick spherical shell of 160 mm internal diameter is subjected to an internal pressure of 40
N/mm2. Find the thickness of the shell, if the permissible tensile stress is 80 N/mm2.

[Ans. 21 mm]

7. A thick spherical shell 80 mm diameter is required to withstand an internal pressure of 30
N/mm2. Determine the necessary thickness of the shell, if the maximum permissible tensile
stress is 80 N/mm2. [Ans.  7.8 mm]

QUESTIONS

1. What is the difference between a thin cylindrical shell and a thick cylindrical shell?

2. What do you understand by the term ‘Lame Theory’?

3. Write the assumptions for solving the problems on thick cylindrical shells?
4. Derive a relation for the hoop stress at the junction of a compound thick cylindrical shell.

5. Obtain an expression for the difference of radii for shrinkage of a compound thick cylindrical
shell.

6. Write the relations for the hoop stress in a thick spherical shell.
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33.1. Introduction
In the theory of simple bending, we have

discussed :
M
I

= 
σ = E
y R

where  M = Moment of resistance for the
bar or bending moment at the
bar section,

I = Moment of inertia of the bar
section about its centre of
gravity.

σ = Bending stress in the fibre of
the bar section,

y = Distance between the c.g. of the
bar section and the fibre,

E = Young’s modulus for the bar,
R = Radius of curvature of the bar.

33C h a p t e r
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The above mentioned formula is, sometimes, called straight-beam formula. The reason for the
same is that it can be applied, with sufficient accuracy, to the beams only with small initial curvature.

33.2. Assumptions for the Stresses in the Bending of Curved Bars
The stresses in the bending of curved bars are determined on the following assumptions :

1. The bar material is stressed within the elastic limit, and thus obeys Hooke’s law.

2. The transverse sections, which were plane before bending, remain plane after bending also.
3. The longitudinal fibres of the bar, parallel to the central axis, exert no pressure on each

other.

4. The transverse cross-section has at least one axis of symmetry, and the bending moment lies
on this plane.

5. The value of E (i.e., modulus of elasticity) is the same in tension and compression.

33.3. Types of Curved Bars on the Basis of Initial Curvature
The curved bars may be broadly grouped into the following two categories on the basis of their

initial curvature :

1. Bars with a small initial curvature, and

2. Bars with a large initial curvature.
The main characteristic of the above division is the ratio of the depth of bar section (h) to the initial

radius of curvature (R). If this ratio (i.e., h/R) is 0.2 or less, the bar is considered to be of small initial
curvature. But if this ratio is more than 0.2, the bar is considered to be of large radius of curvature.

Now we shall discuss the effect of bending of both the above types of bars in the following pages.

33.4. Bars with a Small Initial Curvature

                          (a) Initial curvature (b) Final curvature
Fig. 33.1

Consider a curved bar with a small initial curvature as shown in Fig. 33.1(a). Let the bar be given
more curvature after the application of the end moments as shown in Fig. 33.1 (b).

Let R = Initial radius of curvature of the bar,
R1 = Final radius of curvature,

θ = Initial angle subtended at the centre by the bar, and

(θ + δθ) = Final angle subtended at the centre of the bar.
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Now consider a layer PQ, which has been bent up to P′ Q′ after bending. Let y be the distance of
the layer PQ from RS, the neutral axis of the bar. We know that increase in the length of the bar,

δl = P′Q′ – PQ

... Strain. e =
′ ′ −δ = P Q PQl

PQ PQ
...(i)

= 1( )( ) ( )
( )

+ θ + δθ − + θ
+ θ

R y R y
R y

=
1( )

( )
R y y R y

R y
θ + δθ + θ + ⋅ δθ − θ − θ

+ θ

=
1( )

( )
R y R

R y
θ + δθ + ⋅δθ − θ

+ θ ...(ii)

From the geometry of the bar, we find that

RS = Rθ        and        R′S′ = R1 (θ + δθ).
Since RS is equal to R′S′ (being neutral axis) therefore,

Rθ = R1 (θ + δθ) = R1θ + R1· δθ
R1 · δθ = Rθ – R1θ = θ (R – R1)

or
1

1

( )−δθ =
θ

R R
R ...(iii)

Now substituting Rθ equal to R1 (θ + δθ) in equation (ii), and by solving it further we get,

e = 1( )
( ) ( )

R Ry y
R y R y R

−⋅ δθ − ×
+ θ +

[Substituting the value of 
δθ
θ  from equation (iii)]

Since y is small as compared to R0, therefore substituting (R + y) = R in the above equation,

e = 1

1 1

1 1− ⎛ ⎞× = −⎜ ⎟
⎝ ⎠

R Ry
y

R R R R

σ
E

=
1

1 1⎛ ⎞−⎜ ⎟
⎝ ⎠

y
R R

Stress Strain = 
E

⎛ ⎞
⎜ ⎟
⎝ ⎠
ä

∴ σ
y

=
1

1 1⎛ ⎞−⎜ ⎟
⎝ ⎠

E
R R

or
σ
y =

1

1 1⎛ ⎞= −⎜ ⎟
⎝ ⎠

M E
I R R

  = M
I y

⎛ ⎞σ
⎜ ⎟
⎝ ⎠
ä

The above expression may also be written as :

σ =
1

1 1Ey
R R

⎛ ⎞−⎜ ⎟
⎝ ⎠

EXAMPLE 33.1.   A steel bar 50 mm in diameter, is formed into a circular arc of 4 m radius
and supports an angle of 90o. A couple is applied at each end of the bar, which changes the slope
to 95o at one end relative to the other. Calculate the maximum bending stress due to the couple.
Take E as 200 GPa.

SOLUTION.  Given :  Diameter of bar (d) = 50 mm ; Radius of arc (R) = 4 m = 4000 mm ; Initial
angle subtended at the centre (θ) = 90o ; Final angle subtended at the centre (θ + δθ) = 95o and
modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2
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Distance between centre line of bar and extreme fibre,

y =
50 25 mm

2 2
d = =

And δθ = 95o – 90o = 5o

Let R1 = Final radius of the arc,

Using the relation,

δθ
θ = 1

1

( )−R R
R

5
90

= 1

1

4000 − R
R

or 5 R1 = 360000 – 90 R1

∴ R1 = 360000 3789 mm
95

=

Maximum bending stress due to couple

σ =
1

1 1.
⎛ ⎞−⎜ ⎟
⎝ ⎠

E y
R R

= 200 × 103 × 1 125
3789 4000

⎛ ⎞−⎜ ⎟
⎝ ⎠

= 69.6 N/mm2 Ans.

33.5. Bars with a Large Initial Curvature
In the previous article, we have discussed a case of bars with a small initial curvature (i.e. assuming

y to be small as compared to R). However, there are practical cases of bars, such as hooks, links and
rings etc., which have large initial curvature. The analysis of such bars was first dealt with Winkler
and later by Andrews and Pearson.

                          (a) Initial curvature (b) Final curvature
Fig. 33.2

Now consider a curved bar with a large initial curvature as shown in Fig. 33.2 (a). Let the bar be
given more curvature after the application of the end moments as shown in Fig. 33.2 (b).

Let R = Initial radius of curvature,

R1 = Final radius of curvature,



Chapter 33 : Bending of Curved Bars � 777

θ = Initial angle subtended at the centre of the bar,
φ = Final angle subtended at the centre of the bar,

σ0 = Bending stress in the centroidal fibre R′S′,
σ = Bending stress in the fibre P′Q′, and

dA = Area of fibre P′Q′.
Now consider a layer PQ which has been bent up to P′Q′ after bending. Let y be the distance of

the layer PQ from RS, the centroidal axis of the bar.

We know that the increase  in the length of the bar at the centroidal axis,
δl = R′S′ – RS

∴ Strain, e0 = 1δ ′ ′ − ′ ′= = −l R S RS R S
l RS RS

or e0 + 1 =
1

0

φ′ ′ =
θ

RR S
RS R ...(i)

and increase in the length of the bar at a distance y from the centroidal axis

δl = P′Q′ – PQ

∴ Strain, e = 1′ ′ − ′ ′δ = = −P Q PQ P Ql
l PQ PQ

or e + 1 = 1( )
( )
R yP Q

PQ R y
+ φ′ ′ =
+ θ ...(ii)

Dividing equation (ii) by (i),

0

1
1

e
e

+
+ =

11

1

1

( )
( )

R yR y
RR y

R R y
RR

++ φ
+ θ =φ +

θ

= 1
1

1

y
R
y
R

+

+

∴ e + 1 =
0

1
( 1) 1

1

ye
R

y
R

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

+

=
0 0

1 1
1

1

y ye e
R R

y
R

+ + +

+

∴ e =
0 0

1 1
1

1
1

y ye e
R R

y
R

+ + +
−

+

=
0 0

1 1

1 1

1

y y y
e e

R R R
y
R

+ + + − −

+
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=
0 0

1 1

1 1

1

y
e e y

R R R
y
R

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

+

=

0 0
0 0

1 1

1 1

1

e y e yye e y
R R R R R

y
R

⎛ ⎞+ − + + −⎜ ⎟
⎝ ⎠

+

0Adding and subtracting 
e y
R

⎛ ⎞
⎜ ⎟
⎝ ⎠
ä

=
0 0

1 1

1 1 1 11

1

y
e e y y

R R R R R
y
R

⎛ ⎞ ⎛ ⎞⎛ ⎞+ + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+

= e0 + 
0

1

1 1

1

e y y
R R
y
R

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

+

∴ e = e0 + 
0

1

1 1( 1)

1

e y
R R
y
R

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

+
...(iii)

We know that the bending stress in the fibre P′Q′,

σ = E · e = 
0

1
0

1 1( 1)

1

e y
R R

E e
y
R

⎡ ⎤⎛ ⎞+ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥+

⎢ ⎥+
⎢ ⎥
⎣ ⎦

...(iv)

and the force in an element of area dA at a distance y of from the centroidal axis,

= σ · δA = 
0

1
0

1 1( 1)

1

e y
R R

E e dA
y
R

⎡ ⎤⎛ ⎞+ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥+

⎢ ⎥+
⎢ ⎥
⎣ ⎦

The total normal force on the cross-section may be found out by integrating the above equation, i.e.,

P =
0

1
0

1 1( 1)

1

⎡ ⎤⎛ ⎞+ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥+

⎢ ⎥+⎢ ⎥
⎣ ⎦

∫
e y

R R
E e dA

y
R

=

0
1

0

1 1( 1)

1

E e y
R R

Ee dA dA
y
R

⎛ ⎞+ −⎜ ⎟
⎝ ⎠⋅ +

+
∫ ∫
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= E e0 A + E(e0 + 1)
1

1 1

1

y
dA

yR R
R

−
+

∫

Since the beam is in equilibrium, therefore the total normal force on the cross-section is zero.

or E e0 A + E(e0 + 1)
1

1 1 0
1

y
dA

yR R
R

⎛ ⎞− =⎜ ⎟
⎝ ⎠ +

∫ ...(v)

Now let us find out the vlaue of 
1

y
dA

y
R

+
∫  separately.

1

y
dA

y
R

+
∫ =

yR
dA

R y+∫

=
2 2yR y y

dA
R y
+ −

+∫ (ä   Adding and subtracting y2)

=
2( )+ −

+∫
y R y y

dA
R y

=
2y

y dA dA
R y

⋅ −
+∫ ∫

Since ,y dA⋅∫  being the first moment of area, about the central axis is zero, therefore

1

y dA
y
R

+
∫ =

2y dA
R y

−
−∫

Now substituting
2y dA

R y+∫ =
2

,Ah
R

  we get

1

y dA
y
R

+
∫ =

2Ah
R

− ...(vi)

where h2 is the constant of the section; h is called the link radius. It corresponds to the radius of
gyration in ordinary case. By using equation (vi) the equation (v) may be rewritten as

E e0 A + E(e0 + 1)
2

1

1 1 0Ah
R R R

⎛ ⎞⎛ ⎞− − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

e0 – (e0 + 1)
1

1 1
R R

⎛ ⎞−⎜ ⎟
⎝ ⎠

 × 
2h

R = 0

∴ e0 = (e0 + 1)
2

1

1 1 h
R R R

⎛ ⎞− ×⎜ ⎟
⎝ ⎠

...(vii)

We know that moment of resistance of the fibre
P′Q′ = y σ · dA

and the total moment of the section

M = y dAσ⋅∫
= yEe dA⋅∫
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Now substituting the value of e from equation (iii).

M =
0

1
0

1 1( 1)

1

e y
R R

y E e dA
y
R

⎡ ⎤⎛ ⎞+ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥+

⎢ ⎥+⎢ ⎥
⎣ ⎦

∫

=

2
0

1
0

1 1( 1)

1

E e y
R R

E y e dA dA
y
R

⎛ ⎞+ −⎜ ⎟
⎝ ⎠⋅ +

+
∫ ∫

=
2

0 0
1

1 1( 1)
1

y
E e y dA E e dA

yR R
R

⎛ ⎞⋅ + + −⎜ ⎟
⎝ ⎠ +

∫ ∫

Since y dA⋅∫ , being the first moment of area about the central axis, is equal to zero, therefore

M = E(e0 + 1)
2

1

1 1

1

y
dA

yR R
R

⎛ ⎞−⎜ ⎟
⎝ ⎠ +

∫

=
2

0
1

1 1( 1) y
E e R dA

R R R y
⎛ ⎞+ −⎜ ⎟ +⎝ ⎠ ∫

= 2
0

1

1 1( 1)E e Ah
R R

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

2 2y Ah
R y R

⎛ ⎞
=⎜ ⎟⎜ ⎟+⎝ ⎠

∫ä

Substituting the value of M in equation (vii),

e0 =
M

EAR
From equation (iv), we know that the bending stress,

σ =
0

1
0

1 1( 1)

1

e y
R R

E e
y
R

⎡ ⎤⎛ ⎞+ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥+

⎢ ⎥+⎢ ⎥⎣ ⎦

=
0

1
0

1 1( 1)
⎡ ⎤⎛ ⎞+ −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥+
+⎢ ⎥⎣ ⎦

e y R
R R

E e
R y

=
2( )

M R yME
EAR E Ah R y

⎡ ⎤
+⎢ ⎥

+⎢ ⎥⎣ ⎦

= 2( )

M R yM
AR Ah R y

+
+

=
2

2
1

( )

R yM
AR h R y

⎡ ⎤
+⎢ ⎥

+⎣ ⎦

where h2 is called the link radius, and corresponds to the radius of gyration in ordinary case.
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NOTES: 1. If the answer is positive, the bending stress is tensile.

2. If the answer is negative, the bending stress is compressive.

3. If the fibre PQ is on the other side of RS, the value of y is to be taken as negative. In such a case,

σ =
2

2
1

( )

R yM
AR h R y

⎡ ⎤
−⎢ ⎥

−⎢ ⎥⎣ ⎦

4. If the bending moment (M) tends to decrease the curvature, the bending stress is compressive.

33.6. Link radius for Standard Sections
We have discussed in the previous article, the value of link radius, which corresponds to radius of

gyration in ordinary case. The equation substituted was :

2 2

=
+∫
y AhdA

R y R

The above equation may also be written as:

h2 =
2yR dA

A R y+∫

=
2 2 2+ − + −

+∫
y Ry Ry R RR dA

A R y

(ä Adding and subtracting Ry and R2)

=
2( ) ( )y R y R y R RR dA

A R y
+ − + +

+∫

=
2⎛ ⎞

− +⎜ ⎟+⎝ ⎠
∫

R Ry R dA
A R y

=
2R dAy dA R dA R

A R y
⎡ ⎤⋅ − +⎢ ⎥+⎣ ⎦∫ ∫ ∫

=
20R dARA R

A R y
⎡ ⎤− +⎢ ⎥+⎣ ⎦∫ ( ). 0y dA =∫ä

=
3

2 R dAR
A R y

− +
+∫

=
3

2R dA R
A R y

−
+∫

where h is the link radius.

Now we shall discuss the value of link radius for the following standard sections :
1. Rectangular section.

2. Triangular section.

3. Trapezoidal section.
4. Circular section.

33.7. Value of Link Radius for a Rectangular Section
Consider a curved bar of rectangular section as shown in Fig. 33.3.

Let B = Breath of the bar section
D = Depth of the bar section
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∴ Area, A = B × D

R = Radius of curvature of the bar section
(i.e., the distance between the centroidal
axis and the axis of curvature.

Now condider a strip of thickness dy at a distance y from the centroidal
axis as shown in Fig. 33.3. Therefore area of the strip.

dA = b · dy

We know that the general equation for the link radius.

h2 =
3

2R dA R
A R y

−
+∫

=
3

22

2

D

D
B dyR R

B D R y

+

−

⋅ −
× +∫

= [ ]
3

22

2

log
D

e D

R B R y R
B D

+

−
+ −

×

=
3

22log
2e

R R D R
D R D

+⎛ ⎞−⎜ ⎟−⎝ ⎠

= 2⋅3 
3

22log
2

R R D R
D R D

+⎛ ⎞ −⎜ ⎟−⎝ ⎠

33.8. Value of Link Radius for Triangular Section
Consider curved bar of triangular section as shown in Fig. 33.4.

Let B = Base width of the bar section,

D = Depth of the bar section,

∴ Area, A = 2
BD

R = Radius of curvature of the bar section

(i.e. the distance between centroidal axis
and the axis of curvature).

R1 = Distance between the base of the bar

section and the axis of curvature, and
R2 = Distance between the top of the bar

section and the axis of curvature.

Now consider a strip of thickness dr at a distance y from the
centroidal (i.e. at a distance r from the axis of curvature) as shown
in Fig. 29.4. From the geometry of the figure, we find that the
width of the bar,

b = 2( )B R r
D

−

∴ Area of strip, dA = 2( )B R r dr
D

−

We know that the general equation for the link radius,

h2 =
3

2R dA R
A R y

−
+∫

Fig.33.3

Fig. 33.4
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=
2

1

3 2 2
( )R

R

B R r drR D R
A R y

−
−

+∫

=
2

1

3
2

2( )

R

R

R B drR r R
A D r

− −∫ [ ( ) ]R y r+ =ä

=

2 2

1 1

3
3

2

R R

R R

R B drR dr R
A D r

⎡ ⎤
⎢ ⎥× − −
⎢ ⎥
⎣ ⎦
∫ ∫

=
2 2

1 1

3
2

2[ log ] [ ]
R R

e
R R

R B R r r R
A D

⎧ ⎫⎪ ⎪× − −⎨ ⎬
⎪ ⎪⎩ ⎭

=
3

22
2 2 1

1

log ( )e
RR B R R R R

A D R
⎡ ⎤× − − −⎢ ⎥
⎣ ⎦

=
3

22
2

1
2.3 log

RR B R D R
A D R

⎡ ⎤× − −⎢ ⎥
⎣ ⎦

2( )R R D− =ä

33.9. Value of Link Radius for a Trapezoidal Section
Consider a curved bar of trapezoidal section as shown in Fig. 33.5.

Let B1 = Base width of the bar section,

B2 = Top width of the bar section,
D = Depth of the bar section,

∴ Area, A = 1 2( )
2

D B B+

R = Radius of curvature of the bar
section (i.e. the distance between
the centroidal axis of curvature.

R1 = Distance between the base of the
bar section and the axis of curva-
ture, and

R2 = Distance between the top of the bar
section and the axis of curvature.

Now consider a strip of thickness dr at a distance y from the
centroidal axis (i.e. at a distance r from the axis of curvature) as
shown in Fig. 29.5. From the geometry of the figure, we find that
the width of the bar,

b = B2 + 
( )1 2

2( )
B B

R r
D

−
−

∴ Area of strip, dA =
( )1 2

2 2( )
B B

B R r dr
D

⎡ ⎤−
+ −⎢ ⎥⎣ ⎦

We know that the general equation for the link radius :

h2 =
3

2R dA R
A R y

−
+∫ ...(i)

Fig. 33.5
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First of all, let us find out the value of 
dA

R y+  separately.

∴ dA
R y+∫ =

( )
2

1

1 2
2 2( )R

R

B B
B R r dr

D
R y

⎡ ⎤−
+ −⎢ ⎥⎣ ⎦

+∫

=
2

1

1 2
2 2

( )
( )

R

R

B B drB R r
D r
−⎡ ⎤+ −⎢ ⎥⎣ ⎦∫ ( )R y r+ =ä

=

2 2 2

1 1 1

1 2 2 1 2
2

( ) ( )
.

R R R

R R R

B B R B B rdr dr drB
r D r D r

− −
+ − ⋅∫ ∫ ∫

=
2 2 2

1 1 1

1 2 2 1 2
2

( ) ( )
[log ] [log ] [ ]

R R R

e e
R R R

B B R B B
B r r r

D D
− −

+ −

=
2 1 2 2 2 1 2

2 2 1
1 1

( ) ( )
log log ( )e e

R B B R R B B
B R R

R D R D
+ −

+ − × −

= 2 1 2 2 2
2 1 2

1 1

( )
2 3 log 2 3 log ( )

R B B R R
B B B

R D R
−

× ⋅ × + × ⋅ × − −

2 1( )R R D− =ä

=
2 1 2 2

2 1 2
1

( )
2.3 log ( )

R B B R
B B B

R D
−⎡ ⎤× + − −⎢ ⎥⎣ ⎦

Now substituting this value of 
dA

R y+∫  in equation (i)

h2 =
3

22 1 2 2
2 1 2

1

( )
2 3 log ( )

R B B RR B B B R
A R D

⎡ − ⎤⎛ ⎞⋅ × + − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Cor. 1. If we substitute A = BD ; R2 = R + 
2
D

 ; R1 = R – 
2
D  and B1 = B2 we shall obtain the equation

as obtained in rectangular section,

2. If we substitute A = ;
2

BD
R2 = R + 

2
D

; R1 = R – 
2
D

 and B2 = 0, we shall obtain the equation

as obtained in triangular section.

33.10. Value of Link Radius for a Circular Section
Consider a curved bar of circular section as shown in Fig. 33.6.
Let d = Diameter of the bar section

∴ Area, A = 2

4
dπ ×

R = Radius of curvature of the bar sec-
tion (i.e., the distance between the
centroidal axis and the axis of cur-
vature).

Now consider a strip of thickness dy at a distance y from the
centroidal axis as shown in Fig. 33.6. From the geometry of the
figure, we find that the width of the bar, Fig. 33.6



Chapter 33 : Bending of Curved Bars � 785

b = ( )2 2
2 22 2

2 4

⎡ ⎤ ⎛ ⎞− = × −⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎝ ⎠⎣ ⎦

d dy y

∴ Area of strip, dA =
2

2

4
d y dy

⎛ ⎞−⎜ ⎟
⎝ ⎠

We know that the general equation for the link radius,

h2 =
3

2R dA R
A R y

−
+∫

=

4
2

23
2

2

2

2
4

4

D

D

d y
R dy R

R yd

+

−

⎛ ⎞× −⎜ ⎟
⎝ ⎠ −

π +∫

=
2 4

2
1

16 8 16
d d

R
+ × (After simplification)

EXAMPLE 33.2.   A beam of rectangular section 20 mm × 40 mm has its centre line curved to
a radius of 50 mm. The beam is subjected to a bending moment of 4 × 105 N-mm. Determine the
intensity of maximum stresses in the beam. Also plot the bending stress across the section.

SOLUTION.   Given : Beam width = 20 mm ; Beam depth (D) = 40 mm ; Radius of beam (R) =
50 mm and bending moment (M) = 4 × 105 N-mm.

We know that beam area, A = 20 × 40 = 800 mm2

Fig. 33.7

Distance between centre line and extreme fibre,

y = 40 20 m m
2

=

Link radius for the beam section

h2 = ( )3
222.3 log

2
R R D R
D R D

+ −
−

=
( ) ( ) ( )

3
250 2 50 402.3 log 50

40 2 50 40
× +× −
× −

= 7188 log 2.333 – 2500 = 145 mm
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Maximum stress at bottom surface

σ1 =
( )

2

2
1

R yM
AR h R y

⎛ ⎞
+⎜ ⎟

⎜ ⎟+⎝ ⎠

=
( )

( )
25 50 204 10 1

800 50 145 50 20

⎛ ⎞×× ⎜ ⎟+
× ⎜ ⎟+

⎝ ⎠
= 59.26 N/mm2 (tensile)     Ans.

Maximum stress at top surface

σ2 = ( )
2

2
1

R yM
AR h R y

⎛ ⎞
−⎜ ⎟

⎜ ⎟−⎝ ⎠

=
( )

( )
25 50 204 10 1

800 50 145 50 20

⎛ ⎞×× ⎜ ⎟−
× ⎜ ⎟−

⎝ ⎠
= – 104.94 N/mm2    (compressive)      Ans.

The stress distribution is shown in Fig. 33.7 (b).

EXAMPLE 33.3.   A beam of circular section of diameter 20 mm has its centre line curved to
a radius of 50 mm. Find the intensity of maximum stresses in the beam, when subjected to a
moment of 5 kN-mm.

SOLUTION.  Given :  Diameter of section (d) = 20 mm ; Radius of curvature (R) = 50 mm and
moment (M) = 5 kN-mm = 5 × 103 N-mm

We know that area A = 2 220 100 mm
4
π × = π

and distance between centre line and extreme fibre,

y =
2
d

= 
20 10 mm
2

=

Link radius for the beam section

h2 =
2 4

2
1

16 8 16
+ ×d d

R

=
2 4

2
20 1 20 25.05 mm
16 8 16 50

+ × =
×

Maximum stress at bottom surface

σ1 =
( )

2

2

.
1

R yM
AR h R y

⎛ ⎞
+⎜ ⎟

⎜ ⎟+⎝ ⎠

= ( )
3 2

25 10 50 101 N/mm
100 50 25.05 50 10

⎡ ⎤× ×+⎢ ⎥π× +⎣ ⎦
= 5.61 N/mm2 (tensile)      Ans.

Maximum stress at top surface

σ2 =
( )

2

2

.
1

R yM
AR h R y

⎡ ⎤
−⎢ ⎥

−⎢ ⎥⎣ ⎦

= ( )
3 2

25 10 50 101 N/mm
100 50 25.05 50 10

⎡ ⎤× ×−⎢ ⎥π× −⎣ ⎦
= – 4.98 = 4.98 N/mm2  (compressive)         Ans.
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33.11. Crane Hooks
We have already discussed in Art. 33.5 the values of

bending stress, due to moment in bars with a large initial
curvature. The results of this article may be applied for finding
the stresses in the horizontal section (X1X2) through the centre
of curvature (O) of a hook, when it is subjected to a load. A
little consideration will show, that the horizontal section
through the centre of curvature is the most stressed section.

Now the stresses at the inner (X1) and the outer (X2) may
be found out by determining the bending stresses at these
points, and then adding the direct stresses due to the load W.
Since the bending moment M tends to increase the curvature,
therefore the bending stress at X1 is tensile, and that at X2 is
compressive. Thus the total stress at X1.

σ1 = ( )
2

1
2

1

.
1

R yW M
A AR h R y

⎛ ⎞
+ −⎜ ⎟

⎜ ⎟−⎝ ⎠

and σ2 = ( )
2

2
2

2

.
1

R yW M
A AR h R y

⎛ ⎞
+ +⎜ ⎟

⎜ ⎟−⎝ ⎠

where M = W.x

NOTES : The value of h2 may be found out for the given section.

EXAMPLE. 33.4.   A crane hook carries a load of 5 kN the line of load being at a
horizontal distance of 32 mm from the inside edge of
a horizontal section through the centre of curvature;
and the centre of curvature being 38 mm from the same
edge. The horizontal section is a trapezium whose
parallel sides are 13 mm and 26 mm and height is
32 mm. Determine the greatest tensile and compressive
stresses in the hook.

SOLUTION.
Given :  Load (W) = 5 kN = 5 × 103 N ; Distance

between the centre line and inner edge (x) = 32 mm ;
Distance between centre of curvature and inner edge
= 38 mm ; Outer width (B2) = 13 mm ; Inner width (B1) =
26 mm and depth (D) = 32 mm.

We know that moment, M = W x

= 5 × 103 × 32

= 160 × 103 N-mm

Area, A = 213 26 32 624 mm
2
+ × =

From the geometry of the hook section, we find that

y1 =
( )26 2 13 32 14.2 mm

26 13 3

+ ×
× =

+
∴ y2 = 32 – 14.2 = 17.8 mm

Fig. 33.8

Fig. 33.9
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Radius of inner edge. R1 = 38 mm
Radius of outer edge, R2 = 38 + 32 = 70 mm

Radius of central line, R = 38 + 14.2 = 52.2

Link radius for the hook section

h2 =
( ) ( )

3
1 2 2 22

2 1 2
1

2.3log
B B RRR B B B R

A R D

⎡ ⎤−⎛ ⎞
+ − − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

=
( ) ( ) ( )

3
52.2 26 13 70702.3log 13 26 13
624 38 32

⎡ ⎤−⎛ ⎞
+ − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
– (52.2)2

=
( ) ( ) ( )

3
252.2

2.3 0.2653 41.4 13 52.2
624

× × − −⎡ ⎤⎣ ⎦

= 142236.6 1.225 2725 68
624

× − =

Stress at X1

σ1 =
( )

1
2

1

.
1

R yW M
A AR h R y

2⎛ ⎞
+ −⎜ ⎟

⎜ ⎟−⎝ ⎠

=
( )

( )
23 3 52.2 14.25 10 160 10 1

624 624 52.2 68 52.2 14.2

⎛ ⎞×× × ⎜ ⎟+ −
× ⎜ ⎟−

⎝ ⎠

=  8.01 + 4.91 (1 – 14.97)
= – 60.58 N/mm 2

= 60.58 N/mm2  (compressive)     Ans.
Stress at X2

σ2 =
( )

2
2

2
2

.
1

R yW M
A AR h R y

⎛ ⎞
+ +⎜ ⎟

⎜ ⎟+⎝ ⎠

=
( )

( )
23 3 52.2 14.25 10 160 10 1

624 624 52.2 68 52.2 14.2

⎛ ⎞×× × ⎜ ⎟+ +
× ⎜ ⎟+

⎝ ⎠

= 8.01 +  4.91 (1 + 8.57)
= 54.99 N/mm2

= 54.99 N/mm2  (tensile)       Ans.

33.12.  Rings
The results obtained for the bending stress, due to moment in bars with a

large initial curvature, may be applied for rings also.
Consider a ring subjected to a pull (or push) through its centre as shown in

Fig. 29.10.

Let P = Pull on the ring,

R = Radius of curvature of the ring, and
A = Cross-sectional area of the ring.

Fig. 33.10
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Now consider the ring to be cut into one quadrant XY, fixed at Y as shown in Fig. 33.11. We know
that the cross-section of the ring at X is subjected to the following :

1. Pull ( )2
P

2. Moment (M0)

The moment at any point Q of the ring will be given by the relation,

M = ( )0 sin
2
PM R R+ − θ

= ( )0 1 sin
2

PRM + − θ

Now in order to find the value of M0, let us use the principle of
minimum strain energy i.e.,

0

dU
dM = 0

Considering a small element of the ring of length ds subtending an angle dθ at the centre. Therefore
change of slope in length ds

= R · dθ

or di =
dy M ds
ds EI

= ∫
Since the change of slope between X and Y is zero, therefore

0 =
2

0

M ds
EI

π

∫

=
2

0

M R d
EI

π

⋅ θ∫ ...(ä    ds = R · dθ)

=
2

0

R M d
EI

π

⋅ θ∫

= ( )
2

0

0

1 sin
2

R PRM d
EI

π

⎡ ⎤+ − θ θ
⎢ ⎥⎣ ⎦∫ ... (i)

∴ 0 = ( )0 2
PRM π− −
π

or M0 = ( )2
PR π−
π ...(ii)

Substituting this value of M0 in equation (i)

M = ( ) ( )1 sin
2 2

PR PRπ− + − θ
π

=
sin1

2
PR

θ⎛ ⎞−⎜ ⎟π⎝ ⎠
...(iii)

Fig. 33.11
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We know that at x, θ = and sin 1
2
π θ =

∴ Mx = ( )1 1 0.182
2

PR PR− = −
π

Similarly at y, θ = 0 and sin θ = 0

∴ My = ( )1 0 0.318− = =
π π

PRPR PR

For moment to be equal to zero, equating the equation (iii) to zero,

sin1
2

PR
θ⎛ ⎞−⎜ ⎟π⎝ ⎠

= 0

∴ sin θ =
2
π

or θ = 32.5º

Now the stress at any point, will be given by the algebraic sum of the direct stress (due to pull P)
and the bending stress.

Therefore general expression for the stress at point Q is :
σ = σ0 + σ

=
2

2

sin
1

2
P yM R

A AR R yh

θ ⎛ ⎞+ + ×⎜ ⎟+⎝ ⎠

where M =
sin1

2
PR

θ⎛ ⎞−⎜ ⎟π⎝ ⎠

and Y = Distance between the centre
line of the ring and the
extreme fibre of the ring.

Now the critical stresses will occur at the points A, B, C  and D of the ring.

Stress at A
Substituting the value of M,    θ = 0    and    y = – y1    in the general expression for stress,

σA =
2

1
2

1
0 1

yPR R
AR R yh

⎛ ⎞+ − ×⎜ ⎟π −⎝ ⎠

=
2

1
2

1
1

yP R
A R yh

⎛ ⎞− ×⎜ ⎟π −⎝ ⎠

Since the value of 
2

1
2

1

yR
R yh

×
−

 is always greater than unity, therefore the above expression

works out to be negative. It means that the net stress at A is compressive.
Stress at B

Now substituting the value of M,    θ = 
2
π

    and     y = – y1  in the general expression for stress,

σB =
( ) 2

1
2

1

1 1
2 1

2

PR
yP R

A AR R yh

−
⎛ ⎞π+ − ×⎜ ⎟−⎝ ⎠

Fig. 33.12
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=
2

1
2

1

0.182
1

2
yPP R

A A R yh

⎛ ⎞− − ×⎜ ⎟−⎝ ⎠

Since the value of 
2

1
2

1

yR
R yh

×
−

 is always greater than unity therefore the above expression works

out to be positive.  It means that the net stress at B is tensile.
Stress at C
Now substituting the value of M,    θ = 0    and    y = + y2    in the general expression for stress,

σC =
2

2
2

2
0 1

.
yPR R

AR R yh

⎛ ⎞+ + ×⎜ ⎟π +⎝ ⎠

=
2

2
2

2
1

yP R
A R yh

⎛ ⎞+ ×⎜ ⎟π +⎝ ⎠

A little consideration will show that the expression works out to be positive. It means that the
stress at C is tensile.

Stress at D

Now substituting the value of M,    θ = 
2
π

    and    y = + y2    in the general expression for stress,

σD =
( ) 2

2
2

2

1 1
2 1

2

PR
yP R

A AR R yh

−
⎛ ⎞π+ + ×⎜ ⎟+⎝ ⎠

=
2

2
2

2

0.182
1

2
yPP R

A A R yh

⎛ ⎞− + ×⎜ ⎟+⎝ ⎠

A little consideration will show that the above expression works out to be negative. It means that
the stress at D is compressive.

EXAMPLE 33.5.  A close circular ring made up of 20 mm diameter steel bar is subjected to a
pull of 10 kN, whose line of action passes through the centre of the ring. Find the maximum value
of tensile and compressive stresses in the ring, if the mean diameter of the ring is 160 mm.

SOLUTION.
Given : Diameter of steel bar (d) = 20 mm ; Pull (P) = 10 kN =  104 N and diameter of the ring (D) = 160

mm or radius of ring (R) = 80 mm.

We know that area, A = ( )2 220 100 mm
4
π × = π

and distance between centre line of the ring and extreme fibre,
y = y1 = y2 = 10 mm

Link radius for the ring section,

h2 =
2 4

2
1

16 8 16
d d

R
+ ×

=
( ) ( )

( )

2 4

2

20 201 25.2
16 8 16 80

+ × =
×

Stress at A,

σA =
2

1
2

1
1
⎛ ⎞− ×⎜ ⎟π −⎝ ⎠

yP R
A R yh

Fig. 33.13
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=
( )

( )
24 8010 101

100 25.2 80 10

⎛ ⎞
⎜ ⎟− ×

π× π ⎜ ⎟−
⎝ ⎠

= – 357.83 N/mm2

= 357.83 N/mm2 (compressive)      Ans.
Stress at B,

σB =
2

1
2

1

0.182
1

2
⎛ ⎞− − ×⎜ ⎟−⎝ ⎠

yPP R
A A R yh

=
( )

( )
24 4 8010 0.182 10 101

2 100 100 25.2 80 10

⎛ ⎞× ⎜ ⎟− − ×
× π π ⎜ ⎟−

⎝ ⎠

= 220.3  N/mm2 (tensile)      Ans.
Stress at C

σC =
2

2
2

2
1

yP R
A R yh

⎛ ⎞+ ×⎜ ⎟π +⎝ ⎠

=
( )

( )
24 8010 101

100 25.2 80 10

⎛ ⎞
⎜ ⎟+ ×

π× π ⎜ ⎟+
⎝ ⎠

= 296  N/mm2 (tensile)      Ans.
Stress at D

σD =
2

2
2

2

0.182
1

2
⎛ ⎞− + ×⎜ ⎟+⎝ ⎠

yPP R
A A R yh

=
( )

( )
24 4 8010 0.182 10 101

2 100 100 25.2 80 10

⎛ ⎞× ⎜ ⎟− + ×
× π π ⎜ ⎟+

⎝ ⎠

= – 153.4 N/mm2

= 153.4  N/mm2 (compressive)      Ans.

33.12. Chain Links
A simple chain link consists of semi-circular ends and straight sides

connecting them as shown in Fig. 33.14. The theory of stress distribu-
tion, for the rings, may also be extended to determine the stress in a
chain link. Now consider a chain link subjected to a pull (or push) through
its centre as shown in Fig. 33.14.

Let P = Pull on the link,

R = Radius of curvature of the ring,
A = Cross-sectional area of the ring,

l = Length of the straight portion.

We know that the moment for the circular portion,

M = 0 (1 sin )
2

PRM + − θ

and for straight portion,

M = 0 2
PRM + Fig. 33.14
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where M0 =
2

2
PR l R

l R
+⎛ ⎞

⎜ ⎟+ π⎝ ⎠

Thus the stress at A, σA =
2

1
2

1

2 1
2

yP l R R
A l R R yh

⎛ ⎞+⎛ ⎞ − ×⎜ ⎟⎜ ⎟+ π −⎝ ⎠⎝ ⎠

Similarly, σB =
2

1
2

1

2 1
2 2

yP PR R
A A l R R yh

⎛ ⎞π −⎛ ⎞− − ×⎜ ⎟⎜ ⎟+ π −⎝ ⎠⎝ ⎠

σC =
2

2
2

2

2 1
2

yP l R R
A l R R yh

⎛ ⎞+⎛ ⎞ + ×⎜ ⎟⎜ ⎟+ π −⎝ ⎠⎝ ⎠

and σD =
2

2
2

2 1
2 2

yP PR R
A A l R R yh

⎛ ⎞π −⎛ ⎞− + ×⎜ ⎟⎜ ⎟+ π +⎝ ⎠⎝ ⎠

EXAMPLE 33.6.  A chain link is made of 20 mm diameter round steel with mean radius of
circular ends 25 mm, the length of straight portion being 20 mm. Determine the values of maximum
tensile and compressive stresses, when the link is subjected to a pull of 20 kN at its ends.

SOLUTION.  Given :  Diameter of steel bar (d) = 20 mm ; Radius of link (R) = 25 mm ; Length of
straight portion (l) = 20 mm and pull (P) = 20 kN = 2 × 104 N

We know that area, A =
2 2(20) 100 mm

4
π × = π

and distance between centre line of the link and the extreme fibre,

y = y1 = y2 = 10 mm

Link radius for the link secion,

h2 =
2 4

2
1

16 8 16
d d

R
+ ×

=
2 4

2
(20) (20)1 27
16 8 16 (25)

+ × =
×

Stress at A σA =
2

1
2

1

2 1
2

yP l R R
A l R R yh

⎛ ⎞+⎛ ⎞ − ×⎜ ⎟⎜ ⎟+ π −⎝ ⎠⎝ ⎠

= ( ) ( )
( )

24 252 10 20 2 25 101
2 100 20 25 27 25 10

⎛ ⎞× + × ⎜ ⎟− ×
× π + π× ⎜ ⎟−

⎝ ⎠

= – 326.2 N/mm2 = 326.2 N/mm2 (compressive)

Stress at B σB =
2

1
2

1

2 1
2 2

yP PR R
A A l R R yh

⎛ ⎞π −⎛ ⎞− − ×⎜ ⎟⎜ ⎟+ π −⎝ ⎠⎝ ⎠

=
4 4 22 10 2 10 25 2 (25) 1012 100 2 100 20 25 27 25 10

⎛ ⎞× × × π −⎛ ⎞− ⎜ ⎟ − ×⎜ ⎟× π × π + π×⎝ ⎠ −⎝ ⎠
= 164.8 N/mm2 (tensile)

Stress at C σC =
2

2
2

2

1 2 1
2

⎛ ⎞+⎛ ⎞ + ×⎜ ⎟⎜ ⎟+ π +⎝ ⎠⎝ ⎠

yP R R
A l R R yh

Fig. 33.15



794 � Strength of Materials

=
24 (25)2 10 20 2 25 101

2 100 20 25 27 (25 10)

⎛ ⎞× + ×× + ×⎜ ⎟⎜ ⎟× π × π× +⎝ ⎠

= 172.2 N/mm2 (tensile)

Stress at D σD =
2

2
2

2

2 1
2 2

⎛ ⎞π −⎛ ⎞− + ×⎜ ⎟⎜ ⎟+ π +⎝ ⎠⎝ ⎠

yP PR R
A A l R R yh

= ( ) 24 4 (25)2 10 2 10 25 2 101
2 100 2 100 20 25 27 (25 10)

⎛ ⎞× × × π −− + ×⎜ ⎟× π × π + π× +⎝ ⎠

= –38.3 N/mm2 = 38.3 N/mm2 (compressive)

Thus the maximum tensile stress will occur at C equal to 172.2 N/mm2 and maximum compressive
stress will occur at A equal to 326.3 N/mm2. Ans.

EXERCISE 33.1

1. A beam of rectangular section 30 mm × 40 mm has its central line curved to a radius of 60 mm.
The beam is subjected to a bending moment of 120 × 103 N-mm. Find the greatest tension and
compression stresses in the beam. [Ans. 13 N/mm2; – 21 N/mm2]

2. A crane hook carries a load of 45 kN, the line of load being at a horizontal distance of 40 mm
from inner edge of the section, and the centre of curvature coincides with the load line. The
horizontal section  is trapezium with 50 mm depth, inner width being  60 mm and the outer
width being 30 mm. Find  the greatest tensile and compressive stresses in the hook.

[Ans. 152.8 N/mm2; – 71.6 N/mm2]

3. The section of a crane hook is trapezium, whose inner and outer sides are 20 mm and 10 mm
respectively and depth 25 mm. The centre of curvature of the section is at a distance of 25 from
the inside of the section and the load line is 20 mm from the same point. Find the greatest load,
the hook will carry, if the maximum stress is not to exceed 70 N/mm2. [Ans.  3 kN]

4. A chain link is made of 40 mm round steel and is semi-circular at each end, the mean diameter
of which is 80 mm. The straight sides of the link are also 80 mm. If the link carries a load of 100
KN, estimate the greatest tensile and compressive stresses in the link.

[Ans. 45.5 N/mm2; 93.5 N/mm2]

QUESTIONS

1. Give the assumptions for determining the stresses in the bending of curved bars.
2. Derive an expression for the bending stress on the extreme fibres of a bar (i) having a small

initial curvature, and (ii) having a large initial curvature.

3. What is link radius? Obtain the values of link radius for a (a) triangular section and
(b) trapezoidal section.

4. How will you find out the values of maximum tensile and compressive stresses in a crane hook?
5. Obtain from fundamentals the relation for the maximum compressive and tensile stresses in

ring.
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34.1. Introduction
A structural member, subjected to an axial

compressive force, is called a strut. As per defi-
nition, a strut may be horizontal, inclined or even
vertical. But a vertical strut, used in buildings or
frames, is called a column.

34.2. Failure of a Column or Strut
It has been observed, that when a column or

a strut is subjected to some compressive force,
then the compressive stress induced,

σ =
P
A

where P = Compressive force and

A = Cross-sectional area of the column.

34C h a p t e r
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A little consideration will show, that if the force or load is gradually increased the column will
reach a stage, when it will be subjected to the ultimate crushing stress. Beyond this stage, the column
will fail by crushing. The load corresponding to the crushing stress, is called crushing load.

It has also been experienced that sometimes, a compression member does not fail entirely by
crushing, but also by bending i.e., buckling. This happens in the case of long columns. It has also been
observed that all the short columns fail due to their crushing. But, if a long column is subjected to a
compressive load, it is subjected to a compressive stress. If the load is gradually increased, the col-
umn will reach a stage, when it will start buckling. The load, at which the column just buckles is
called buckling load, criticial load or crippling load and the column is said to have developed an
elastic instability. A little consideration will show that for a long column, the value of buckling load
will be less than the crushing load. Moreover, the value of buckling load is low for long columns and
relatively high for short columns.

34.3. Euler’s Column Theory
The first rational attempt, to study the stability of *long columns, was made by Mr. Euler. He

derived an equation, for the buckling load of long columns based on the bending stress. While deriv-
ing this equation, the effect of direct stress is neglected. This may be justified with the statement that
the direct stress induced in a long column is negligible as compared to the bending stress. It may be
noted that the Euler’s formula cannot be used in the case of short columns, because the direct stress is
considerable and hence cannot be neglected.

34.4. Assumptions in the Euler’s Column Theory
The following simplifying assumptions are made in the Euler’s column theory:

1. Initially the column is perfectly straight and the load applied is truly axial.

2. The cross-section of the column is uniform throughout its length.

3. The column material is perfectly elastic, homogeneous and isotropic and thus obeys Hooke’s law.

4. The length of column is very large as compared to its cross-sectional dimensions.

5. The shortening of column, due to direct compression (being very small) is neglected.

6. The failure of column occurs due to buckling alone.

34.5. Sign Conventions
Though there are different signs used for the bending of columns in different books, yet we shall

follow the following sign conventions which are commonly used and internationally recognised.

Fig. 34.1

* As a matter of fact, mere length is not the only criterion for a column to be called long or short. But it has
an important relation with the lateral dimensions of the column.
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1. A moment, which tends to bend the column with convexity towards its initial central line as
shown in Fig. 34.1 (a) is taken as positive.

2. A moment, which tends to bend the column with its concavity towards its initial central line as
shown in Fig. 34.1 (b) is taken as negative.

34.6. Types of End Conditions of Columns
In actual practice, there are a number of end conditions, for columns. But, we shall study the

Euler’s column theory on the following four types of end conditions, which are important from the
subject point of view:

1. Both ends hinged,
2. Both ends fixed,

3. One end is fixed and the other hinged, and

4. One end is fixed and the other free.
Now we shall discuss the value of critical load for all the above mentioned type of and conditions

of columns one by one.

34.7. Columns with Both Ends Hinged
Consider a column AB of length l hinged at both of its ends A and B and

carrying a critical load at B. As a result of loading, let the column deflect into a
curved form AX1B as shown in Fig. 34.2.

Now consider any section X, at a distance x from A.

Let P = Critical load on the column,

y = Deflection of the column at X.

∴ Moment due to the critical load P,

M = – P · y

∴
2

2

d y
EI

dx
= – P · y

∴
2

2
·

d y
EI P y

dx
+ = 0

or
2

2
·

d y P y
EIdx

+ = 0

The general solution of the above differential equation is

y = · cos sinP PA x B x
EI EI

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

where A and B are the constants of integration. We know that when x = 0, y = 0. Therefore A = 0.
Similarly when x = l, then y = 0. Therefore

0 = B sin Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

... (Minus sign due to
    concavity towards initial
    centre line)

Fig. 34.2
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A little consideration will show that either B is equal to zero or sin Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is equal to zero.

Now if we consider B to be equal to zero, then it indicates that the column has not bent at all. But if

sin Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 0

∴ Pl
EI

= 0 = π = 2π = 3π = .......

Now taking the least significant value,

Pl
EI

= π

or P =
2

2

EI

l

π

34.8. Columns with One End Fixed and the Other Free
Consider a column AB of length l fixed at A and free at B and carrying a critical load at B. As a

result of loading, let the beam deflect into a curved form AX1B1 such that the
free end B deflects through a and occupies a new position B1 as shown in Fig.
34.3.
Now consider any section X at a distance x from A.

Let P = Critical load on the column and

y = Deflection of the column at X.
∴ Moment due to the critical load P,

M = + P (a – y)

= P · a – P · y

∴
2

2

d y
EI

dx
= P · a – P · y

or
2

2 ·
d y P y

EIdx
+ =

·P a
EI

The general solution of the above differential equation is,

y = A cos sinP Px B x a
EI EI

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
...(i)

where A and B are the constants of integration.   We know that when x = 0,   then y = 0,   therefore
A = – a.   Now differentiating the above equation,

dy
dx

= sin cosP P P PA x B x
EI EI EI EI

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

We also know that when x = 0, then 
dy
dx

 = 0. Therefore

0 =
PB
EI

... (Plus sign due to
convexity towards
initial centre line)

Fig. 34.3
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A little consideration will show that either B is equal to zero of P
EI

 is equal to zero. Since

the load P is not equal to zero, it is thus opbvious that B is equal to zero. Now substituting the values
A = – a and B = 0 is equation (i),

y = – a cos 1 cosP Px a a x
EI EI

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ = −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

We also know that when x = l,  then y = a. Therefore

a = 1 cos Pa l
EI

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∴ cos Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 0

or
Pl
EI

=
3 5

2 2 2
π π π= =

Now taking the least significant value,

Pl
EI

=
2
π

∴ P =
2

24

EI

l

π

34.9. Columns with Both Ends Fixed
Consider a column AB of length l fixed at both of its ends A and B and

carrying a critical load at B. As a result of loading, let the column deflect as
shown in Fig. 34.4

Now consider any section X at a distance x from A.
Let P = Critical load on the column and

y = Deflection of the column at X.

A little consideration will show that since both the ends of the beam AB are
fixed and it is carrying a load, therefore there will be some fixed end moments
at A and B.

Let M0 = Fixed end moments at A and B.

∴ Moment due to the critical load P,

M = – P · y

2

2

d y
EI

dx
= M0 – P · y

∴
2

2 ·
d y P y

EIdx
+ = 0M

EI

The general solution of the above differential equation is:

y = 0cos sin
MP PA x B x

EI EI P
⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

...(i)

...(Minus sign due to concavity
initial centre line)

Fig. 34.4
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where A and B are the constants of integration. We know that when x = 0, then y = 0. Therefore

0M
A

P
= − . Now differentiating the above equation,

dy
dx

= sin cosP P P PA x B x
EI EI EI EI

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

We also know that when x = 0, then 
dy
dx

 = 0. Therefore

0 =
PB
EI

A little consideration will show, that either B is equal to zero, or
P
EI

 is equal to zero. Since the

load P is not equal to zero, it is thus obvious that B is equal to zero. Substituting the values 0M
A

P
=

and B = 0 in equation (i),

y = 0 0 0cos 1 cos
M M MP Px l
P EI P P EI

⎡ ⎤⎛ ⎞ ⎛ ⎞
− + = −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
     We also know that when x = l, then y = 0. Therefore

0 = 0 1 cos
M Pl
P EI

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∴ cos Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 1

or
Pl
EI

= 0 = 2π = 4π = 6π = .......

Now taking the least significant value,

Pl
EI

= 2π

∴ P =
2

2

4 EI

l

π

Alternative Methods

1. The fixed beam AB may bne considered as equivalent to a column of length 
2
l

 with both ends

hinged (i.e., middle portion of the column as shown in Fig. 34.4).

∴ Critical load, P =
2 2

2 2

4

2

EI EI

ll

π π=
⎛ ⎞
⎜ ⎟
⎝ ⎠

2. The fixed beam AB may also be considered as equivalent to a column of length 
4
l

 with one end

fixed and the other free (i.e., lower one-fourth portion of the beam as shown in Fig. 34.4).

∴ Critical load, P =
2 2

2 2

4

4
4

EI EI

ll

π π=
⎛ ⎞
⎜ ⎟
⎝ ⎠
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34.10. Columns with One End Fixed and the Other Hinged
Consider a column AB of length l fixed at A and hinged at B and carrying

a critical load at B. As a result of loading, let the column deflect as shown in
Fig. 34.5.

Now consider any section X at a distance x from A.

Let P = Critical load on the column, and

y = Deflection of the beam at X,

A little consideration will show, that since the beam AB is fixed at A and
it is carrying a load, therefore, there will be some fixed end moment at A. In
order to balance the fixing moment at A, there will be a horizontal reaction at
B.

Let MA = Fixed end mement at A and

H = Horizontal reaction at B.
∴ Moment due to critical load P,

M = – P · y

or
2

2

d y
EI

dx
= H (l – x) – P · y

∴
2

2
·

d y P y
EIdx

+ =
( )H l x
EI

−

The general solution of the above differential equation is

A =
( )

cos sin
H l xP Py x B x

EI EI P
⎛ ⎞ ⎛ ⎞ −+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

...(i)

where A and B are the constants of integration. We know that when x = 0, they y = 0. Therefore A = 
Hl
P

.

Now differentiating the above equation,

dy
dx

= sin cosP P P P HA x B x
EI EI EI EI P

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

We know that when x = 0, 
dy
dx

= 0. Therefore

0 =
P HB
EI P

−

∴ B =
P EI
H P

×

We also know that when x = l, then y = 0. Therefore substituting these values of x, A and B is
equation (i),

0 = cos sinHl P H EI Pl l
P EI P P EI

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∴ sinH EI Pl
P P EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

= cosHl Pl
P EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

Fig. 34.5...(Minus sign due to conscavity
    towards initial centre line
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or tan Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

=
Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

A little consideration will show that the value of 
Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

in radians, has to be such that its

tangent is equal to itself. We know that the only angle, the value of whose tangent is equal to itself, is
about 4.5 radians.

∴ Pl
EI

= 4.5          or          
2 20.25Pl

EI
× =           or         P= 2

20.25 EI

l

∴ P
2

2

2 EI

l

π=

NOTE: A little consideration will show that 20.25 is not exactly equal to 2π2, but approximately equal to 2π2.
This has been done to rationalise the value of P, i.e., crippling load in various cases.

34.11. Euler’s Formula and Equivalent length of a Column
In the previous articles, we have derived the relations for the crippliing load under various end

conditions. Sometimes, all these cases are represented by a general equation called Euler’s formula,

PE =
2

2
e

EI

L

π

where Le  is the equivalent or effective length of column.
The is another way of representing the equation, for the crippling load by an equivalent length

of effective length of a column. The equivalent length of a given column with given end conditions,
is the length of an equivalent column of the same material and cross-section with both ends hinged
and having the value of the crippling load equal to that of the given column.

The equivalent lengths (L) for the given end conditions are given below:

Table 34.1
S.No. End conditions Relation between equivalent Crippling load (P)

length (Le)  and actual length (l)

1. Both ends hinged Le = l P = ( )
2

2

EI

l

π
= 

2

2

EI

l

π

2. One end fixed and the other free Le = 2 l P =
2

2(2 )

EI

l

π
= 

2

24

EI

l

π

3. Both ends fixed Le = 
2
l

P =
2

2

2

EI

l

p

Ê ˆ
Ë ¯

= 
2

2

4 EI

l

π

4. One end fixed and the other hinged Le = 
2
l

P =
2

2

2

EI

l

p

Ê ˆ
Á ˜Ë ¯

= 
2

2

2 EI

l

π

NOTE. The vertical column will have two moments of inertia (viz., IXX and LYY). Since the column will tend to
buckle in the direction of leas moment of inertia, therefore the least value of the two moments of inertia
is to be used in tlhe relation.
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34.12. Slenderness Ratio
We have already discussed in Art. 34.11 that the Euler’s formula for the crippling load,

PE =
2

2
e

EI

L

π
...(i)

We know that the buckling of a column under the crippling load will take place about the axis of
least resistance. Now substituting I = Ak2 (where A is the area and k is the least radius of gyration of
the section) in the above equation,

PE =
( )2 2 2

2 2
e e

E Ak EA

L L
k

p p
=
Ê ˆ
Á ˜Ë ¯

...(ii)

where eL
k

 is known as slenderness ratio. Thus slenderness ratio is defined as ratio of equivalent (or

unsupported) length of column to the least radius of gyration of the section.
Slenderness ratio does not have any units.

NOTE. It may be noted that the formula for crippling load, in the pervious articles, have been derived on the

assumption the the slenderness ratio eL
k

 is so large, that the failure of the column occurs only due to

bending, the effect of direct stress (i.e., 
P
A

) being negligible.

34.13. Limitation of Euler’s Formula
We have discussed in Art. 32.12 that the Euler’s formula for the crippling load,

PE =
2

2
e

EA

L
k

p

Ê ˆ
Á ˜Ë ¯

∴ Euler’s crippling stress,

σE =
2

2
e

EP
A L

k

p=
Ê ˆ
Á ˜Ë ¯

A little consideration will show that the crippling
stress will be high, when the slenderness ratio is small.
We know that the crippling stress for a column cannot
be more than the crushing stress of the column mate-
rial. It is thus obvious that the Euler’s formula will
give the value of crippling stress of the column (equal
to the crushing stress of the column material) corre-
sponding to the slenderness ratio. Now consider a mild
steel column. We know that the crushing stress for the
mild steel is 320 MPa or 320 N/m2 and Young’s modu-
lus for the mild steel is 200 GPa or 200 × 103 N/mm2.

Now equating the crippling stress to the crushing stress,

320 =
2 2 3

2 2

(200 10 )

e e

E

L L
k k

π π × ×=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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∴
2

eL
k

Ê ˆ
Á ˜Ë ¯

=
2 3200 10

320
π × ×

or eL
k

= 78.5 say 80

Thus, if the slenderness ratio is less than 80 the Euler’s formula for a mild steel column is not
valid.

Sometimes, the columns, whose slenderness ratio is more than 80 are known as long columns
and those whose slenderness ratio is less than 80 are known as short columns. It is thus obvious that
the Euler’s formula holds good only for long columns.
NOTE. In the Euler’s formula, for crippling load, we have not taken into account the direct stresses induced in

the material due to the load, (which increases gradually from zero to its crippling value). As a matter of
fact, the combined stress, due to direct load and slight bending reaches its allowable value at a load, lower
than that required for buckling ;  and therefore this will be the limiting value of the safe load.

EXAMPLE 34.1. A steel rod 5 m long and of 40 mm diameter is used as a column, with on
end fixed and the other free. Determine the crippling load by Euler’s formula. Take E as 200
GPa.

SOLUTION. Given : Length (l) = 5 m = 5 × 103 mm ;  Diameter of column (d) = 40 mm and
modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

We know that moment of iertia of the column section,

I =
4 4( ) (40)

64 64
dπ π× = ×  = 40 000 π mm4

Since the column is fixed at one end and free at the other, therefore equivalent length of the
column,

Le = 2 l = 2 × (5 × 103) = 10 × 103 mm

∴ Euler’s crippling load,   PE =
2 2 3

2 3 2

(200 10 ) (40000 )

(10 10 )e

EI

L

π π × × × π=
×

 = 2480 N

= 2.48 kN        Ans.

EXAMPLE 34.2. A hollow alloy tube 4 m long with external and internal diameters of 40 mm
and 25 mm respectively was found to extend 4.8 mm under a tensile load of 60 kN. Find the buckling
load for the tube with both ends pinned. Also find the safe load on the tube, taking a factor of safety
as 5.

SOLUTION. Given : Length l = 4 m ;  External diameter of column (D) = 40 mm ;  Internal
diameter of column (d) = 25 mm ;  Deflection (δl ) = 4.8 mm ;  Tensile load = 60 kN = 60 × 103 N
and factor of safety = 5.

Buckling load for the tube
We know that area of the tube,

A = 2 2 2 2[ ] [(40) (25) ]
4 4

D dπ π× − = −  = 765.8 mm2

and moment of inertia of the tube,

I =
4 4 4 4[ ] [(40) (25) ]

64 64
D dπ π= = −  = 106 500 mm4

We also know that strain in the alloy tube,

e = 3
4.8 0.0012

4 10

l
l
δ = =

×
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and modulus of elasticity for the alloy,

E =
360 10Load

Area × Strain 765.8 0.0012
×=
×  = 65 290 N/mm2

Since the column is pinned at its both ends, therefore equivalent length of the column,
Le = l = 4 × 103 mm

∴ Euler’s buckling load, PE =

2 2

2 3 2

65290 106500

(4 10 )e

EI

L

π π × ×=
×  = 4290 N

= 4.29 kN        Ans.
Safe load for the tube

We also know that safe load for the tube

=
Buckling load 4.29

Factor of safety 5
=  = 0.858 kN        Ans.

EXAMPLE 34.3. Compare the ratio of the strength of a solid steel column to that of a hollow
of the same cross-sectional area. The internal diameter of the hollow column is 3/4 of the exter-
nal diameter. Both the columns have the same length and are pinned at both ends.

SOLUTION. Give : Area of solid steel colum AS = AH (where AH = Area of hollow column) ;
Internal diameter of hollow column (d) = 3 D/4 (where D = External diameter) and length of solid
column (lS) = lH (where lH = Length of hollow column).

Let D1 = Diameter of the solid column,

kH = Radius of gyration for hollow column and

kS = Radius of gyration for solid column.
Since both the columns are pinned at their both ends, therefore equivalent length of the solid

column,

LS = lS = LH = lH = L

We know that Euler’s crippling load for the solid column,

PS =

2 22

2 2

· ·S S

H

E A kEI

L L

ππ = ...(i)

Similarly Euler’s crippling load for the hollow column

PH =

2 22

2 2

· ·H H

H

E A kEI

L L

ππ = ...(ii)

Dividing equation (ii) by (i),

H

S

P
P

=

22 2
2

2 2 2

2 2 2
1 1 1

3
416

16

H

S

DD d D
k D d
k D D D

⎛ ⎞+ = ⎜ ⎟⎛ ⎞ + ⎝ ⎠= = =⎜ ⎟
⎝ ⎠

=
2

2
1

25

16

D

D
...(iii)

Since the cross-sectional areas of the both the columns is equal, therefore

2
14

Dπ × =
2 2

2 2 2 3 7
( )

4 4 4 4 16
D D

D d D
⎡ ⎤π π π⎛ ⎞− = − = ×⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
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∴ 2
1D =

27
16
D

Now substituting the value of 2
1D  in equation (iii),

H

S

P
P

=
2

2

25 25
77

16
16

D

D
=

×
        Ans.

EXAMPLE 34.4. An I section joist 400 mm × 200 mm × 20 mm and 6 m long is used as a strut
with both ends fixed. What is Euler’s cripp;ing load for the column? Take Young’s modulus for
the joist as 200 GPa.

SOLUTION. Given : Outer depth (D) = 400 mm ;  Outer width (B) = 200 mm ;  Length (l) = 6 m =
6 × 103 mm and modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2.

From the geometry of the figure, we find that inner depth,

d = 400 – (2 × 20) = 360 mm
and inner width, b = 200 – 20 = 180 mm

We know that moment of inertia of the joist section about X-X axis,

IXX = 2 31 [ ]
12

BD ba−

=
3 3 41 [200 (400) 180 (360) ]mm

12
× − ×

= 366.8 × 106 mm4                          ...(i)

Similarly, IYY =
3 3

42 (200) 360 (20)
2 mm

12 12

⎡ ⎤× ×× +⎢ ⎥
⎢ ⎥⎣ ⎦

= 2.91 × 106 mm4 ...(ii)

Since IYY is less than IXX, therefore the joist will tend to buckle in Y-Y direction. Thus, we shall
take the value of I as IYY = 2.91 × 106 mm4. Moreover, as the column is fixed at its both ends, therefore
equivalent length of the column,

Le =
3

3(6 10 )
3 10 mm

2 2
l ×= = ×

∴ Euler’s crippling load for the column,

PE =
2 2 3 6

3
2 3 2

(200 10 ) (2.91 10 )
638.2 10 N

(3 10 )e

EI

L

π π × × × ×= = ×
×

= 638.2 kN        Ans.

EXAMPLE 34.5. A T-section 150 mm × 120 mm × 20 mm is used as a strut of 4 m long with
hinged at its both ends. Calculate the crippling load, if Young’s modulus for the material be 200
GPa.

SOLUTION. Given : Size of T-section = 150 mm × 120 mm × 20 mm ;  Length (l) = 4 m = 4 × 103

mm and Young’s modulus (E) = 200 GPa = 200 × 103 N/mm2.

First of all, let us find the centre of the T-section; Let bottom of the web be the axis of
reference.

Fig. 34.6
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Web
a1 = 100 × 20 = 2000 mm2

y1 =
100 50 mm

2
=

Flange
a2 = 150 × 20 = 3000 mm2

y2 =
20120 110mm
2

⎛ ⎞− =⎜ ⎟
⎝ ⎠

We know that distance between the centre of gravity of the T-
section and bottom of the web

y = 1 1 2 2

1 2

(2000 50) (3000 110)
86 mm

200 3000
a y a y

a a
+ × + ×= =
+ +

We also know that moment of inertia of the T-section about X-X axis,

IXX =
3 3

2 220 (100) 150 (20)
2000 (36) 3000 (24)

12 12

⎛ ⎞ ⎛ ⎞× ×+ × + + ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

mm4

= (4.26 × 106) + (1.83 × 106) = 6.09 × 106 mm4

Similarly, IYY =
3 3

6 4100 9200) 20 (150)
5.069 10 mm

12 12
× ×+ = ×

Since IYY is less than IXX, therefore the column will tend to buckle in Y-Y direction. Thus, we shall
take the value of I as IYY = 5.69 × 106 mm4. Moreover, as the column is hinged at its both ends,
therfore length of the column,

Le = l = 4 × 103 mm

∴ Euler’s crippling load, PE =
2 2 3 6

3
2 3 2

(200 10 ) (5.69 10 )
702 10 N

(4 10 )e

EI

L

π π × × × ×= = ×
×

= 702 kN        Ans.

EXERCISE 34.1

1. A mild steel column of 50 mm diameter is hinged at both of its ends. Find the crippling load for
the column, if its length is 2.5 m. Take E for the column material as 200 GPa. [Ans. 96.9 kN]

2. A hollow cast iron column of 150 mm external diameter and 100 mm internal diameter is 3.5 m
long. If one and of the column is rigidity fixed and the other is free, find the critical load on the
column. Assume modulus of elasticity for the column material as 120 GPa. [Ans. 482 kN

3. A 1.75 m long steel column of rectangular cross-section 120 mm × 100 mm is rigidity fixed at
one end and hinged at the other. Determine the buckling load on the column and the correspond-
ing axial stress using Euler’s formula.  Take E for the column material  as 200 GPa.

[Ans. 12.84 MN ;  1070 MPa]

4. An -section 240 mm × 120 mm × 20 mm is used as 6 m long column with both ends fixed. What
is the crippling load for the column? Take Young’s modulus for the joist as 200 GPa.

[Ans. 1292.5 kN]

Fig. 34.7
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34.14. Empirical Formulae for Columns
We have already discussed in the previous articles that the

Euler’s formula is valid only for long columns i.e., for columns,
whose slenderness ratio is greater than a certain value for a
particular material. Moreover, it does not take into consideration
the direct compressive stress. In order to fill up this lacuna, many
more formulae were proposed by different scientists all over the
world. The following empirical formulae, out of those, are
important from the subject point of view.

1. Rankine’s formula,

2. Johnson’s formula, and
3. Indian Standard code.

34.15. Rankine’s Formulae for Columns
We have already discussed that the Euler’s formula gives

correct results only for very long columns. Though this formula is
applicable for columns, ranging from very long to short ones, yet
it does not give reliable results. Prof. Rankine, after a number of experiments, gave the following
empirical formula for columns.

1

RP =
1 1

CS EP P
+ ...(i)

where PR = Crippling load by Rankine’s Formula
PCS = σCS · A = Ultimate crushing load for the column and

PE =
2

2
e

EI

L

π
 = Crippling load obtained by Euler’s formula.

A little consideration will show that the value of PCS will remain constant irrespective of the fact
whether the column is a long one or short one. Now, we shall study the effect of PE in short as well as
long columns one by one.

1. Short columns. In case of short columns, the value of PE will be very high, therefore the value

of 
1

EP  will be quite negligible as compared to 
1

CSP . It is thus obvious that the Rankine’s formula

will give the value of its crippling load (i.e., P) approximately equal to the ultimate crushing
load (i.e., ).

2. Long columns. In case of long columns, the value of PE will be very small, therefore the value

of 
1

EP  will be quite considerable as compared to 
1

CSP . It is thus obvious that the Rankine’s

formula will give the value of its crippling load (i.e., P) approximately equal to the crippling
load by Euler’s formula (i.e., PE). Thus, we see that the Rankine’s formula gives a fairly correct
result for all cases of columns, ranging from short to long columns.

From equation (i), we know that

1

RP =
1 1

·
E CS

CS E CS E

P P
P P P P

+
+ =

∴ PR =
·

1

CS E CS

CSCS E

E

P P P
PP P
P

=
+ +
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Now substituting the values of PCS and PE is the above equation

PR = 2 2

2 2 2

· ·

1 · 1

CS CS

e CS e
CS

A A

L AL
A

E E Ak

σ σ
=

σ
+ σ × + ×

π π

...(ä I = Ak2)

or PR = 2 2

·

1 1

CS CS

e e

A P

L L
a a

k k

σ
=

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
where PCS = Crushing load of the column  material

σCS = Crushing stress of the column material,
A = Cross-sectional  area of the column,

a = Rankine’s constant 2
equal to C

E

⎛ ⎞σ
⎜ ⎟⎜ ⎟π⎝ ⎠

Le = Equivalent length of the column, and

k = Least radius of gyration.
The folowing table gives the values of crushing stress (σC) and Rankine’s constant (a) for vari-

ous materiabls:

Table 34.2

S.No. Material σC in MPa a = 2
C

E

σ
π

1. Mild Steel 320
1

7500

2. Cast Iron 550
1

1600

3. Wrought  Iron 250
1

9000

4. Timber 40
1

750

Note : The above values are only for a column with both ends hinged. For other end conditions, the equivalent
length should be used.

EXAMPLE 34.6. Find the Euler’s crippling load for a hollow cylindrical steel column of 38
mm external diameter and 2.5 mm thick. Take length ofthe column as 2.3 m and hinged at its both
ends. Take E = 205 GPa.

Also determine  crippling load by Rankine’s formula using constants as 335 MPa and  
1

7500

SOLUTION. Give : External diameter (D) = 38 mm ;  Thickness = 2.5 mm or inner diameter (d) =
38 – (2 × 2.5) = 33 mm ;  Length of the column (l) = 2.3 m = 2.3 × 103 mm ;  Yield stress (σC) = 335

MPa = 335 N/mm2 and Rankine’s constant (a) = 
1

7500 .

Euler’s crippling load
We know that moment of inertia of the column section,

I =
4 4 4 4 3 4( ) [(38) (33) ] 14.05 10 mm

64 64
D dπ π− = − = × π

Since the column is hinged at its both ends, therefore effective length of the column,
Le = l = 2.3 × 103 mm
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∴ Euler’s crippling load, PE =
2 2 3 3

2 3 2

(205 10 ) (14.05 10 )

(2.3 10 )e

EI

L

π π × × × π=
×

 = 16 880 N

= 16.88 kN        Ans.
Rankine’s crippling load

We know that area of the column section,

A = 2 2 2 2 2( ) [(38) (33) ] 88.75 mm
4 4

D dπ π− = − = π

and least radius of gyration, k =
314.05 10

88.75
I
A

× π=
π  = 12.6 mm

∴ Rankine’s crippling load,

PR = 2 23

· 335 88.75

2.3 1011 1
7500 12.6

CS

e

A

L
a

k

s ¥ p=
Ê ˆ Ê ˆ¥+ +Á ˜ Á ˜Ë ¯ Ë ¯

 = 17 160 N

= 17.16 kN        Ans.

EXAMPLE 34.7. Figure 34.8 shows a built-up column consisting of 150 mm × 100 mm R.S.J.
with 120 mm × 12 mm plate riveted to each flange.

Fig. 34.8

Calculate the safe load, the column can carry, if it is 4 m long having one end fixed and the
other hinged with a factor of safety 3.5. Take the properties of the joist as  Area = 2167 mm2, IXX
= 8.391 × 106 mm4, IYY = 0.948 × 106 mm4. Assume the yield stress as 315 MPa and Rankine’s

constant (a) = 
1

7500 .

SOLUTION. Given : Length of the column (l) = 4 m = 4 × 103 mm ;  Factor of safety = 3.5 ;  Yield
stress (σC) = 315 MPa = 315 N/mm2 ;  Area of joist = 2167 mm2 ;  Moment of inertia, about X-X axis
(IXX) = 8.391 × 106 mm4 ;  Moment of inertia about Y-Y axis (IYY) = 0.948 × 106 mm4 and Rankine’s

constant (a) = 
1

7500
.

From the geometry of the figure, we find that area of the column section,
A = 2167 + (2 × 120 × 12) = 5047 mm2

and moment of inertia of the column section bout X-X axis,

IXX = (83.91 × 106) + 
3

2120 (12)
2 120 12 (81)

12

⎡ ⎤× + × ×⎢ ⎥
⎢ ⎥⎣ ⎦

mm4

= (8.391) × 106) + (18.93 × 106) = 27.32 × 106 mm4
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Similarly, IYY = (0.948 × 106) + 
312 (120)

2
12

⎡ ⎤×
⎢ ⎥
⎢ ⎥⎣ ⎦

 mm4

= (0.948 × 106) + (3.456 × 106) = 4.404 × 106 mm4

Since IYY is less than IXX, therefore the column will tend to buckle in Y-Y direction. Thus we shall
take I equal to IYY = 4.404 × 106 mm4 (i.e., least of two). Moreover as the column is fixed at one end
and hinged at the other, therefore equivalent length of the column.

Le =

34 10

2 2
l ×=  = 2.83 × 103 mm

We know that least radius of gyration,

k =
64.404 10

5047
I
A

×=  = 29.5 mm

∴ Rankine’s crippling load on the column

PR = 2 23

· 315 5047

2.83 1011 1
7500 29.5

C

e

A

L
a

k

s ¥
=

Ê ˆ Ê ˆ¥+ +Á ˜ Á ˜Ë ¯ Ë ¯

= 714 × 103 N = 714 kN

and safe load on the column

=
Crippling load 714

Factor of safety 3.5
=  = 204 kN        Ans.

EXAMPLE 34.8. A column is made up of two channels. ISJC 200 and two 250 mm × 10 mm
flange plates as shown in Fig. 34.9.

Determine by Rankine’s formula the safe load, the column of 6 m length, with both ends fixed,
can carry with a factor of safety 4. The properties of one channel are Area = 1777 mm2, IXX =
11.612 × 106 mm4 and IYY = 0.842 × 106 mm4. Distance of centroid from back to web = 19.7 mm.

Take σC = 320 MPa and Rankine’s constant = 
1

7500

Fig. 34.9
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SOLUTION. Given : Length of the column (l) = 6 m = 6 × 103 mm ;  Factor of safety = 4 ;  Area of
channel = 1777 mm2 ;  Moment of inertia about X-X axis (IXX) = 11.612 × 106 mm4 ;  Moment of
inertia about y-y axis (IYY) = 0.842 × 106 mm4 ;  Distance of centroid from the back of web = 19.7 mm;

Crushing stress (σC) = 320 MPa = 320 N/mm2 and Rankine’s constant (a) = 
1

7500 .

From the geometry of the figure, we find that area of trhe column section,

A = 2 [1777 + (250 × 10)] = 8554 mm2

and moment of inertia of the column section about X-X axis,

IXX = (2 × 11.612 × 106) +2 
2

2250 (10)
(250 10) (105)

12

⎡ ⎤× + × ×⎢ ⎥
⎢ ⎥⎣ ⎦

mm4

= (23.224 × 106) + (55.167 × 106) = 78.391 × 105 mm4

Similarly, IYY =
3

6 210 (250)
2 (0.842 10 ) 1777 (50 19.7)

12

⎡ ⎤× = × + × +⎢ ⎥
⎢ ⎥⎣ ⎦

mm4

= 2 [13.021 × 106) + (9.475 × 106)] = 44.992 × 106 mm4

Since LYY is less than IXX, therefore the column will tend to buckle in Y-Y direction. Thus we shall
take I equal to IYY = 44.992 × 106 mm4 (i.e., least of the two). Moreover as the column is fixed at its
both ends, therefore equivalent length of the colum,

Le =
36 10

2 2
l ×=  = 3 × 103 mm

We know that least radius of gyration,

k =
644.992 10

8554
I
A

×=  = 72.5 mm

∴ Rankine’s crippling load on the column,

PR = 2 23

· 320 8554

3 1011 1
7500 72.5

C

e

A

L
a

k

s ¥=
Ê ˆ Ê ˆ¥+ + ¥Á ˜ Á ˜Ë ¯ Ë ¯

= 2228.5 × 103 N = 2228.5 kN

and Safe load on the column =
Crippling load 2228.5

Factor of safety 4
=  = 557.1 kN        Ans.

EXERCISE 34.2

1. A hollow column of 200 mm external diameter and 160 mm internal diameter is used as a
column of 4.5m length. Calculate the Rankine’s crippling load when the column is fixed at both
ends. Take allowable stress as 350 MPa and Rankine’s constant as 1/1600. [Ans. 2.23 kN]

2. A hollow cast iron 5 m long column with both ends fixed is required for support a load of 1000
kN. If the external diameter of the column is 250 mm, find its thickness. Take working stress as
80 MPa and Rankine’s constant as 1/1600. [Ans. 29.4 mm]

3. Find the ratio of crippling loads by Euler’s and Rankine’s formulae for a hollow strut of 40 mm
external diameter and 30 mm internal diameter pinned at both ends. Take yield stress as 300
MPa, modulus of elasticity as 200 GPa and Rankine’s constant as 1/7500. [Ans. 0.945)
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4. A steel compound column 4 m long is built up of two steel joints of I-section 200 mm × 100 mm
× 10 mm joined by two steel plates 300 mm × 10 mm as shown in Fig. 34.10.

Fig. 34.10

Find the Rankine’s crippling load, if both the ends of the column are hinged. Take PC = 350
MPa and Rankine’s constant = 1/ 7500. [Ans. 3780 kN]

34.16. Johnson’s Formula for Columns
Prof. Johnson, after a series of experiments and observations, proposed the following two formu-

lae for columns:

1. Straight line formula and

2. Parabolic formula

34.17. Johnson’s Straight Line Formula for Columns
This formula was first proposed by Johnson, which states

P =
e

C

L
A n

k
⎡ ⎤⎛ ⎞σ −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

where P = Safe load on the column,

A = Area of the column cross-section,
σC = Allowable compressive stress in the column material,

n = A constant, whose value depends upon the column
material and

eL
k

= Slenderness ratio.

The values of σC and  are given in the following table.

Table 34.3
S. No. Material σC in MPa n

1. Mild Steel 320 0.0053

2. Wrought Iron 250 0.0053
3. Cast Iron 550 0.008

A little consideration will show that for short columns that safe load P = σC · A.

But for long columns, there is always a possibility of buckling. It is thus obvious, that the safe
load will be small, depending upon the slenderness ratio.



814 � Strength of Materials

Prof. Johnson, while analysing the safe load, used to plot a curve for 
P
A

and eL
k

. Since he used to

get a straight line in this case, so he named this formula as a straight line formula.

34.18. Johnson’s Parabolic Formula for Columns
Prof. Johnson, after proposing the straight line formula, found that the results obtained by this

formula are very approximate. He then proposed another formula, which states,

P =

2
e

C

L
A r

k

È ˘Ê ˆ
s -Í ˙Á ˜Ë ¯Í ˙Î ˚

where P = Safe load on the column,
A = Area of the column cross-section,

σC = Allowable compressive stress in the column material,
r = A constant, whose value depends upon the column material, and

eL
k

= Slenderness ratio with equivalent column length.

The values of σC and r are given in the following table:

Table 34.4.
S. No. Material σC in MPa r

1. Mild Steel 320 0.000057

2. Wrought Iron 250 0.000039

3. Cast Iron 550 0.000016

Prof. Johnson, while analysing the safe load, used to plot a curve for 
P
A

 and eL
k

. Since he named

this formula as a parabolic formula.
NOTE: Both the Johnson’s straight line formula and Johnson’s parabolic formula are rarely used these days.

They have been mentioned here only for their academic importance only.

34.19. Indian Standard Code for Columns
The Bureau of Indian Standards (I.S.I.) has also given a code for the safe stress in I.S. 226–1962,

which states

σC =

1 0.20 sec
4

y

C
e e

m
L mp
k E

σ

σ′ =
⎡ ⎤′

+ ⎢ ⎥
⎣ ⎦

... for 0 to 160eL
k

Ê ˆ
=Á ˜Ë ¯

and σC = 1.2
800

e
C

L
k

⎛ ⎞σ′ −⎜ ⎟⎝ ⎠
... for 160 and aboveeL

k
Ê ˆ

=Á ˜Ë ¯

where σC = Allowable axial compressive stress,

σ′C = A value obtained from the above secant formula,
σy = The guaranteed minimum yield stress,

m = Factor of safety taken as 1.68,

eL
k

= Slenderness ratio with equivalent column length, and

E = Modulus of elasticity equal to 200 GPa.
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The I.S.I. has also given a table in I.S. 800 –1962 which gives the values of σC for mild steel, for
slenderness ratio from 0 to 350. The value of σy i.e., the guaranteed minimum yield stress for mild
steel is taken as 260 MPa. This table is given below:

Table 34.5.
L
k

σC in MPa eL
k

σC in MPa eL
k

σC in MPa

0 125 90 92.8 180 33.6

10 124.6 100 84.0 190 30.0

20 123.9 110 75.3 200 27.0

30 122.4 120 67.1 210 24.3

40 120.3 130 59.7 220 21.9

50 117.2 140 53.1 230 19.9

60 113.0 150 47.4 240 18.1

70 102.5 160 42.3 300 10.9

80 100.7 170 37.7 350 3.6

NOTE. Intermediate values may be obtained by linerar interpolation.

EXAMPLE 34.9. A hollow cylindrical steel tube of 38 mm external diameter and 2.5 mm
thick is used as a column of 2.3 m long with both ends hinged. Determine the safe load by
I.S. code.

SOLUTION. Given: External diameter (D) = 38 mm ;  Thickness = 2.5 mm and length of column (l)
= 3 m = 3 × 103 mm.

We know that area of the column section,

A = 2 2 2 2[ ] [(38) (33) ]
4 4

D dπ π− = × −  = 278.8 mm2

and moment of inertia of column section,

I =
4 4 4 4[ ] [(38) (33) ]

64 64
D dπ π− = × −  = 44.14 × 103 mm4

∴ Least radius of gyration,

k =
344.14 10

278.8
I
A

×=  = 12.6 mm

Since the column is higed at its both ends, therefore effective length of the column,

Le = l = 2.3 × 103 mm

and slenderness ratio =
32.3 10

12.6
eL

k
×=  = 182.5

From table, we find that allowable stress for slenderness ratio of 182.5 is 32.7 MPa or 32.7
N/mm2. Therefore safe load on the column,

P = A × σC = 278.8 × 32.7 = 9117 N = 9.117 kN        Ans.
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34.20. Long Columns Subjected to Eccentric Loading
In the previous articles, we have discussed

the effect of loading on long columns. We have
always referred the cases when the load acts
axially on the column (i.e., the line of action of
the load coincides with the axis of the column).
But in actual practice it is not always possible
to have an axial load, on the column, and eccen-
tric loading takes place. Here we shall discuss
the effect of eccentric loading on the Rankine’s
and Euler’s formulae for long columns.
Rankine’s formula

Consider a long column subjected to an ec-
centric load.

Let P = Load on the column,
A = Area of cross-section,

e = Eccentricity of the load,

Z = Modulus of section,
ye = Distance of the extreme fibre (on compressive side) from the

axis of the column, and

k = Least radius of gyration.

We have discussed in Chapter of Direct and Bending Stresses, that when a column is subjected to
an eccentric load, the maximum intensity of compressive stress is given by the relation,

σmax =
·P eP M P

A Z A Z
+ = + ... (See Article 17.4)

= 2

· eP e yP
A Ak

⋅
+

2

...
e l

I AkZ
y y

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
ä

= 2

·
1 ee yP

A k

⎛ ⎞+⎜ ⎟
⎝ ⎠

If σCS is the permissible crushing stress for the given material, then the safe crushing load for the
given column,

σCS = 2

·
1 ee yP

A k

⎛ ⎞+⎜ ⎟
⎝ ⎠

or P =

2

·
·

1

C

e

A

e y

k

σ
⎛ ⎞+⎜ ⎟
⎝ ⎠

We have already discussed  that the safe load by Rankine’s formula for long columns and axial
load is given by the relation,

P = 2

·

1

CS

e

A

L
a

k

σ

⎛ ⎞+ ⎜ ⎟⎝ ⎠

... (See Article 34.15)
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It is thus obvious that if the effect of buckling is also to be taken into account, the safe axial load
with eccentricity,

P = 2

2

·

·
1 1

CS

e e

A

e y L
a

kk

s
È ˘Ê ˆ Ê ˆ+ +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

Euler’s formula
Consider a long column AB of length l fixed at A, free at B and carrying an eccentric load as

shown in Fig. 34.11.

As a result of loading, let the beam deflect into a curved form AX1B1
such that the free end B deflects through a and occupies a new position
B1 as shown in Fig. 34.11.

Now consider any section X, at a distance x from A.

Let P = Critical load on the column,

e = Eccentricity of the load,
y = Deflection of the column at X.

Thus, the eccentricity of the load P at X

= a + e – y

∴ Moment due to load,

M = + P (a + e – y)
...(Plus sign due to convexity wards initial centre line)

= P (a + e) – P · y

∴
2

2

d y
EI

dx
= P (a + e) – P · y

or
2

2

·P yd y
EIdx

+ =
( )P a e
EI

+

The general solution of the above differential equation is

y = A cos sin ( )P Px B x a e
EI EI

⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
...(i)

where A and B are the constants of integration.   We know that when x = 0,   then y = 0,   therefore
A = – (a + e). Now differentiating the above equation,

dy
dx

= sin cosP P P PA x B x
EI EI EI EI

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

We also know that when x = 0, then 0
dy
dx

= , therefore

0 =
PB
EI

A little consideration will show that either B is equal to zero or 
P
EI

 is equal to zero. Since the

load P is not equal to zero, it is thus obvious that B is equal to zero. Substituting the values of
A = – (a + e) and B = 0 in equation (i),

Fig. 34.11
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y = – (a + e) cos ( ) 1 cosP Px a e a e x
EI EI

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
+ + = + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
We also know that when x = l, then y = a.

Therefore a = 1 cos Pa e l
EI

⎡ ⎤⎛ ⎞
+ −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∴ (a + e) cos 
Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

= e

or (a + e) = e · sec 
Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

We see that the maximum bending moment occurs at B and is equal to P (a + e). Here maximum
bending moment,

Mmax = P · e · sec 
Pl
EI

⎛ ⎞
⎜ ⎟
⎝ ⎠

It is thus obvious that maximum compressive stress will be at  such that

σmax =

· ·sec
PlP e EIP M P

A Z A Z

⎛ ⎞
⎜ ⎟
⎝ ⎠+ = +

The equation (ii) and (iii) are valid for the column with one end fixed and other end free, for

which    Le = 2l     or    l =
2
eL

   (see Table 34.1).

Substituting l = 
2
eL

in equation (ii) and (iii), we get the general expression for any end condition.

Thus maximum bending moment

max sec
2
eL P

M P e
EI

Ê ˆ
= ◊ ◊ Á ˜Ë ¯ ... (iv)

and maximum compressive stress

max
1

sec
2
eLP M P P

P e
A Z A Z EI

Ê ˆ
s = + = + ◊ ◊ ◊ Á ˜Ë ¯

Now  for given end conditions, substitute the value of equivalent length (Le) of column from
table 34.1.

Note :  In case of short column (with no buckling), the maximum bending moment is

Mmax = P . e, as compared to long columns for which max sec
2
eL P

M P e
EI

È ˘
= ◊ ◊ Í ˙

Î ˚

EXAMPLE 34.10. An alloy hollow circular column of 200 mm external and 160 mm internal
diameter is 5 m long and fixed at both of its ends. It is subjected to a load of 120 kN at an
eccentricity of 20 mm from the geometrical axis. Determine the maximum stress induced in the
column section. Take E as 120 GPa.

SOLUTION. Given: External diameter (D) = 200 mm; Internal diameter (d) = 160 mm; Length (l)
= 5 m = 5 × 103 mm; Load (P) = 120 kN = 120 × 103 N; Eccentricity (e) = 20 mm and modulus of
elasticity (E) = 120 GPa = 120 × 103 N/mm2.
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We know that area of the column section,

A =
2 2 2 2[ ] [(200) (160) ]

4 4
D dπ π− = −  = 11.31 × 103 mm2

and moment of inertia of column section,

I = 4 4 4 4[ ] [(200) (160) ]
64 64

D dπ π− = −  = 46.37 × 106 mm4

∴ Modulus of section, Z =
646.37 10

/ 2 200 / 2
I

D
×=  = 463.7 × 103 mm3

Since the column is fixed at its both ends, therefore equivalent length of the column,

Le =
35 10

2 2
l ×=  = 2.5 × 103 mm

and value of 2
eL P

EI =
3 3

3 6

2.5 10 120 10
2 (120 10 ) (46.37 10 )

× ××
× × ×

 rad

= 0.1836 rad = 10.52º
We know that maximum  compressive stress induced in the column,

σmax =
· ·sec

2
eL PP e

EIP
A Z

Ê ˆ
Á ˜Ë ¯

+

=
3 3

3 3

120 10 (120 10 ) 20 sec 10.52º

11.31 10 463.7 10

× × ×+
× ×

N

= 10.61 + 5.26 = 15.87 N/mm2 = 15.87 MPa       Ans.

EXERCISE 34.3

1. A 1.5 m long column has a circular cross-section of 50 mm diameter. One end of the column is
fixed and the other is free. Using the Indian Standard Code, determine the safe load on the
column. [Ans. 35.5 kN]

2. A hollow circular column of 200 mm external diameter and 160 mm internal diameter is 4 m
long with both ends fixed. If the column carries load of 150 kN at an eccentricity of 25 mm, find
the extreme stress in the column.

[Ans. 21.5 MPa]
3. An alloy tube 60 mm diameter and 2.8 m length is used as a strut with both ends hinged. If the

tube is subjected to an eccentric load equal to 60% of the Euler’s crippling load. Find the value
of eccentricity. Take yield strength as 320 MPa and modulus of elasticity as 210 GPa.

[Ans. 12.1 mm]

QUESTIONS

1. What do you understand by the terms ‘column’ and ‘strut’? Distinguish clearly between long
columns and short columns.

2. Explain the failure of long columns and short columns.

3. Describe the assumptions in the Euler’s column theory.

4. Derive a relation for the Euler’s crippling load for a column when (i) it has both ends hinged,
and (ii) both ends fixed.
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5. Define the term ‘equivalent length’. Discuss its uses.

6. Explain the term ‘slenderness ratio’ and describe with mathematical expression, how it limits
the use of Euler’s formula for crippling load.

7. Obtain a relation for the Rankine’s crippling load for columns.

8. Give the Johnson’s straight line and parabolic formula for columns.

9. What is Indian Standard Code for columns. Are you satisfied with the factor of safety of 1.68.
Give explanation to your answer.

10. Explain the effect of eccentric loading on a column. Derive a relation for the maximum stress in
an eccentrically loaded column.

OBJECTIVE TYPE QUESTIONS

1. A column of length  is hinged at its both ends. Its equivalent length will be equal to

(a) 2l (b) l (c) 0.5 l (d) 0.707 l
2. The slenderness ratio of a long column is

(a) 10 –20 (b) 20 –30 (c) 50 –60 (d) above 80

3. The value of Rankine’s constant for mild steel is

(a)
1

9000
(b)

1
7500

(c)
1

1600
(d)

1
750

ANSWERS

1. (b) 2. (d) 3. (b)
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35.1. Introduction
We have discussed in Art. 14.3 that whenever

a beam is loaded, the upper layers (from the
neutral axis) of the beam are in compression;
whereas the lower ones are in tension. It has been
experimentaly found that the cement concrete is
very weak in tension, though it is strong in
compression. It has also been observed that the
steel is equally strong in tension and compression.
But a little consideration will show that a long
steel bar can resist tension up to the permissible
limit; whereas it cannot resist compression up to
the permissible limit because of buckling.

The engineers have taken the full advantages
of concrete in compression and steel in tension,
by combination, which proved to be an ideal
(because the two materials are used to take up the

35C h a p t e r
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stresses, for which they are most suitable) is called reinforced cement concrete (briefly written as
R.C.C.).

35.2. Advantages of R.C.C. Structures
The following advantages of R.C.C. structures are important from the subject point of view:

1. The concrete, while setting holds a firm grip on the surface of the steel bars.

2. The coefficient of linear expansions for steel and concrete are almost the same. Therefore no
internal stresses are set up due to variation in temperature.

3. The coating of cement grout on the surface of steel bars, protects them from corrosion and thus
does not produce adverse chemical effects on them.

35.3. Assumptions in the Theory of R.C.C.
The following assumptions are made in the theory of reinforcement cement concrete.

1. All the tensile stresses are taken up by the steel reinforcement only.
2. There is a sufficient bond between the steel and concrete.

3. The moduli of elasticity for steel and concrete are constant.

4. The steel and concrete is stressed within its elastic limit and thus obey Hooke’s law.

35.4. Neutral Axis
It is an imaginary plane, which divides the cross-section of a beam into the tension and compres-

sion zones on the opposite sides of the plane.

35.5. Types of Neutral Axis
There are two types of neutral axis of reinforced concrete section:

1. Critical neutral axis and
2. Actual neutral axis.

35.6. Critical Neutral Axis
The critical neutral axis, of a section is based on the principle that the neutral axis is situated at

the centre of gravity of a given section. The depth of critical neutral axis from the top of section may
be derived from the first principles and is useful, where the stresses in the concrete and steel are
known.

Fig. 35.1

Let us consider a reinforced beam as shown in Fig. 35.1.
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Let d = Effective depth of the beam (i.e., depth of the centre of rein-
forcement from the edge),

n = Depth of neutral axis from the top of the beam,

t = Stress in steel and

c = Stress in concrete.
We have discussed in Art. 14.4 that the strain at a point is proportional to the distance of that

point from the neutral axis.

∴ Strain in the extreme fibre of the concrete
Strain in steel

 = 
n

d n− ... (i)

We know that Stress
Strain

= E          or          Strain  = Stress
E

∴                   Strain in steel =
t

t
E

and                     strain in concrete =
c

c
E

Substituting these values in equation (i),

c

t

c
E
t

E

=
n

d n−           or          t

c

Ec
t E

×   =  
n

d n−

∴
t
c

=
( ) ( )t

c

E d n m d n
E n n

− −× = ... Modular ratiot

c

E
m

E
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

EXAMPLE 35.1. Find the position of neutral axis of a beam, having an effective depth of 270
mm. The stresses in concrete and steel may be taken as 5 MPa and 140 MPa respectively. Take m
= 18.

SOLUTION. Given : Effective depth (d) = 270 mm ;  Stress in concrete (c) = 5 MPa = 5 N/mm2 ;
Stress in steel (t) = 140 MPa = 140 N/mm2 and modular ratio (m) = 18.

Let n  =  Depth of the neutral axis from the top of the beam in mm.

We know that relation for neutral axis,

t
c

=
( )m d n

n
−

          or          
140

5   =  
18 (270 )n

n
−

28 n = 4860 – 18n          or          46n  =  4860

∴ n =
4860
46  = 105.6 mm       Ans.

35.7. Actual Neutral Axis
The actual neutral axis of a section, is based on the principle that the moment of areas on either

side of it (i.e., areas of compression and tension zones) are equal. Since a reinforced section is com-
posed of two dissimilar materials, therefore one of these two materials must be converted into an
equivalent section composed of only one material. The general practice is to convert the area of
reinforcement into an equivalent area of concrete, by multiplying it by the modular ratio.
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Let us consider a reinforced beam as shown in Fig. 35.2.
Let b = Breadth of the beam,

d = Effective depth of the beam,

n = Depth of the neutral axis from
the top of the beam,

At = Area of steel and

m = Modular radio.

∴ Equivalent area of concrete
= m · At

Now moment of concrete area about neutral axis

=
2

2 2
n bnbn × = ... (i)

Similarly, moment of steel (i.e., equivalent area of concrete)
= m · At (d – n) ... (ii)

Equations (i) and (ii),

2

2
bn = m · At (d – n)

This will form a quadratic equation for . But only the positive value of n is to be considered.
NOTE: For all sort of calculations, the actual neutral axis is used.

EXAMPLE 35.2. A reinforced concrete beam is 300 mm wide and has an overall depth of
500 mm. The reinforcement, which consists of 4 number 20 mm dia bars, is placed 50 mm above
the bottom of the beam. Find the neutral axis of section, if modular ratio is 18.

SOLUTION. Given: Width of beam (b) = 300 mm ;  Overall depth of beam = 500 mm ;  No. of bars
= 4; Diameter of bars = 4 ;  Distance between the centre of reinforcement and bottom of beam = 50
mm and modular ratio (m) = 18.

Let n = Depth of actual neutral axis from the top of the beam in mm.

We know that area of steel,

At = 24 (20)
4
π× ×  = 1257 mm2

and effective depth of beam,
d = 500 – 50 = 450 mm

We also know that relation for the depth of actual neutral axis,
2

2
bn

= n · At (d – n)

2300
2

n×
= 18 × 1257 (450 – n)

150 n2 = 10 181700 – 22 626 n
n2 + 150.8n – 67 878 = 0

This is a quadratic equation for n. Therefore

n =
2150.8 (150.8) 4 67878

2
− ± + ×

 mm

Fig. 35.2
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=
150.8 542.4

2
− ±

 = 195.8 mm    or    – 346.6 mm

Since the value of ‘n‘ can not be negative, therefore actual value of ‘n‘ is 195.8 mm         Ans.

35.8. Moment of Resistance
The moment of resistance of a reinforced section

is the moment of the couple consisting of the total
tensile force in the steel reinforcement (acting at the
centre of the reinforcement) and the compressive force
in the concrete (acting at the centre of gravity of the
compressive forces), as shown in Fig. 35.3.

In order that the section may be stable under the
action of the external bending moment, the total
moment of resistance should not be less than the
external bending moment.

Let b = Width of the beam,

d = Effective depth of the beam and
n = Depth of the neutral axis, from the top of the beam.

∴ Lever arm =
3
nd −

Now moment of resistance,

M.R. =
2 3

bnc nd⎛ ⎞−⎜ ⎟
⎝ ⎠

...(where c is given)

= t · At 3
nd⎛ ⎞−⎜ ⎟

⎝ ⎠
...(where t is given)

EXAMPLE 35.3. A beam 250 mm wide and 550 mm deep contains 4 no. 12 mm dia bars. The
cover of concrete, to the centre of the main reinforcement is 50 mm. Find the moment of resis-
tance of the beam, if maximum allowable stresses in concrete and steel are 4.2 MPa and 125
MPa respectively. Take m = 15.

SOLUTION. Given: Width of beam (b) = 250 mm ;  Overall depth of beam = 550 mm ;  Cover of
concrete over reinforcement = 50 mm ;  No. of bars = 4 ;  Diameter of bars = 12 mm ;  Allowable stress in
concrete (c) = 4.2 MPa = 4.2 N/mm2 ;  Allowable stress in steel (t) = 125 MPa = 125 N/mm2 and modular
ratio (m) = 15.

Let n = Depth of actual neutral axis from the top of the beam in mm.

We know that area of steel,

At =
24 (12)

4
π× ×  = 452.4 mm2

and effective depth of beam,
d = 550 – 50 = 500 mm

We also know that relation for the depth of actual neutral axis,
2

2
bn = m · At (d – n)

2250
2

n
= 15 × 452.4 (500 – n)

Fig. 35.3
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    125 n2 + 6786n – 3 393000 = 0

n2 + 54.3n – 27 144 = 0

This is a quadratic equation for n. Therefore

n =
254.3 (543.3) 4 27 144

2
− ± + ×

 mm

=
54.3 333.9

2
− ±

 = 139.8 mm    or    – 194.1 mm

Since the value of ‘n‘ can not be negative, therefore we shall take the actual value of ‘n‘ as 139.8 mm.

We know that moment of resistance of the beam on the basis of stress in concrete,

M.R. =
250 139.8 4.2 139.8500

30 3 2 3
bnc nd

× ×⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 N-mm

= 73 395 × 453.4 = 33.27 × 106 N-mm ... (i)

Similarly, moment of resistance of the beam on the basis of stress in steel,

M.R. =
139.8· 125 452.4 500

3 3t
nt A d⎛ ⎞ ⎛ ⎞− = × −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 N-mm

= 56 550 × 453.4 = 25.64 × 106 N-mm .... (ii)

From the above two values, we find that the moment of resistance of the beam is 25.64 × 106

N-mm (i.e., lesser of the two values).         Ans.
NOTE: In this case, the steel develops a maximum stress of 125 N/mm2. But the concrete is not stressed to its

allowable stress of 4.2 N/mm2.
EXAMPLE 35.4. A reinforced concrete beam of 250 mm width and 600 mm effective depth is

subjected to a bending moment of 120 kN-m. The reinforcement consists of 4 bars of 28 mm
diameter. Determine the stresses in steel and concrete. Take m = 16.

SOLUTION. Given: Width of beam (b) = 250 mm ;  Effective depth of beam (d) = 600 mm ;
Bending moment (M.R.) = 120 kN-m = 120 × 106 N-mm ;  No. of bars = 4 ;  Diameter of bars =
28 mm and modular ratio (n) = 16

Stress in steel
Let t = Stress in steel in N/mm2 and

n = Depth of actual neutral axis in mm.

We know that area of reinforcement,

At =
24 (28)

4
π× ×  = 2463 mm2

and relation for depth of actual neutral axis,
2

2
bn

= m · At (d – n)

2250
2

n
= 16 × 2463 × (600 – n)

     125 n2 + 39 408n – 23 644 800 = 0

n2 + 315.3 – 189 160 = 0
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This is a quadratic equation for n. Therefore

n =
2315.3 (315.3) 4 189 160

2
− ± + ×

 mm

=
315.3 925.3

2
− ±

 = 305 mm          or          – 620.3 mm

Since the value of ‘n‘ can not be negative, therefore we shall take the actual value of ‘n‘ as
305 mm.

We also know that bending moment (M.R.),

120 × 106 =
6305· 2463 600 1.227 10

2 3t
nt A d t t⎛ ⎞ ⎛ ⎞− = × × − = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∴ t =
6

6

120 10

1.227 10

×
×

 = 97.8 N/mm2  =  97.8 MPa       Ans.

Stress in concrete
Let c = Stress in concrete in N/mm2.

We know that relation for stress in concrete,

t
c

=
( )m d n

n
−

97.8
c

=
16 (600 305)

305
× −

 = 15.5

c =
97.8
15.5

 = 6.3 N/mm2  =  6.3 MPa        Ans.

EXERCISE 35.1

1. A reinforced concrete beam 150 mm wide is 250 mm deep to the centre of the reinforcement.
Find the position of the neutral axis, if the stress developed in the concrete and steel are 4.5
MPa and 81 MPa respectively. (Ans. 113.6 mm)

2. A reinforced cement concrete beam is 200 mm deep up to the centre of the reinforcement. Find
the position of the neutral axis, if the stresses developed in steel and concrete are 120 MPa and
4 MPa respectively. Take m = 18. (Ans. 94.7 mm)

35.9. Types of Beam Sections
The beam sections are of the following three types, depending upon the amount of reinforce-

ment:
1. Under-reinforced section,

2. Balanced section and

3. Over-reinforced section.

35.10. Under-reinforced Section
It is a section, in which the amount of reinforcement is less than the proper requirement. As a

result of this, the steel will first attain the maximum permissible stresses and the concrete will not be
subjected to full compressive stresses. In this case, the depth of actual neutral axis will be less than
that of the critical neutral axis.
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The moment of resistance of an under-reinforced beam is based on the stresses in steel and will
be given by the relation,

M.R. = ·
3t
nt A d⎛ ⎞−⎜ ⎟

⎝ ⎠

35.11. Balanced Section
It is a section, in which the amount of reinforcement is equal to the proper requirement. In a

balanced beam, the steel as well as concrete will attain maximum permissible stresses simultaneously.
In this case, the depth of actual neutral axis will be the same as that of the critical neutral axis.

The amount of resistance, of a balanced beam will be based on the stress in steel as well as
concrete and will be given by the relations:

M.R. = ·
3t
nt A d⎛ ⎞−⎜ ⎟

⎝ ⎠

=
2 3

bnc nd⎛ ⎞−⎜ ⎟
⎝ ⎠

35.12. Over-reinforced Section
It is a section, in which the amount of reinforcement is more than the proper requirement. As a

result of this, the concrete will first attain the maximum permissible stresses and the steel will not be
subjected to full tensile stress. In this case, the depth of actual neutral axis will be more than the
critical neutral axis.

The moment of resistance of an over-reinforced beam will be based on the stresses in concrete
and will be given by the relation :

M.R. =
2 3

bnc nd⎛ ⎞−⎜ ⎟
⎝ ⎠

EXAMPLE 35.5. A rectangular R.C.C. beam 250 mm wide has an effective depth of 330 mm
and steel reinforcement 967 mm2. Find the moment of resistance, if maximum stresses in concrete
and steel are 70 MPa and 140 MPa respectively. Take m = 15.

SOLUTION. Given : Width of beam (b) = 250 mm ;  Effective depth of beam (d) = 330 mm ;  Area
of reinforcement (At) = 967 mm2 ;  Maximum stress in concrete = 7 MPa = 7 N/mm2 ;  Maximum
stress in steel (t) = 140 MPa = 140 N/mm2 and modular ratio (m) = 15.

Let n = Depth of actual neutral axis in mm and

nc = Depth of critical neutral axis in mm.
We know that relation for the depth of actual neutral axis,

2

2
bn

= m · At (d – n)

2250
2

n
= 15 × 967 (330 – n)

 125 n2 + 14 500n – 4 786 650 = 0

n2 + 116n – 38 293 = 0

This is a quadratic equation for n. Therefore

n =
2116 (116) 4 38 293

2
− ± + ×

 mm
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=
116 408.2

2
− ±

 = 146.1 mm         or         – 262.1 mm ...(i)

Since the value of ‘n‘ can not be negative, therefore we shall take the actual value of ‘n‘ as
146.1 mm

We also know that relation for the depth of critical neutral axis,

t
c =

( )c

c

m d n
n

−
    or    

15 (330 )140
7

c

c

n
n

−
=

140 nc = 34 650 – 105 nc    or    245 nc  =  34 650

∴ nc =
34650

245
 = 141.4 mm ...(ii)

Since the depth of actual neutral axis (146.1 mm) is more than the critical neutral axis (141.4
mm), therefore the beam is over-reinforced. As a result of this, the concrete will first attain the maxi-
mum permissible stress. And the moment of resistance will be based on the stress in concrete. We
know that moment of resistance based on stress in concrete,

M.R. =
250 146.1 7 146.1330

2 3 2 3
bnc nd

× ×⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 N-mm

= 35.96 × 106 N-mm  =  35.96 kN-mm        Ans.

EXAMPLE 35.6. A concrete beam having 200 mm width and 500 mm effective depth is rein-
forced in tension, whose limiting stress is 120 MPa and modulus of elasticity 200 GPa. The
concrete has a limiting stress of 6 MPa and modulus of elasticity of 12.5 GPa.

Calculate the moment of resistance of the beam, if both the sections are fully stressed. Also find
the area of reinforcement.

SOLUTION. Given: Width of beam (b) = 200 mm ;  Effective depth of beam (d) = 500 mm ;
Limiting stress in steel (t) = 120 MPa = 120 N/mm2 ;  Modulus of elasticity for steel (Es) = 200 GPa
= 200 × 103 N/mm2 ;  Limiting stress in concrete (c) = 6 MPa = 6 N/mm2 and modulus of elasticity for
concrete (Ec) = 12.5 GPa = 12.5 × 103 N/mm2.
Moment of resistance of the beam

Let n = Depth of neutral axis of the beam in mm.

We know that modular ratio,

m =
3

3

200 10

12.5 10
t

c

E
E

×=
×

 = 16

and relation for the depth of neutral axis of the beam,

t
c

=
( )m d n

n
−

          or          
16 (500 )120

6
n

n
−=

120n = 48 000 – 96n

216n = 48 000

∴ n =
48000
216

 = 222.2 mm

We know that momentt of resistance of the beam,

M.R. =
200 222.2 6 222.250

2 3 2 3
bnc nd

× ×⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 56.785 × 106 N-mm = 56.785 kN-m        Ans.
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Area of reinforcement
Let At = Area of reinforcement in mm2.

We know that moment of resistance of the beam (M.R.)

56.785 × 106 =
222.2· 120 500

3 3t t
nt A d A⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 = 51110 At

∴ At =
656.785 10

51110
×

 = 1111 mm2        Ans.

NOTES :1. This reinforcement is equivalent to 4 bars of 20 mm diameter.

2. Since the steel and concrete is fully stressed, therefore look the neutral axes (i.e., actual and critical)
will coincide with each other.

EXAMPLE 35.7. A reinforced concrete beam of 300 mm width and 600 mm overall depth has
a 50 mm cover over the bottom reinforcement. The beam is subjected to a load of 24 kN/m
including itself weight for a span of 6 m. If the allowable stress in the concrete is 5 MPa, deter-
mine the corresponding stress in steel.

Also determine the area of reinforcement. Take m = 15.

SOLUTION. Given : Width of beam (b) = 300 mm ;  Overall depth = 600 mm ;  Cover over the
bottom reinforcement = 50 mm ;  Load over the beam (w) = 24 kN/m ;  Span (l) = 6 m ;  Allowable
stress in concrete (c) = 5 MPa = 5 N/mm2 and modular ratio (m) = 15.

Stress in steel
Let t = Stress in steel in N/mm2 and

n = Depth of the neutral axis of the beam.

We know that effective depth of the beam,
d = 600 – 50 = 550 mm

and bending moment due to uniformly distributed load over the span,

M.R. =
2 2· 24 (6)

8 8
w l ×=  = 108 kN-m = 108 × 106 N-mm

We also know that bending moment (M.R.)

108 × 106 =
300 5

550 750 550
2 3 2 3 3

nbnc n n nd n
× ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

144 000 =
2

550
3
nn −

n2 – 1650n + 432 000 = 0

This is a quadratic equation for n. Therefore

n =
21650 (1650) 4 432 000

2
+ ± − ×

 mm

=
1650 997.2

2
+ ±

 = 1323.6 mm      or      326.4 mm

We know that relation for stress in steel,

t
c

=
( )m d n

n
−

          or          
15 (550 326.4)

5 326.4
t −=  = 10.27

∴ t = 10.28 × 5 = 51.4 N/mm2 = 51.4 N/MPa       Ans.
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* The term ‘economic’ refers only to the economy of stresses and not necessarily to the financial economy.

Area of reinforcement
Let At = Area of reinforcement in mm2.

We know that moment of resistance of the beam (M.R.)

108 × 106 =
326.4· 51.4 550

3 3t t
nt A d A⎛ ⎞ ⎛ ⎞− = × −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= 22 655.6 At

∴ At =
6108 10

27 655.6
×

 = 4767 mm2       Ans.

NOTE : This reinforcement is equivalent to 10 bars of 25 mm diameter.

35.13. Design of Beams and Slabs
We have already discussed in the previous articles, that a given section may be under-reinforced,

balanced or over-reinforced. We have also discussed that in an under reinforced section, the steel will
first attain the maximum permissible stress, whereas the concrete will not be subjected to the full
compressive stress. Similarly, in an over-reinforced section, the concrete will first attain the maxi-
mum permissible stress, whereas the steel will not be subjected to the full tensile stress. But in a
balanced section, the stresses in concrete as well as steel are developed to the maximum permissible
limit. It is thus obvious that the beams and slabs should be designed as balanced sections, so that the
section is not wasteful. Such designs are also called *economical design.

It has been experimentally found that the maximum permissible stresses in steel and concrete
depend upon the type and ratio of cement aggregates, water etc. But in general, the following stresses
are adopted for the design of beams and slabs:

Allowable stress in steel, t = 140 N/mm2

Allowable stress in concrete, c = 5 N/mm2

Modular ratio, m = 18
Now consider a beam reinforced at its bottom and subjected to some loading.

Let b = Width of the beam,

d = Effective depth of the beam, and
n = Depth of neutral axis from the top of the beam.

 (In a design, the depths of actual neutral axis and
 the critical neutral axis is the same).

We know that
t
c

=
( )m d n

n
−

140
5

=
18 ( )d n

n
−

    or    
14
9

d n
n
−=

or 14n = 9d – 9n    or    23n  =  9d

∴ n = 9 0.39
23
d d= ...(i)

We also know that the moment,

M =
0.39 5 0.39

2 3 2 3
b dbnc n dd d

× ×⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= 0.85 bd2  N-mm ...(ii)
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NOTES:1. Sometimes the allowable stresses in steel and concrete as well as modular ratio is different than those
assumed above. In such cases, the value of n and M [as obtained in equations (i) and (ii)] will be
different. In such cases, the problem should be solved from fundamentals.

2. The bottom reinforcement is given a concrete cover, in order to embed the bars. The general thickness
of the cover in beams 40 mm to 60 mm, whereas in slabs it is 2 cm and 3 cm.

3. The slabs are designed for 1 metre width and the same design is carried for the whole slab.

EXAMPLE 35.8. Design a reinforced concrete beam of rectangular section to resist a bend-
ing moment of 150 kN-m. Take t = 140 MPa, c = 5 MPa and m = 18.

SOLUTION. Given: Moment (M) = 150 kN-m = 150 × 106 N-mm ;  Stress in steel (t) = 140 MPa
= 140 N/mm2 ;  Stress in concrete (c) = 5 MPa = 5 N/mm2 and modular ratio (m) = 18.

Design of cross-section
Let b = Width of the beam in mm and

d = Effective depth of the beam in mm.

First of all, let us assume width of the beam (b) equal to 0.6d. We know that moment of resistance
(M.R.),

150 × 106 = 0.85 bd2 = 0.85 × 0.6d × d2 = 0.51 d3

∴ d3 =
6150 10

0.51
×

 = 294.1 × 106          or          d  =  665 mm

Assuming a cover of 55 mm, the overall depth of the beam,

= 665 + 55  =  720 mm        Ans.
and width of the beam, b = 0.6d  =  0.6 × 665  =  399 mm say 400 mm.         Ans.
Design of reinforcement

Let At = Area of reinforcement in mm2,

Now let us assume depth of the neutral axis to be equal to 0.39d = 0.39 × 665 = 259 say 260 mm.
We know that moment (M),

150 × 106 =
260· 140 665

3 3t t
nt A d A⎛ ⎞ ⎛ ⎞− = × −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 = 80 970 At

Let us provide 4 bars of 25 mm diameter. Therefore area of reinforcement

= 24 (25)
4
π× ×   =  1964 mm2        Ans.

EXAMPLE 35.9. Design a reinforced concrete slab 160 mm thick over a span of 4 m sub-
jected to a load of 6 kN/m inclusive its own weight. The allowable stress in concrete is 4 MPa and
modular ratio is 15. Also determine the stress in steel.

SOLUTION. Given: Slab thickness 160 mm ;  Span (l) = 4 m = 4 × 103 mm ;  Load (w) = 6 kN/m =
6 N/mm ;  Stress in concrete (c) = 4 MPa = 4 N/mm2 and modular ratio (m) = 15.

Stress in steel
Let t = Stress in steel in N/mm2 and

n = Depth of neutral axis.

Since width of the slab is not given, therefore we shall design it for 1 m (1 × 103 mm) width. And
the same reinforcement will be provided for the whole width. Assuming a cover of 30 mm over the
reinforcement, we find that effective depth of the beam

d = 160 – 30 = 130 mm
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We know that bending moment due to uniformly distributed load,

M =
3 22 6 (4 10 )

8 8
wl × ×=   =  12 × 106  N-mm

We also know that moment of resistance (M.R.)

12 × 106 =
3(1 10 ) 4

2000 130
2 3 2 3 3

nbnc n n nd d n
× ×⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∴ 6000 =
2

130
3
nn −

n2 – 390n + 18 000 = 0
This is a quadratic equation for n. Therefore

n =
2390 (390) 4 18 000

2
+ ± − ×

 mm

=
390 283

2
+ ±

 = 336.5 mm    or    53.5 mm

Since the value of ‘n‘ can not be more than the depth of the slab (160 mm), therefore we shall
take the value of ‘n‘ as 53.3 mm.

We know that relation for stress in steel,

t
c

=
( )m d n

n
−

          or          
15 (130 53.3)

4 53.3
t −=   =  21.6

∴ t = 21.6 × 4 = 86.4 N/mm2 = 86.4 MPa       Ans.
Design of reinforcement

Let At = Area of reinforcement in mm2

We know that moment of resistance (M),

12 × 106 =
53.3· 86.4 130

3 3t t
nt A d A⎛ ⎞ ⎛ ⎞− = × −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 = 9697 At

∴ At =
612 10

9697
×

 = 1237 mm2

Let us provide 12 mm diameter bars. We know that area of 1 bar of 12 mm diameter

= 2(12)
4
π ×  = 113.1 mm2

∴ Spacing of 12 mm diameter bars

=
113.1 1000

1237
×

 = 91.4 mm say 90 mm

Let us provide 12 mm diameter bars 90 mm centre to centre.        Ans.

Truck used for carrying premixed concrete
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EXERCISE 35.2

1. A rectangular concrete beam 200 mm wide has effective depth of 400 mm. The limiting stress
in steel and concrete are 150 MPa and 50 MPa respectively. Find the moment of resistance of
the beam, if both the sections are fully stress. Take m = 18. [Ans. 26.25 kN-m]

2. A concrete beam 200 mm wide and effective depth of 350 mm is subjected to a bending mo-
ment of 240 kN-m. If the permissible stress in steel and concrete are 140 MPa and 50 MPa
respectively, find the amount of reinforcement required. [Ans. 77.7 mm2]

3. A reinforced concrete beam of 250 mm width, 550 mm effective depth and 600 mm overall
depth, has 3 bars of 22 mm diameter as reinforcement. Determine the moment of resistance for
the beam, if the maximum allowable stresses in concrete and steel are 42 MPa and 112 MPa.
Take m = 15. If the beam has a span of 5 metres, determine the safe load, which the beam can
carry. Take density of concrete as 23 kN/m3. [Ans. 53.78 kN-m ;  13.76 kN/m]

QUESTIONS

1. Discuss the advantages of R.C.C. structures over other structures.

2. Explain clearly the various assumptions made in the theory of R.C.C.
3. Distinguish between the terms ‘critical neutral axis’ and ‘actual neutral axis’ and discuss, how

the two axes help in finding out the moment of resistance of a beam.

4. Explain the terms under-reinforced beam’, ‘balanced beam’ and ‘over-reinforced beam’. How
will you find out the types of beam?

5. Explain the procedure for the design of slabs.

OBJECTIVE TYPE QUESTIONS

1. In a simply reinforced beam, the reinfocement is provided in

(a) tensile zone (b) compressive zone

(c) neutral zone (d) any where
2. In a single reinforced beam, the depth of lever arm is

(a)
3

d n−
(b)

2
3

d n−
(c)

3
3

d n−
(d)

4
3

d n−

3. If the actual neutral axis of a reinforced section is above the critical section, then the section is

(a) under reinforced (b) over reinforced
(c) balanced (d) none of these

4. For a balanced reinforced section, the depth of neutral axis (n) is given by the relation

(a) mc n
t d n

=
−

(b)
d nmc

t n
−= (c) mc n

t d n
=

+
(d) d nmc

t n
+=

ANSWERS

1. (a) 2. (c) 3. (a) 4. (a)
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36.1. Introduction
In modern design offices, a special care is taken

at the time of designing a structure that it should be
able to withstand the stresses, under the various load
conditions, without failure. For doing so, it is very
essential to have a complete information about the
various properties of the selected material and its
dimensions. This information can be obtained by
experimental investigations in a well-equipped
material testing laboratory.

36.2. Classification of Materials
In general all the materials, used by the

engineers, may be classified on the basis of their
physical properties into the following four
types:

36C h a p t e r
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1. Elastic materials,
2. Plastic materials,

3. Ductile materials, and

4. Brittle materials

36.3. Elastic Materials
We have already discussed that whenever some external system of forces acts on a body, it

undergoes some deformation. The deformation increases as the forces increase. If a material regains
its original position, on the removal of the external forces, it is called an elastic material.

36.4. Plastic Materials
If a material does not regain its original position, on the removal of the external forces, it is called

a plastic material.

36.5. Ductile Materials
If a material cannot undergo a considerable deformation, without rupture (e.g. if a material can

be drawn into wires), it is called a ductile material.

36.6. Brittle Material
If a material cannot undergo any deformation (like glass, china-ware, etc.) when some external

forces act on it and it fails by rupture, it is called a brittle material.

36.7. Classification of Tests
The various tests carried out, in a material testing laboratory, to know the physical properties of

a material, may be grouped under the following three headings :–

1. Types of stress induced

The tests are carried out by inducing the various types of stresses (i.e., tensile stress, compressive
stress, shear stress, torsional stress, etc.)

2. The rate, at which, the stresses are induced

The tests are also carried by inducing the stresses at different rates. In general, the stresses induced
under this heading are gradual and sudden (i.e. impact tests).

3. The number of times, the stresses are induced

The tests are also carried out by inducing the stresses once, and a number of times.

36.8. Actual Tests for the Mechanical Properties of Materials
Though there are many tests, which are carried out to know the strength of material, yet the

following tests are important from the subject point of view:
1. Tensile test

2. Compressive test

3. Impact test
4. Fatigue test.

36.9. Tensile Test of a Mild Steel Specimen
We have studied in Chapter 2, that whenever some external system of forces acts on a body, it

undergoes some deformation. If a body is stressed within its elastic limit, the deformation entirely
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disappears as soon as the forces are removed. It has been also found that beyond the elastic limit, the
deformation does not disappear entirely, even after the removal of the forces and there remains some
residual deformation. We study this phenomenon, in a greater detail, by referring to a tensile test (or
stress-strain diagram) for a mild steel bar.

Fig. 36.1

Take a specimen of mild steel bar of uniform section as shown in Fig. 36.1. Let this bar be
subjected to a gradually increasing pull (as applied by
universal testing machine). If we plot the stresses along
the vertical axis, and the corresponding strains along the
horizontal axis and draw a curve passing through the
vicinity of all such points, we shall obtain a graph as shown
in Fig. 36.2.

We see, from the graph, that the curve from O to A is
a straight line, which represents that the stress is
proportional to strain. Beyond A, the curve slightly
deviates from the straight. It is thus obvious, that the
Hooke’s law holds good only up to this limit. Thus the
point A is the elastic limit of the specimen metal. When
the specimen is stressed beyond this limit, the strain
increases more quickly than the stress (in comparison from
O to A). This happens, because a sudden elongation of
the specimen takes place, without an appreciable increase
in the stress (or load). The stress, corresponding to the
point B is called the yield point.* It may be noted, that if
the load on the specimen is removed, then the elongation
from A to B will not disappear. But will remain as a
permanent set. It is thus obvious, that the Hooke’s law
does not hold good, beyond the point A (i.e., elastic limit)

At B, the specimen regains some strength and higher values of stresses are required, for higher
strains, than those between A and B. The stress (or load) goes on increasing, till the point C is reached.
The gradual increase in the length of the specimen is followed with the uniform reduction of its cross-
sectional area. The work done, during stretching the specimen, is transformed largely into heat and the
specimen becomes hot. At C, the stress, which attains its maximum value, is known as ultimate stress.

After the specimen has reached the ultimate stress, a neck is formed, which decreases the cross-
sectional area of the specimen. A little consideration will show, that the stress (or load) necessary, to
break away the specimen, is less than the ultimate stress (or maximum load). The stress is, therefore,
reduced until the specimen breaks away at the stress represented by the point D. The stress,
corresponding to the point D, is known as the breaking stress.**

Fig. 36.2

* At this point, the elongation of a mild steel specimen is about 2%.

** The breaking stress (i.e., stress at E which is less than that at D, appears to be somewhat misleading. As the
formation of a neek takes place at D, which reduces the cross-sectional area. It causes the specimen suddenly
to fail at E. If for each value of the strain between C and E the tensile load is divided by the reduced cross-
sectional area at the narrowest part of the neck, then the true stress-strain curve will follow the dotted line
C.F. However, it is an established practice, to calculate strains on the basis of original cross-sectional area
of the specimen.
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36.10. Working Stress
The stress-strain curve gives a valuable information about the mechanical properties of a metal.

By knowing the elastic limit, yield point and ultimate stress in a material, it is very easy to establish
the magnitude of stress, which can be safely undertaken by it. This is, generally, done by keeping the
safe stress well below the elastic limit. This safe stress, which is allowed to be undertaken by the
material in designs, is called the working stress.

36.11. Factor of Safety
The ratio of elastic limit to the working stress (or ultimate stress to the working stress) is called

the factor of safety. In the recent days, the general practice followed is, that for structural steel work
(when subjected to gradually increasing loads) the factor of safety is taken as the ratio of elastic limit
to the working stress; whose value is taken as 2 to 2.5. But in the case of cast iron, concrete, wood,
etc. (or when structural steel work is subjected to sudden loads) the factor of safety is taken as the
ratio of ultimate stress to the working stress, whose value is taken as 4 to 6.

EXAMPLE 36.1.  A mild steel rod of 12 mm diameter was tested for tensile strength, with the
gauge length of 60 mm. Following were the observations :

(a) Final length = 78 mm

(b) Final diameter = 7 mm

(c) Yield load = 34 kN

(d) Ultimate load = 61 kN

Calculate (a) yield stress, (b) ultimate tensile stress, (c) percentage reduction, and (d) percent-
age elongation.

SOLUTION.
Given. Original diameter of rod = 12 mm; Original length = 60 mm; Final length = 78 mm;  Final

diameter = 7 mm; Yield load = 34 kN = 3.4 × 104 N and ultimate load = 61 kN =
6.1 × 104 N.

Original area =
4
π  × (12)2 = 113 mm2

Final area =
4
π  × (7)2 = 38.5

Yield stress
We know that the yield stress

=
4

2Yield load 3.4 10  N/mm
Area 113

×=

= 300.8 N/mm2 Ans.
Ultimate tensile stress

We know that the ultimate tensile stress

=
4

2Ultimate load 6.1 10 N/mm
Area 113

×=

= 539.8 N/mm2 Ans.
Percentage reduction

We know that the percentage reduction

=
Original area Final area

100
Original area

− ×
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=
113 38.5 100 65.9%

113
− × =  Ans.

Percentage elongation
We also know that the percentage elongation

=
Final length Original length

100
Final length

− ×

= 78 60 100 23%
78
− × =  Ans.

36.12. Barba’s Law and Unwin’s Formula
Prof. Barba, after carrying out a series of experiments on tensile testing of a number of specimens,

found that the percentage elongation gives a measure of ductility of the metal. Moreover, the amount
of local extension depends upon the material and also on the transverse dimensions of the test pieces.
He observed that as the test pieces are made from bars, strips, sheets, wires, forgings, castings etc.,
therefore some standard means of comparison of results are necessary. He enunciated a law which
states, ‘‘In tension, similar test pieces deforms similarly.’’ He further stated that two test pieces are
said to be similar if they have equal value of :

Gauge length

Cross-sectional area
Prof. Unwin, as a result of the experiments conducted by Barba, gave an expression for total

extension,

δl = bl + c√A

or
δl
l =

⎛ ⎞√+⎜ ⎟
⎝ ⎠

c Ab
l

∴ 100δ ×l
l

= ( ) 100+ ×cAb
l

where δl = Total extension of the gauge length,

l = Gauge length,

A = Original area of specimen cross-section, and
b and c = Constants depending upon the quality of the specimen material.

EXAMPLE 36.2.  Two specimens A and B of the same material were tested in a laboratory and
the results are shown in the table below :

Specimen Gauge length Thickness Width Elongation
    in mm    in mm in mm       (%)

A 200 8 40 30

B 250 10 60 32

Estimate the percentage elongations of a third specimen C of the same material having a
length of 150 mm and diameter 20 mm.

SOLUTION.
Specimen A

Length, l = 200 mm
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Area, A = 8 × 40 = 320 mm2.

Elongation
δl
l = 30% = 0.3

Specimen B
Length, l = 250 mm

Area, A = 10 × 60 = 600 mm2

Elongation
δl
l

= 32% = 0.32

Specimen C
Length, l = 150 mm

Area, A = 2 220 100 mm
4
π × = π

Using Unwin’s formula for specimens A and B

δl
l

=
√+ c Ab
l

0.3 = 320
200
√+ cb ...(or A)

0.3 = b + 0.089 c ...(i)

and 0.32 = 600
250
√+ cb ...(for B)

0.32 = b + 0.098 c ...(ii)

Subtracting equation (i) from (ii).

0.02 = 0.009 c

∴ c = 0.02 2.22
0.009

=

Now substituting the value of c in equation (i),
0.3 = b + 0.089 × 2.22 = b + 0.198

∴ b = 0.3 – 0.198 = 0.102

Again using Unwin’s formula for specimen C,

δl
l =

√+ c Ab
l

=
2.22 1000.102 0.364

150
π+ =

= 36.4% Ans.

36.13. Compression Test
It is merely the opposite of the tension test. The compression test is generally performed for

testing the brittle materials such as cast iron, concrete, stone etc. The specimens used in this test are
usually made of cubical or cylindrical shape. It has been observed that some errors are always introduced
in this test due to the following practical difficulties :

1. Since the top and bottom faces of the specimen are seldom absolutely parallel, therefore it is
very difficult to ensure axial loading on the specimen.
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2. Since the length of the specimen is kept short enough (not more than twice of its diameter) to
avoid its buckling, therefore within the elastic limit a small compression takes place, which
is difficult to measure accurately.

3. The friction between the ends of the specimen and clutches of the machine, prevents the
dimensions of the specimen ends from increasing. This results in the lateral expansion to
take place more in the centre, instead of uniform increase in diameter throughout the whole
length. Such an effect, which is called barrel effect, is not a case of an ideal compression.

Now we shall discuss the compression test for ductile materials and brittle materials.

1. Compression test for ductile materials (i.e., mild steel, copper etc.)
Consider a ductile material specimen (say a mild steel

bar) of uniform section, subjected to a gradually increasing
push. If we plot the stresses along the vertical axis, and
the corresponding strains along the horizontal axis and
draw a curve passing through the vicinity of all such points,
we shall obtain a graph as shown in Fig. 36.3.

We see, from the graph, that the curve from O to A is
a straight line, which represents that the stress is
proportional to strain. Up to elastic limit, all the metals
have approximately the same modulus of elasticity in
compression, as that in tension. If the specimen is stressed
beyond the elastic limit, the strain increases more quickly
than the stress (in comparison from O to A). This happens,
because the sudden contraction of the specimen takes
place, without an appreciable increase in the stress. At B,
the specimen regains some strength and, higher values of
stresses are required for higher strains, than those between
A and B. Beyond B, the curve continues, almost without
any limit, as there is no failure of the material on account
of its ductility and the cross-sectional area goes on
increasing continuously, with the increase of load. The
specimen will shorten and bulge out.

2. Compression test for brittle materials (i.e., cast iron, concrete, etc.)
If we perform the compression test with a specimen of some brittle material (say a cast iron bar)

and draw a curve with stresses along vertical axis and the corresponding strains along horizontal axis,
we shall obtain a graph as shown is Fig. 36.3. We see, from the graph, that there is a little strain as
compared to stress and there is always a point, where the specimen will fail due to shear along a
diagonal plane.

The compression test is mainly performed for testing brittle materials only.

36.14. Impact Test
Many machines or machine components are subjected to a suddenly applied load, which is called

impact blow. For determining the suitability of a material to resist the impacts, Izod and Charpy tests
are generally carried out. The Izod test is conducted as discussed below.

The standard test piece, for an Izod test, may be square or round as shown in Fig. 36.4 (a)
and (b).

This test enables us to estimate the property of toughness of a material. The toughness of a
material may be defined as the energy absorbed in the failure of its specimen. The energy absorbed by

Fig. 36.3
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a specimen, during its failure, is the
product of its deformation and the
average stress. A little consideration will
show, that a material, which can be highly
stressed and greatly deformed, will be
able to with-stand a high blow ; and thus
may be said to be more tough.

There are many types of Izod testing
machines available in the market. But the
basic principle, on which all of them are
based, is the same.

The scale of an Izod testing machine
has zero in the vertical line and graduated
on both sides from zero to the maximum
capacity of the machine. A pendulum is
released from the right side from a known
angle, which swings on other side of the
scale. A little consideration will show, that if the pendulum is not interrupted anywhere, the  angle to
which it will swing up on the left will be equal to the angle from which it was released (neglecting the
bearing friction of the pendulum). But the specimen is kept in the path of the pendulum, which is
broken by the impact of the pendulum. The energy absorbed by the specimen, during the breaking, is
given by the difference between the angle through which the pendulum was released and the angle
through which the pendulum has reached after breaking away the specimen.

36.15. Fatigue Test
Some of the machine parts such as axles, shafts, crankshafts, connecting rods, springs, pinion

teeth are subjected to varying stresses. It includes the variation in the intensity of the same type of
stresses as well as different types of stresses (i.e., change of stress, from tensile to compressive and
vice versa). The varying stresses may be broadly classified into the following four types :

1. The stress varying between two limits of equal value, but of opposite sign.

2. The stress varying between two limits of unequal values, but of opposite sign.

3. The stress varying between zero and a definite value.
4. The stress varying between two limits of equal values, but of opposite sign.

Though there are numerous ways of fatigue test in a laboratory, yet the basic principle is the
same. The most common test is a rotating bar test of cantilever type and beam type. In this test, a
number of identical test piece bars (say 8 to 10) are made from a material. One of the piece is fixed to
the machine. A load is gradually applied to the test piece. (This load should not be less than that,
which can produce a stress equal to 3/4 of the tensile strength of the material up to the elastic limit).
The rotation of the electric motor will sometimes push the test piece downwards and sometimes pull
upwards, which will reverse the stresses in the upper and lower fibres of the test piece. The speed of
the motor will indicate the frequency of the stress reversal.

The speed of the motor shaft is kept constant. It has been experimentally found, that after a
sufficient number of stress reversals, a crack in the form of a ring is formed on the outer surface. This
crack goes on extending towards the centre of the test piece, till it breaks away. It has also been
observed that the speed of the motor (or in other words the frequency of the stress reversal) has no
effect on the result. But it is the load or the intensity of the maximum stress, which controls the result.

After the first test piece breaks away, the second piece is tested with a decreased load. The third,

Fig. 36.4
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fourth, fifth etc. pieces are then tested with decreased loads. It may be noted that the number of
reversals, each time, goes on increasing with the decrease in load. After some tests, a limit is reached,
when the stress is not sufficient to break the test piece even after 10 ×  106 stress reversals (in some
countries, this limit is 20 × 106). This safe stress, which after reversing for 10 × 106 time does not
cause the test piece to break, is called endurance limit.

All the ferrous metals have endurance limit between 0.4 to 0.6 of the tensile strength up to the
elastic limit.

QUESTIONS

1. Describe the necessity of mechanical tests of a material.

2. Give the classifications of materials and distinguish between elastic materials and plastic mate-
rials.

3. Describe the tensile test of a mild steel specimen.

4. Write short notes on :

(a) Stress-strain figure.
(b) Yield stress.

(c) Ultimate stress.

(d) Neck of the specimen.
(e) Working stress.

5. Draw the graph for ductile and brittle materials when tested for compression in a laboratory.

6. What is the importance of impact tests. Describe the Izod test.
7. Describe the fatigue test of a material.

8. Write a short note on endurance limit.
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     TABLE 2          Slopes and Deflections for Different Loadings on Cantilevers and Beams

  S. Type of Loading Maximum Bending Slope Maximum Deflection
No. Moment

1 2 3 4 5

1. MA = – Wl
2

–
2B
Wl

i
EI

=
3

–
3max B
Wl

y y
EI

= =

2. MA = – Wl1

2
1–

2B
Wl

i
EI

=
2

1
1– (3 – )

6max B
Wl

y y l l
EI

= =

3.
2

–
2A
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M =

3
–

6B
wl

i
EI

=
4

–
8max B
wl

y y
EI

= =

4.
2

1–
2A

wl
M =

3
1–

6B C
wl

i i
EI

= =
4 3

1 1
1– ( – )

8 6max B
wl wl

y y l l
EI EI

⎡ ⎤
= = +⎢ ⎥

⎣ ⎦
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  S. Type of Loading    Maximum Bending Slope Maximum Deflection
 No. Moment

1 2 3 4 5

5.

  6. MA = – M –B
Ml

i
EI

=
2

max –
2B
Ml

y y
EI

= =

7.
2

–
6A

wl
M =

3
–

24B
wl

i
EI

=
4

max –
30B
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y y
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= =
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4C
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–
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A
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=
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EI EI

⎡ ⎤⎡ ⎤ −
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ( )4 3

1 1 1( )
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EI EI
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y y
EI

⎡ ⎤
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9.     C
W ab
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=
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(at x = 0·519 l from B)

 S. Type of Loading Maximum Bending Slope Maximum Deflection
 No. Moment

1 2 3 4 5

2 2 3/ 2
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( – )

–
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y
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2 2
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    S. Type of Loading Maximum Bending Slope Maximum Deflection
   No. Moment

  1 2 3 4 5

12.  
2

max 12

wl
M =

3

3

5

192

5
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A

B

wl
i

EI

wl
i

EI

= −

= +

4
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120C
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y y

EI
= =

Sign conventions used :         Slope : Clockwise –
Counter-clockwise +

Deflection : Upward +
Downward –
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— for fixed beams, 571

Bending springs, 680

Bending stress, 345

— Distribution of, 349

— in symmetrical section, 356

Brittle materials, 836

Bulk modulus, 101

Butt joint, 696

C

Cantilever beam

— with gradually varying load, 524,

530, 499, 292

— with a point load at any point,

521

— with a point load at free end,

520, 528, 288

— with several loads, 502

— with uniformly distributed load,

523, 529, 494, 290,

Cantilevers of composite section, 505

Cantilever loaded from the free end, 498

Cantilever partially loaded with a u.d.l,

497

Cantilever truss, 223, 266

Carriage springs, 680

Carry over factor, 625

— for a beam fixed at one end and

simply supported at the other,

625

— for a beam simply supported at

both ends, 626

Castigliano’s Theorem

Centre of gravity, 168

— by geometrical considerations,

163

— by method of moments, 165

— of plane figures, 165

— of sections with cut out holes,

175

— of solid bodies, 171

— of symmetrical sections, 166

— of unsymmetrical sections, 168

Centroid, 163

Chain links, 792

Chain riveted joint, 698



 Index � 855

Change in dimensions of a thin

cylinderical shell subjected to internal

pressure, 746

— of diameter and volume of a thin

spherical shell subjected to an

internal pressure, 750

— of volume of a thin cylindrical

shell subjected to an internal

pressure, 747

Circumferential stress, 743

Clapeyron’s theorem of three moments,

599

Classification of Materials, 835

— Tests, 836

— Application of, 601

Closely coiled helical springs, 686

Column with eccentric loading, 406

— Symmetrical, 406

— Unsymmetrical, 414

Columns with both ends hinged, 797

— one end fixed and the other free,

798

— one fixed and the other hinged,

801

Composite shaft, 670

Composition of forces, 10

Compressive stress, 14, 210

Compression test, 840

Conditions for the stability of a dam, 438,

439, 440

— retaining wall, 449

— conjugate beam, 527

Conjugate beam method, 527

Continuous beam

— subjected to a couple, 621

— with fixed end supports, 605

— with end span over hanging, 611

— with simply supported ends, 601

— with sinking support, 615

Construction of space diagram, 254

— vector diagram, 254

Cotter joint, 717

Coulomb’s wedge theory for active earth

pressure, 456

Crane hooks, 787

Critical neutral axis, 822

Crushing of rivets, 669

Curvature of bending beam, 464

D

Deficient frame, 209

Deformation of a body due to force acting

on it, 15

— self weight, 18

Derived units, 2

Design of beams and slabs, 831

— bolts, 674
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— cylindrical shell, 746

— keys, 675

— riveted joint, 701

Diamond riveted joint, 698

Differential calculus (Useful data), 8

Difference of radii for shrinkage, 763

Disadvantages of welded joints, 723

Distribution factor, 628

Distribution of bending stress, 349

Distribution of shear stress

— over a circular section, 389

— over an I-section, 392

— over miscellaneous section, 397

— over a rectangular section, 385

— over T-section, 396

— over Triangular section, 387

Double integration method for slope and

deflection, 466

Double cover butt joint, 696

— riveted joint, 697

Ductile materials, 836

E

Earth pressure on a retaining wall, 449

Eccentric loading, 406

— riveted connections, 712

— welded joints, 733

Efficiency of riveted joint, 701

Elasticity, 13

— Modulus of, 15

Elastic limit, 14

Elastic materials, 836

Empirical formulae for columns, 808

Equivalent length of a column, 802

Euler’s column theory, 796

F

Factor of safety, 838

Failure of column or strut, 796

— plates, 700

— rivets, 699

— riveted joint, 698

— thin cylindrical shell, 743

Fatigue test, 842

Fillet weld joint, 724

Fixed beams

— Advantages of, 571

— B.M. diagrams for, 571

Fixing moments of a fixed beam, 572

— carrying a central point load,

574
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— carrying an eccentric point load,

576

— carrying a gradually varying

load, 589

— carrying a uniformly distributed

load, 582

— due to sinking support, 593

Force, 10

— table, 211, 255

Forms of springs, 680

Frames with both ends fixed, 281

Fundamental units, 2

G

Graphical method of finding out forces

in perfect frames, 253

— for finding out the stresses on

oblique section, 129

H

Helical springs, 686

Hooke’s law, 14

I

Impact test, 841

Imperfect frame, 209

Indian Standard Code of column, 814

Integral calculus (Useful data), 8

J

Johnson’s formula for columns, 813

— parabolic, 814

— straight line, 813

K

Kilogram, 3

Knuckle joint, 715

L

Lame’s theory, 755

Lap joint., 696

Limit of eccentricity, 418

Limitations of Euler’s formula, 803

Link radius for standard sections, 781

Load and B.M. diagrams from S.F.
diagram, 322

Long columns subjected to eccentric
loading, 816

Longitudinal stress, 744

M

Macaulay’s method, 479

Magnitude of forces, 255

Maximum height of a dam, 448
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Maxwell’s Theorem,

Methods for finding out the centre of
gravity, 185

— moment of inertia, 185

— slope and deflection at a sec-
tion, 466, 490

— stresses on oblique sections,109

Method of joints, 210

— sections, 211

— substitution, 282

Metre, 2

Minimum base width of a dam, 443

Modulus of elasticity, 15

— section, 350

Mohr’s circle for stresses on oblique
sections

— theorems, 130, 131, 139, 134,
509

Moment area method, 509

Moment distribution method, 624

Moment of inertia

— of a built-up section, 202

— of a plain area, 185

— of  rectangular section, 186

— of a hollow rectangular section,
187

— of circular section, 188

— of composite sections, 194

— triangular sections, 191

Moment of inertia

— of a built-up section, 202

— of a hollow circular section, 187

— of a semicircular section, 192

Moment of resistance, 349, 750

Multiple riveted joint, 697

N

Nature of forces, 255

Neutral axis, 822

O

Open coiled helical springs, 689

Overhanging beam, 310

Over-reinforced section, 828

P

Parallelogram law of forces,10

Passive earth pressure, 450

Perfect frame, 209

Pitch of rivets, 699

Plastic materials, 836

Plug weld joint, 724

Point of contraflexure, 310

Poisson’s ratio, 92
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Polar moment of inertia, 660

Polygon law of forces, 11

Position of neutral axis, 348

Power transmitted by a shaft, 657

Preparation of force table, 255

Presentation of units and their values, 3

Primary strain, 92

Principle of shear stress, 103

— superposition, 20

Proof resilience, 149

Principal plane, 109

— stress, 109

Propped beam, 548

R

Rankine’s formula for columns, 808

— theory for active earth pressure,

450

Reaction of a prop, 549

Rectangular dams, 423

Redundant frame, 209

Relation between actual beam and

conjugate beam, 527

— bulk modulus and Young’s

modulus, 101

— loading, shear force and bend-

ing moment, 288

— modulus of elasticity and

modulus of rigidity, 104

Replacing a shaft, 664

Resilience, 149

— Proof, 149

Resultant force, 10

Retaining walls, 449

Rings, 788

Riveted cylindrical shells, 751

S

Scalar quantities, 9

Second, 3

Secondary strain, 92

Shaft couplings, 674

— of varying sections, 667

Shear centre,

Shear force, 287

— and bending moment diagrams,

288

Shearing of the rivet, 669

Shear modulus, 104

Shear stress, 103

— at a section in a loaded beam,

384

— Principle of, 103

S.I. Units, 2

Sign conventions, 287, 796

Simply supported beam

— with a central point load, 510

534, 466
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— with an eccentric point load,

512, 535, 468

— with a gradually varying load,

524, 540, 477, 306

— with a triangular load, 304

— with uniformly distributed load,

539, 474, 298

Single cover butt joint, 696

— riveted joint, 697

Sinking of the prop, 567

Slenderness ratio, 803

Springs in series and parallel, 692

Stiffness factor, 628

— of spring, 680

Strain, 13

— energy, 156

Strain energy stored in a body when the

load is applied gradually, 149

— when the load is suddenly

applied, 150

— when the load is applied with

impact, 152

— due to shear stress, 160

— due to torsion, 672

Strength of a plate, 701

— rivet, 700

— riveted joint, 701

— shaft, 655

— welded joint, 725

Stress, 13, 209

Stresses in bars of varying sections, 25

— compound thick cylindrical

shells, 759

— composite bars, 41

— uniformly tapering rectangular

sections, 39

— uniformity tapering circular

sections, 35

— section

— nuts and bolts, 67

— thick cylindrical shell, 756

— thin cylindrical shell, 743

Stresses in bars of varying sections

— uniformly tapering rectangular

sections, 39

Stresses-in simple statically indeterminate

structures, 48

— in indeterminate structures
supporting a load, 53

— in composite structures of equal

lengths, 60

Stress on an oblique section of body

subjected  to a direct stress

— in one plane, 109

— in two mutually perpendicular

directions, 113
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Structures with one end hinged or

pinjointed and the other supported

freely on rollers, 273, 277, 232,

237,

Superposition of thermal stresses, 83

Symmetrical columns with eccentric

loading, 406

System of units, 2

T

Tearing of the plate across a row of a

riveted joint, 699

— at an edge, 700

Tensile stress, 14, 209

Tensile test of a mild steel specimen, 835

Theory of active earth pressure, 450

— simple bending, 345

Thermal stresses in simple bars, 73

— bars of tapering section, 74

— bars of varying section, 76

— composite bars, 79

Thick spherical shells, 768

Thin spherical shells, 749

Torsion springs, 680

Transmission of load through rods, 715

Trapezoidal dams with water face

— vertical, 427

— inclined, 435

Triangle law of forces, 11

Trigonometry (Useful data), 5

Types of composite beams, 364

Types of curved bars on the basis of initial
curvature, 774

Types of sections, 827

— end conditions of columns, 797

— frames, 209

— loading, 287, 149

— neutral axis, 822

— riveted joints, 695

— rod joints, 715

— springs, 680

— sections, 828

— statically indeterminate struc-
tures, 48

— stresses, 13

— welded joints, 723

U

Under-reinforced sections, 827

Units, System of

Units of moment of inertia, 185

Unsymmetrical columns with eccentric

loading, 414

— section subjected to an axial

load, 730

Unsymmetrical bending

V

Value of

— link radius for a rectangular

section, 781
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— link radius for a triangular

section, 782

— link radius for a trapezium

section, 783

— link radius for a circular section,

784

Vector quantities, 9

Volumetric strain, 94

— of a rectangular body subjected
to an axial force, 94

— of a rectangular body subjected
to three mutually perpendicular
forces, 97

W

Wire bound thin cylindrical shells, 752

Working stress, 838

Y

Young’s modulus, 15

Z

Zig-zag riveted joints, 698
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